THE MAXIMAL α-INDEX OF TREES WITH K PENDENT VERTICES AND ITS COMPUTATION*

OSCAR ROJO ${ }^{\dagger}$

Abstract

Let G be a graph with adjacency matrix $A(G)$ and let $D(G)$ be the diagonal matrix of the degrees of G. The α-index of G is the spectral radius $\rho_{\alpha}(G)$ of the matrix $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, where $\alpha \in[0,1]$. Let $T_{n, k}$ be the tree of order n and k pendent vertices obtained from a star $K_{1, k}$ and k pendent paths of almost equal lengths attached to different pendent vertices of $K_{1, k}$. It is shown that if $\alpha \in[0,1)$ and T is a tree of order n with k pendent vertices then $$
\rho_{\alpha}(T) \leq \rho_{\alpha}\left(T_{n, k}\right)
$$ with equality holding if and only if $T=T_{n, k}$. This result generalizes a theorem of Wu, Xiao and Hong [6] in which the result is proved for the adjacency matrix $(\alpha=0)$. Let $q=\left[\frac{n-1}{k}\right]$ and $n-1=k q+r, 0 \leq r \leq k-1$. It is also obtained that the spectrum of $A_{\alpha}\left(T_{n, k}\right)$ is the union of the spectra of two special symmetric tridiagonal matrices of order q and $q+1$ when $r=0$ or the union of the spectra of three special symmetric tridiagonal matrices of order $q, q+1$ and $2 q+2$ when $r \neq 0$. Thus, the α-index of $T_{n, k}$ can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order $q+1$ if $r=0$ or order $2 q+2$ if $r \neq 0$.

Key words. Convex combination of matrices, Signless Laplacian, Adjacency matrix, Tree, Pendent vertices, Spectral radius.

AMS subject classifications. 05C50, 15A48.

1. Introduction. Let $G=(V(G), E(G))$ be a simple undirected graph on n vertices with vertex set $V(G)$ and edge set $E(G)$. Let $D(G)$ be the diagonal matrix of order n whose (i, i)-entry is the degree of the $i-t h$ vertex of G and let $A(G)$ be the adjacency matrix of G.

As usual, $K_{1, s}$ denotes the star on $s+1$ vertices, K_{n} and P_{n} are the complete graph and the path, both on n vertices, respectively.

In [2], Nikiforov introduces the matrix $A_{\alpha}(G)$,

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

with $\alpha \in[0,1]$ together with basic results and several open problems. Observe that $A_{\alpha}(G)$ is a symmetric nonnegative matrix for all $\alpha \in[0,1]$ and that $A_{0}(G)=A(G)$ and $A_{1 / 2}(G)=\frac{1}{2}(D(G)+A(G))=\frac{1}{2} Q(G)$. Since $A_{1}(G)=D(G)$, from now on, we take $\alpha \in[0,1)$.

Let $\rho_{\alpha}(G)$ be the α-index of G, that is, the spectral radius of $A_{\alpha}(G)$. From the Perron - Frobenius Theory for nonnegative matrices, it follows that for a connected graph $G, \rho_{\alpha}(G)$ (Perron root) is a simple eigenvalue of $A_{\alpha}(G)$ having a positive eigenvector (Perron vector).

Let n and k given positive integers with $2 \leq k \leq n-1$. Let $T_{n, k}$ be the tree of order n and k pendent vertices obtained from a star $K_{1, k}$ and k pendent paths of almost equal lengths attached to different

[^0]pendent vertices of $K_{1, k}$. More precisely, if $q=\left[\frac{n-1}{k}\right]$ and $n-1=k q+r, 0 \leq r \leq k-1$, then $T_{n, k}$ is the tree obtained from the star $K_{1, k}$ together with $k-r$ pendent paths P_{q} and r pendent paths P_{q+1} attached to different pendent vertices of $K_{1, k}$ whenever $r \neq 0$ (see Example 1.1). If $r=0$, then $T_{n, k}$ is the tree obtained from the star $K_{1, k}$ and k pendent paths P_{q} attached to different vertices of $K_{1, k}$ (see Example 1.2). Clearly, $T_{n, k}$ is a tree having exactly k pendents vertices and the number of vertices of $T_{n, k}$ is $(k-r) q+r(q+1)+1=k q+r+1=n$.

