
k

Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 38-46, January 2020.

THE MAXIMAL α−INDEX OF TREES WITH K PENDENT VERTICES

AND ITS COMPUTATION∗

OSCAR ROJO†

Abstract. Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. The
α−index of G is the spectral radius ρα (G) of the matrix Aα (G) = αD (G) + (1 −α)A (G), where α ∈ [0, 1]. Let Tn,k be the tree 
of order n and k pendent vertices obtained from a star K1,k and k pendent paths of almost equal lengths attached to different 
pendent vertices of K1,k. It is shown that if α ∈ [0, 1) and T is a tree of order n with k pendent vertices then

ρα(T ) ≤ ρα(Tn,k),

with equality holding if and only if T = Tn,k. This result generalizes a theorem of Wu, Xiao and Hong [6] in which the result 
is proved for the adjacency matrix (α = 0). Let q = [ n−1 ] and n − 1 = kq + r, 0 ≤ r ≤ k − 1. It is also obtained that the
spectrum of Aα(Tn,k) is the union of the spectra of two special symmetric tridiagonal matrices of order q and q+ 1 when r = 0

or the union of the spectra of three special symmetric tridiagonal matrices of order q, q + 1 and 2q + 2 when r 6= 0. Thus, the

α−index of Tn,k can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order q + 1 if r = 0

or order 2q + 2 if r 6= 0.
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1. Introduction. Let G = (V (G), E(G)) be a simple undirected graph on n vertices with vertex set

V (G) and edge set E(G). Let D(G) be the diagonal matrix of order n whose (i, i)−entry is the degree of

the i− th vertex of G and let A (G) be the adjacency matrix of G.

As usual, K1,s denotes the star on s+ 1 vertices, Kn and Pn are the complete graph and the path, both

on n vertices, respectively.

In [2], Nikiforov introduces the matrix Aα(G),

Aα(G) = αD(G) + (1− α)A(G),

with α ∈ [0, 1] together with basic results and several open problems. Observe that Aα(G) is a symmetric

nonnegative matrix for all α ∈ [0, 1] and that A0(G) = A (G) and A1/2 (G) = 1
2 (D(G) + A(G)) = 1

2Q (G).

Since A1(G) = D(G), from now on, we take α ∈ [0, 1).

Let ρα(G) be the α−index of G, that is, the spectral radius of Aα(G). From the Perron - Frobenius

Theory for nonnegative matrices, it follows that for a connected graph G, ρα(G) (Perron root) is a simple

eigenvalue of Aα(G) having a positive eigenvector (Perron vector).

Let n and k given positive integers with 2 ≤ k ≤ n − 1. Let Tn,k be the tree of order n and k

pendent vertices obtained from a star K1,k and k pendent paths of almost equal lengths attached to different
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pendent vertices of K1,k. More precisely, if q = [n−1
k ] and n − 1 = kq + r, 0 ≤ r ≤ k − 1, then Tn,k

is the tree obtained from the star K1,k together with k − r pendent paths Pq and r pendent paths Pq+1

attached to different pendent vertices of K1,k whenever r 6= 0 (see Example 1.1). If r = 0, then Tn,k is

the tree obtained from the star K1,k and k pendent paths Pq attached to different vertices of K1,k (see

Example 1.2). Clearly, Tn,k is a tree having exactly k pendents vertices and the number of vertices of Tn,k
is (k − r)q + r(q + 1) + 1 = kq + r + 1 = n.

Example 1.1. Let n = 20 and k = 7. Then q = 2 and r = 5. The tree T20,7 is displayed below:

v

In Section 2, we prove that if α ∈ [0, 1) and T is a tree of order n with k pendent vertices, then

ρα(T ) ≤ ρα(Tn,k),

with equality holding if and only if T = Tn,k. This result generalizes a theorem of Wu, Xiao and Hong [6] in

which the result is proved for the adjacency matrix (α = 0).

A rooted graph is a graph in which one vertex has been designated as a special vertex called the root.

Given a rooted graph the level of a vertex is one more than its distance to the root vertex. A generalized

Bethe tree is a rooted tree in which vertices at the same level have the same degree. For instance, if r = 0,

then Tn,k is a generalized Bethe tree. In Example 1.2, we illustrate this case.

Example 1.2. Let n = 15 and k = 7. Then q = 2 and r = 0. The tree T15,7 is displayed below:

root

If r 6= 0, then Tn,k is a tree defined by the coalescence of two generalized Bethe trees at their roots (see

Example 1.1).

Let {Bi : 1 ≤ i ≤ m} be a set of trees such that, for i = 1, 2, . . . ,m. Then,

(1) Bi is a generalized Bethe tree of ki levels,

(2) the vertices of Bi at the level j have degree di,ki−j+1 for j = 1, 2, . . . , ki, and

(3) the edges of Bi joining the vertices at the level j with the vertices at the level (j + 1) have weight

wi,ki−j for j = 1, 2, . . . , ki − 1.
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Let v {Bi : 1 ≤ i ≤ m} be the tree obtained from the coalescence of the trees Bi at their roots in a

common vertex v.

The Laplacian matrix of G is L(G) = D(G) − A(G). In [5], we give a complete characterization of the

eigenvalues of the Laplacian matrix and adjacency matrix of v {Bi : 1 ≤ i ≤ m} including results on their

multiplicities. In Section 3, we extend these results to Aα(v {Bi : 1 ≤ i ≤ m}). Finally, in Section 4, we

apply the results of Section 3 to deduce that the spectrum of Aα(Tn,k) is the union of the spectra of two

special symmetric tridiagonal matrices of order q and q + 1 when r = 0 or the union of the spectra of three

special symmetric tridiagonal matrices of order q, q + 1 and 2q + 2 when r 6= 0. Thus, the α−index of Tn,k
can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order q+ 1 if r = 0

or order 2q + 2 if r 6= 0.

2. The maximal α−index of trees with k pendent vertices. In [6], the authors proved the

following:

Theorem 2.1. (Wu, Xiao, and Hong [6]) Among all trees on n vertices and k pendent vertices, the

maximal spectral radius of the adjacency matrix is obtained uniquely at Tn,k.

In this section, we extend Theorem 2.1 to all α ∈ [0, 1). We begin recalling the following lemma that

generalizes results known for the adjacency matrix and the signless Laplacian matrix of graphs.

Lemma 2.2. (Nikiforov and Rojo [4]) Let α ∈ [0, 1) and let G be a graph of order n. Suppose that

u, v ∈ V (G) and S ⊂ V (G) satisfy u, v /∈ S and for every w ∈ S, {u,w} ∈ E(G) and {v, w} /∈ E (G). Let

H be the graph obtained by deleting the edges {u,w} and adding the edges {v, w} for all w ∈ S. If S is

nonempty and there is a positive eigenvector (x1, . . . , xn) to ρα (G) such that xv ≥ xu, then

ρα (H) > ρα (G) .

For any vertex u of a connected graph G, let Gp,q (u) be the graph obtained by attaching the paths Pp
and Pq to u. This is done by identifying one end vertex of Pp and one end vertex of Pq with u. The following

theorem was proposed as a Conjecture 18 in [4].

Theorem 2.3. (Lin, Huang, and Xue [1]) Let α ∈ [0, 1). If G is a connected graph and p ≥ q + 2 ≥ 3