Example 1.1. Let $n=20$ and $k=7$. Then $q=2$ and $r=5$. The tree $T_{20,7}$ is displayed below:

In Section 2, we prove that if $\alpha \in[0,1)$ and T is a tree of order n with k pendent vertices, then

$$
\rho_{\alpha}(T) \leq \rho_{\alpha}\left(T_{n, k}\right),
$$

with equality holding if and only if $T=T_{n, k}$. This result generalizes a theorem of Wu, Xiao and Hong [6] in which the result is proved for the adjacency matrix $(\alpha=0)$.

A rooted graph is a graph in which one vertex has been designated as a special vertex called the root. Given a rooted graph the level of a vertex is one more than its distance to the root vertex. A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree. For instance, if $r=0$, then $T_{n, k}$ is a generalized Bethe tree. In Example 1.2, we illustrate this case.

Example 1.2. Let $n=15$ and $k=7$. Then $q=2$ and $r=0$. The tree $T_{15,7}$ is displayed below:

If $r \neq 0$, then $T_{n, k}$ is a tree defined by the coalescence of two generalized Bethe trees at their roots (see Example 1.1).

Let $\left\{B_{i}: 1 \leq i \leq m\right\}$ be a set of trees such that, for $i=1,2, \ldots, m$. Then,
(1) B_{i} is a generalized Bethe tree of k_{i} levels,
(2) the vertices of B_{i} at the level j have degree $d_{i, k_{i}-j+1}$ for $j=1,2, \ldots, k_{i}$, and
(3) the edges of B_{i} joining the vertices at the level j with the vertices at the level $(j+1)$ have weight $w_{i, k_{i}-j}$ for $j=1,2, \ldots, k_{i}-1$.

Let $v\left\{B_{i}: 1 \leq i \leq m\right\}$ be the tree obtained from the coalescence of the trees B_{i} at their roots in a common vertex v.

The Laplacian matrix of G is $L(G)=D(G)-A(G)$. In [5], we give a complete characterization of the eigenvalues of the Laplacian matrix and adjacency matrix of $v\left\{B_{i}: 1 \leq i \leq m\right\}$ including results on their multiplicities. In Section 3, we extend these results to $A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$. Finally, in Section 4, we apply the results of Section 3 to deduce that the spectrum of $A_{\alpha}\left(T_{n, k}\right)$ is the union of the spectra of two special symmetric tridiagonal matrices of order q and $q+1$ when $r=0$ or the union of the spectra of three special symmetric tridiagonal matrices of order $q, q+1$ and $2 q+2$ when $r \neq 0$. Thus, the α-index of $T_{n, k}$ can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order $q+1$ if $r=0$ or order $2 q+2$ if $r \neq 0$.
2. The maximal α-index of trees with k pendent vertices. In [6], the authors proved the following:

Theorem 2.1. (Wu, Xiao, and Hong [6]) Among all trees on n vertices and k pendent vertices, the maximal spectral radius of the adjacency matrix is obtained uniquely at $T_{n, k}$.

In this section, we extend Theorem 2.1 to all $\alpha \in[0,1)$. We begin recalling the following lemma that generalizes results known for the adjacency matrix and the signless Laplacian matrix of graphs.

Lemma 2.2. (Nikiforov and Rojo [4]) Let $\alpha \in[0,1)$ and let G be a graph of order n. Suppose that $u, v \in V(G)$ and $S \subset V(G)$ satisfy $u, v \notin S$ and for every $w \in S,\{u, w\} \in E(G)$ and $\{v, w\} \notin E(G)$. Let H be the graph obtained by deleting the edges $\{u, w\}$ and adding the edges $\{v, w\}$ for all $w \in S$. If S is nonempty and there is a positive eigenvector $\left(x_{1}, \ldots, x_{n}\right)$ to $\rho_{\alpha}(G)$ such that $x_{v} \geq x_{u}$, then

$$
\rho_{\alpha}(H)>\rho_{\alpha}(G) .
$$

For any vertex u of a connected graph G, let $G_{p, q}(u)$ be the graph obtained by attaching the paths P_{p} and P_{q} to u. This is done by identifying one end vertex of P_{p} and one end vertex of P_{q} with u. The following theorem was proposed as a Conjecture 18 in [4].

Theorem 2.3. (Lin, Huang, and Xue [1]) Let $\alpha \in[0,1$). If G is a connected graph and $p \geq q+2 \geq 3$, then

$$
\rho_{\alpha}\left(G_{p, q}(u)\right)<\rho_{\alpha}\left(G_{p-1, q+1}(u)\right) .
$$

Given a graph G and a vertex $u \in V(G)$, let $\Gamma_{G}(u)$ be the set of neighbors of u.
We are ready to extend Theorem 2.1 to all $\alpha \in[0,1)$.
Theorem 2.4. Let $\alpha \in[0,1)$ and T be a tree of order n and k pendent vertices. Then

$$
\rho_{\alpha}(T) \leq \rho_{\alpha}\left(T_{n, k}\right)
$$

with equality if and only if $T=T_{n, k}$.
Proof. Let T be a tree on n vertices and k pendent vertices. Let d_{v} be the degree of $v \in V(T)$. Let t be the number of vertices of T with a degree greater than or equal to 3 . The following cases can occur:

Case 1: $t=0$. In this case, $T=P_{n}=T_{n, 2}$. Then $\rho_{\alpha}(T)=\rho_{\alpha}\left(T_{n, 2}\right)$.

Case 2: $t=1$. Repeated application of Theorem 2.3 enables to conclude that $\rho_{\alpha}(T) \leq \rho_{\alpha}\left(T_{n, k}\right)$ with equality if only if $T=T_{n, k}$.

Case 3: $t>1$. Let \mathbf{x} be a positive unit eigenvector corresponding to $\rho_{\alpha}(T)$ in which x_{v} is the component of \mathbf{x} corresponding to $v \in V(T)$. Let $u, v \in V(T)$ such that $d_{u} \geq 3$ and $d_{v} \geq 3$. There is no loss of generality in assuming $x_{u} \geq x_{v}$. There is a unique path P connecting u and v and let $z \in P$ be unique neighbour of v. Let $v_{1}, \ldots, v_{d_{v}-2} \in \Gamma_{T}(v) \backslash z$. Let T_{1} be the tree obtained from T by deleting the edges $\left\{v, v_{1}\right\}, \ldots,\left\{v, v_{d_{v}-2}\right\}$ and adding the edges $\left\{u, v_{1}\right\}, \ldots,\left\{u, v_{d_{v}-2}\right\}$. Clearly T_{1} is a tree of order n with k pendent vertices having $t-1$ vertices with a degree greater than or equal to 3 . Since $x_{u} \geq x_{v}$, by Lemma 2.2 , it follows that $\rho_{\alpha}(T)<\rho_{\alpha}\left(T_{1}\right)$. If $t-1=1$, we stop and if $t-1>1$, we continue in this fashion to obtain a sequence of trees $T_{1}, T_{2}, \ldots, T_{t-1}$ of order n with k pendent vertices such that $\rho_{\alpha}(T)<\rho_{\alpha}\left(T_{1}\right)<\rho_{\alpha}\left(T_{2}\right)<\cdots<\rho_{\alpha}\left(T_{t-1}\right)$, in which T_{t-1} has a unique vertex with a degree greater than or equal to 3 . Finally, we apply Case 2 to conclude that $\rho_{\alpha}(T)<\rho_{\alpha}\left(T_{n, k}\right)$.
3. The A_{α}-spectrum of the coalescence of generalized Bethe trees at their roots. Let $\sigma(M)$ be the spectrum of the matrix M. From now on, let $\beta=1-\alpha$.

The A_{α}-spectrum of a generalized Bethe tree was studied in [3] and the results are presented in Theorem 3.2 below.

Let B_{k} be a generalized Bethe tree on k levels. For $j=1, \ldots, k$, let n_{k-j+1} be the number of vertices at level j and let d_{k-j+1} be their degree. In particular, $d_{1}=1$ and $n_{k}=1$. Let

$$
\begin{equation*}
\Omega=\left\{j: 1 \leq j \leq k-1, n_{j}>n_{j+1}\right\} \tag{3.1}
\end{equation*}
$$

Definition 3.1. For $j=1,2, \ldots, k-1$, let T_{j} be the $j \times j$ leading principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
T=\left[\begin{array}{ccccc}
\alpha & \beta \sqrt{d_{2}-1} & 0 & & 0 \\
\beta \sqrt{d_{2}-1} & \alpha d_{2} & \ddots & & \\
& \ddots & \ddots & \beta \sqrt{d_{k-1}-1} & \\
& & \beta \sqrt{d_{k-1}-1} & \alpha d_{k-1} & \beta \sqrt{d_{k}} \\
0 & & 0 & \beta \sqrt{d_{k}} & \alpha d_{k}
\end{array}\right] .
$$

Theorem 3.2. (Nikiforov and Rojo [3, Theorem 8]) Let B_{k} be a generalized Bethe tree, and $\alpha \in[0,1$). If the matrices $T_{1}, \ldots, T_{k-1}, T$ are defined as in Definition 3.1, then:
(a)

$$
\sigma\left(A_{\alpha}\left(B_{k}\right)\right)=\left(\cup_{j \in \Omega} \sigma\left(T_{j}\right)\right) \cup \sigma(T)
$$

(b) The multiplicity of each eigenvalue of T_{j} as an eigenvalue of $A_{\alpha}\left(B_{k}\right)$ is $n_{j}-n_{j+1}$ if $j \in \Omega$ and the eigenvalues of T as eigenvalues of $A_{\alpha}\left(B_{k}\right)$ are simple. If some eigenvalues obtained in different matrices are equal, their multiplicities are added together.
(c) The largest eigenvalue of T is the largest eigenvalue of $A_{\alpha}\left(B_{k}\right)$.

We now search for A_{α}-spectrum of $v\left\{B_{i}: 1 \leq i \leq m\right\}$. We recall that $\left\{B_{i}: 1 \leq i \leq m\right\}$ is a set of trees such that, for $i=1,2, \ldots, m$,
(1) B_{i} is a generalized Bethe tree of k_{i} levels,
(2) the vertices of B_{i} at the level j have degree $d_{i, k_{i}-j+1}$ for $j=1,2, \ldots, k_{i}$, and
(3) the edges of B_{i} joining the vertices at the level j with the vertices at the level $(j+1)$ have weight $w_{i, k_{i}-j}$ for $j=1,2, \ldots, k_{i}-1$.

We recall the results obtained in [5] on the spectrum of $L\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$. Assume that the common root v is at the level 1 . For $j=1, \ldots, k_{i}$, let $n_{i, k_{i}-j+1}$ be the number of vertices at the level j of B_{i}. Let

$$
\begin{gathered}
\delta_{i, 1}=w_{i, 1} \\
\delta_{i, j}=\left(d_{i, j}-1\right) w_{i, j-1}+w_{i, j}
\end{gathered}
$$

for $j=2, \ldots, k_{i}-1$, and

$$
\delta=\sum_{i=1}^{m} d_{i, k_{i}} w_{i, k_{i}-1} .
$$

Definition 3.3. For $i=1, \ldots, m$ and for $j=1, \ldots, k_{i}-1$, let $T_{i, j}$ be the $j \times j$ leading principal submatrix of the $\left(k_{i}-1\right) \times\left(k_{i}-1\right)$ symmetric tridiagonal matrix

$$
T_{i, k_{i}-1}=\left[\begin{array}{cccc}
\delta_{i, 1} & w_{i, 1} \sqrt{d_{i, 2}-1} & & \\
w_{i, 1} \sqrt{d_{i, 2}-1} & \delta_{i, 2} & \ddots & \\
& \ddots & \ddots & w_{i, k_{i}-2} \sqrt{d_{i, k_{i}-1}-1} \\
& & w_{i, k_{i}-2} \sqrt{d_{i, k_{i}-1}-1} & \delta_{i, k_{i}-1}
\end{array}\right]
$$

Definition 3.4. Let $r=\sum_{i=1}^{m} k_{i}-m+1$. Let T be the symmetric matrix of order $r \times r$ defined by

$$
T=\left[\begin{array}{ccccc}
T_{1, k_{1}-1} & 0 & \cdots & 0 & w_{1, k_{1}-1} \mathbf{p}_{1} \\
0 & T_{2, k_{2}-1} & \ddots & & w_{2, k_{2}-1} \mathbf{p}_{2} \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & & 0 & T_{m, k_{m}-1} & w_{m, k_{m}-1} \mathbf{p}_{m} \\
w_{1, k_{1} \mathbf{p}_{1}^{T}} & w_{2, k_{2}-1} \mathbf{p}_{2}^{T} & \cdots & w_{m, k_{m}-1} \mathbf{p}_{m}^{T} & \delta
\end{array}\right]
$$

where $T_{1, k_{1}-1}, T_{2, k_{2}-1}, \ldots, T_{m, k_{m}-1}$ are the symmetric tridiagonal matrices defined in Definition 3.3 and

$$
\mathbf{p}_{i}^{T}=\left[\begin{array}{lllll}
0 & \cdots & \cdots & 0 & \sqrt{n_{i, k_{i}-1}}
\end{array}\right]
$$

for $i=1, \ldots, m$.
For $i=1, \ldots, m$, let

$$
\begin{equation*}
\Omega_{i}=\left\{j: 1 \leq j \leq k_{i}-1, n_{i, j}>n_{i, j+1}\right\} . \tag{3.2}
\end{equation*}
$$

Theorem 3.5. (Rojo [5, Theorem 2]) (a) $\sigma\left(L\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)\right)=\left(\cup_{i=1}^{m} \cup_{j \in \Omega_{i}} \sigma\left(T_{i, j}\right)\right) \cup \sigma(T)$, where the matrices $T_{i, j}$ and T are as in Definitions 3.3 and 3.4.
(b) The multiplicity of each eigenvalue of the matrix $T_{i, j}$, as an eigenvalue of $L\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$, is at least $\left(n_{i}, j-n_{i, j+1}\right)$ for $j \in \Omega_{i}$, and the eigenvalues of T as eigenvalues of $L\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$ are simple.

Taking into consideration that the diagonal entries $\delta_{i, j}$ and δ defined above become

$$
\begin{gathered}
\delta_{i, 1}=\alpha, \\
\delta_{i, j}=\alpha d_{i, j},
\end{gathered}
$$

for $j=1, \ldots, k_{i}-1$, and

$$
\delta=\alpha \sum_{i=1}^{m} d_{i, k_{i}}
$$

in case of the matrix $A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$ and using the fact that $A_{\alpha}(G)$ can be viewed as a matrix on a weighted graph G in which all its edges have a weight $\beta=1-\alpha$, the technique and the same steps used in [5] to obtain Theorem 3.5 can be applied to find the spectrum of $A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$ getting that:

Theorem 3.6. (a)

$$
\sigma\left(A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)\right)=\left(\cup_{i=1}^{m} \cup_{j \in \Omega_{i}} \sigma\left(T_{i, j}(\alpha)\right)\right) \cup \sigma(T(\alpha))
$$

where the matrices $T_{i, j}(\alpha)$ and $T(\alpha)$ are as in Definitions 3.7 and 3.8.
(b) The multiplicity of each eigenvalue of the matrix $T_{i, j}(\alpha)$, as an eigenvalue of $A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$, is at least $\left(n_{i}, j-n_{i, j+1}\right)$ for $j \in \Omega_{i}$, and the eigenvalues of $T(\alpha)$ as eigenvalues of $A_{\alpha}\left(v\left\{B_{i}: 1 \leq i \leq m\right\}\right)$ are simple.

Definition 3.7. For $i=1,2, \ldots, m$ and for $j=1,2,3, \ldots, k_{i}-1$, let $T_{i, j}(\alpha)$ be the $j \times j$ leading principal submatrix of the $\left(k_{i}-1\right) \times\left(k_{i}-1\right)$ symmetric tridiagonal matrix

$$
T_{i, k_{i}-1}(\alpha)=\left[\begin{array}{cccc}
\alpha & \beta \sqrt{d_{i, 2}-1} & & \\
\beta \sqrt{d_{i, 2}-1} & \alpha d_{i, 2} & \ddots & \\
& \ddots & \ddots & \beta \sqrt{d_{i, k_{i}-1}-1} \\
& & \beta \sqrt{d_{i, k_{i}-1}-1} & \alpha d_{i, k_{i}-1}
\end{array}\right] .
$$

Definition 3.8. Let $r=\sum_{i=1}^{m} k_{i}-m+1$. Let $T(\alpha)$ be the symmetric matrix of order $r \times r$ defined by

$$
T(\alpha)=\left[\begin{array}{ccccc}
T_{1, k_{1}-1}(\alpha) & 0 & \cdots & 0 & \beta \mathbf{p}_{1} \\
0 & T_{2, k_{2}-1}(\alpha) & \ddots & & \beta \mathbf{p}_{2} \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & & 0 & T_{m, k_{m}-1}(\alpha) & \beta \mathbf{p}_{m} \\
\beta \mathbf{p}_{1}^{T} & \beta \mathbf{p}_{2}^{T} & \cdots & \beta \mathbf{p}_{m}^{T} & \alpha \sum_{i=1}^{m} d_{i, k_{i}}
\end{array}\right]
$$

where $T_{1, k_{1}-1}(\alpha), T_{2, k_{2}-1}(\alpha), \ldots, T_{m, k_{m}-1}(\alpha)$ are the symmetric tridiagonal matrices defined in Definition 3.7 and

$$
\mathbf{p}_{i}^{T}=\left[\begin{array}{lllll}
0 & \cdots & \cdots & 0 & \sqrt{n_{i, k_{i}-1}}
\end{array}\right]
$$

for $i=1, \ldots, m$.
4. The A_{α}-spectrum of $T_{n, k}$. We recall that $n-1=k q+r$ where $q=\left[\frac{n-1}{q}\right]$ and $0 \leq r \leq k-1$. As we will see later, the matrix

$$
T(\alpha)=\left[\begin{array}{ccccc}
\alpha & \beta & 0 & & 0 \tag{4.3}\\
\beta & 2 \alpha & \ddots & & \\
& \ddots & \ddots & \beta & \\
& & \beta & 2 \alpha & \beta \sqrt{k} \\
0 & & 0 & \beta \sqrt{k} & k \alpha
\end{array}\right]
$$

of the appropriate order plays a special role in this section.
We recall that if A is an $m \times m$ symmetric tridiagonal matrix with nonzero codiagonal entries then the eigenvalues of any $(m-1) \times(m-1)$ principal submatrix strictly interlace the eigenvalues of A. Hence, the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple.

There are two cases:

4.1. Case $r=0$.

Theorem 4.1. Let $n=k q+1$. If the matrix $T(\alpha)$ in (4.3) is of order $q+1$ and $T_{q}(\alpha)$ is its leading principal submatrix of order q, then
(a)

$$
\begin{equation*}
\sigma\left(A_{\alpha}\left(T_{n, k}\right)\right)=\sigma\left(T_{q}(\alpha)\right) \cup \sigma(T(\alpha)) ; \tag{4.4}
\end{equation*}
$$

(b) the multiplicity of each eigenvalue of $T_{q}(\alpha)$ as an eigenvalue of $A_{\alpha}\left(T_{n, k}\right)$ is exactly $k-1$, and the eigenvalues of $T(\alpha)$ as eigenvalues of $A_{\alpha}\left(T_{n, k}\right)$ are simple; and
(c) the largest eigenvalue of $T(\alpha)$ is the α-index of $T_{n, k}$.

Proof. (a) Assume $r=0$. Then $n=k q+1$ and $T_{n, k}$ is a generalized Bethe tree of $q+1$ levels in which, from the pendent vertices to the root, the vertex degrees and the number of vertices are

$$
d_{1}=1, \quad d_{2}=\cdots=d_{q}=2, \quad d_{q+1}=k, \quad n_{1}=n_{2}=\cdots=n_{q}=k, \quad n_{q+1}=1 .
$$

Then the set Ω in (3.1) is $\Omega=\{q\}$ and the matrix T in Definition 3.1 becomes the matrix $T(\alpha)$ in (4.3) of order $(q+1)$. We apply Theorem 3.2, part (a), to obtain that the A_{α}-spectrum of $T_{n, q}$ is given by (4.4).
(b) The eigenvalues of $A_{\alpha}\left(T_{n, k}\right)$ are the eigenvalues of $T_{q}(\alpha)$ and $T(\alpha)$; and, the eigenvalues of $T_{q}(\alpha)$ strictly interlace the eigenvalues of $T(\alpha)$. These facts and part (b) of Theorem 3.2 imply that the multiplicity of each eigenvalue of $T_{q}(\alpha)$ as eigenvalue of $A_{\alpha}\left(T_{n, k}\right)$ is exactly $k-1$ and each eigenvalue of $T(\alpha)$ as eigenvalue of $A_{\alpha}\left(T_{n, k}\right)$ is simple.
(c) It is an immediate consequence of the facts mentioned in the proof of part (b).
4.2. Case $r \neq 0$. At this point, we introduce the following additional notations: 0 is the all zeros matrix of the appropriate order, I_{n} is the identity matrix and R_{n} is the reversal identity matrix, both of order $n \times n$. We recall that R_{n} is a permutation matrix where the 1 entries reside on the back diagonal and all other entries are zero. If A is a matrix with n rows then $R_{n} A$ reverses the rows of A and if A is a matrix with n columns then $A R_{n}$ reverses the columns of A.

THEOREM 4.2. Let $n=k q+r+1$ with $0<r \leq k-1$. If the matrix $T_{q}(\alpha)$ and $T_{q+1}(\alpha)$ are the leading principal submatrices of order q and $q+1$, respectively, of the matrix $T(\alpha)$ as in (4.3), then
(a)

$$
\sigma\left(A_{\alpha}\left(T_{n, k}\right)\right)=\sigma\left(T_{q}\right)(\alpha) \cup \sigma\left(T_{q+1}(\alpha)\right) \cup \sigma(R(\alpha))
$$

where $R(\alpha)$ is a symmetric tridiagonal matrix of order $2 q+2$ with diagonal entries

$$
\begin{equation*}
\alpha, \overbrace{2 \alpha, \ldots, 2 \alpha}^{q-1}, k \alpha, \overbrace{2 \alpha, \ldots, 2 \alpha}^{q}, \alpha \tag{4.5}
\end{equation*}
$$

and codiagonal entries

$$
\begin{equation*}
\overbrace{\beta, \ldots, \beta}^{q-1}, \beta \sqrt{k-r}, \beta \sqrt{r}, \overbrace{\beta, \ldots, \beta}^{q} . \tag{4.6}
\end{equation*}
$$

(b) The multiplicity of each eigenvalue of $T_{q}(\alpha)$ and $T_{q+1}(\alpha)$ as an eigenvalue of $A_{\alpha}\left(T_{n, k}\right)$ is $k-r-1$ and $r-1$, respectively, and the eigenvalues of $R(\alpha)$ as eigenvalues of $A_{\alpha}\left(T_{n, k}\right)$ are simple.
(c) The largest eigenvalue of $R(\alpha)$ is the α-index of $T_{n, k}$.

Proof. (a) Let now $n=k q+r+1$, with $r \neq 0$. In this case, $T_{n, k}$ is the tree obtained by the coalescence of $m=2$ generalized Bethe trees B_{1} and B_{2} at their roots in a common vertex $v, T_{n, k}=v\left\{B_{1}, B_{2}\right\}$, in which the number of levels of B_{1} is $q+1$ and the number of levels of B_{2} is $q+2$. Clearly the degree of v is equal to k. From the pendent vertices to the root, the vertex degrees and the number of vertices are

$$
d_{1,1}=1, \quad d_{1,2}=\cdots=d_{1, q}=2, \quad n_{1,1}=n_{1,2}=\cdots=n_{1, q}=k-r, \quad n_{1, q+1}=1
$$

for the tree B_{1}, and

$$
d_{2,1}=1, \quad d_{2,2}=\cdots=d_{2, q+1}=2, \quad n_{2,1}=n_{2,2}=\cdots=n_{2, q+1}=r, \quad n_{2, q+2}=1
$$

for the tree B_{2}.
The sets Ω_{1} and Ω_{2} in (3.2) are $\Omega_{1}=\{q\}$ and $\Omega_{2}=\{q+1\}$. Then, from Theorem 3.6, part (a), we obtain

$$
\sigma\left(A_{\alpha}\left(T_{n, k}\right)\right)=\sigma\left(T_{q}(\alpha)\right) \cup \sigma\left(T_{q+1}(\alpha)\right) \cup \sigma(S(\alpha))
$$

where

$$
S(\alpha)=\left[\begin{array}{ccc}
T_{q}(\alpha) & 0 & \beta \mathbf{p}_{\mathbf{1}} \\
0 & T_{q+1}(\alpha) & \beta \mathbf{p}_{\mathbf{2}} \\
\beta \mathbf{p}_{\mathbf{1}}{ }^{T} & \beta \mathbf{p}_{\mathbf{2}}{ }^{T} & k \alpha
\end{array}\right]
$$

with $\mathbf{p}_{\mathbf{1}}{ }^{T}=[0, \ldots, 0, \sqrt{k-r}]$ and $\mathbf{p}_{\mathbf{2}}{ }^{T}=[0, \ldots, 0, \sqrt{r}]$. Let P be the permutation matrix

$$
P=\left[\begin{array}{cc}
I_{q} & 0 \\
0^{T} & R_{q+2}
\end{array}\right]
$$

Let $R(\alpha)=P S(\alpha) P$. Since $P^{2}=I_{2 q+2}$, it follows that $S(\alpha)$ and $R(\alpha)$ are similar matrices. We have

$$
P S(\alpha)=\left[\begin{array}{ccc}
T_{q}(\alpha) & 0 & \beta \mathbf{p}_{\mathbf{1}} \\
\beta \mathbf{p}_{\mathbf{1}}^{T} & \beta \mathbf{p}_{\mathbf{2}}{ }^{T} & k \alpha \\
0 & R_{q+1} T_{q+1}(\alpha) & \beta R_{q+1} \mathbf{p}_{\mathbf{2}}
\end{array}\right]
$$

Hence,

$$
R(\alpha)=P S(\alpha) P=\left[\begin{array}{ccc}
T_{q}(\alpha) & \beta \mathbf{p}_{\mathbf{1}} & 0 \\
\beta \mathbf{p}_{\mathbf{1}}{ }^{T} & k \alpha & \beta \mathbf{p}_{\mathbf{2}}{ }^{T} R_{q+1} \\
0 & \beta R_{q+1} \mathbf{p}_{\mathbf{2}} & R_{q+1} T_{q+1}(\alpha) R_{q+1}
\end{array}\right]
$$

is a symmetric tridiagonal matrix in which its diagonal entries and codiagonal entries are as in (4.5) and (4.6), respectively.
(b) Since $\Omega_{1}=\{q\}, n_{1, q}=k-r, n_{1, q+1}=1$ and $\Omega_{2}=\{q+1\}, n_{1, q+1}=r, n_{1, q+2}=1$, the results follow from Theorem 3.6, part (b).
(c) It is an immediate consequence of the interlacing property of the eigenvalues of Hermitian matrices.

Acknowledgment. The author is very grateful to an anonymous referee for all his/her comments and corrections.

REFERENCES

[1] H. Lin, X. Huang, and J. Xue. A note on the A_{α}-spectral radius of graphs. Linear Algebra Appl, 557:430-437, 2018.
[2] V. Nikiforov. Merging the $A-$ and Q-spectral theories. Appl. Anal. Discrete Math., 11:81-107, 2017.
[3] V. Nikiforov, G. Pastén, O. Rojo, and R.L. Soto. On the A_{α}-spectra of trees. Linear Algebra Appl., 520:286-305, 2017.
[4] V. Nikiforov and O. Rojo. On the α-index of graphs with pendent paths. Linear Algebra Appl., 550:87-104, 2018.
[5] O. Rojo. Spectra of weighted generalized Bethe trees joined at the root. Linear Algebra Appl., 428:2961-2979, 2008.
[6] B. Wu, E. Xiao, and Y. Hong. The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395:343-349, 2005.

[^0]: *Received by the editors on February 15, 2019. Accepted for publication on December 17, 2019. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile (orojo@ucn.cl).

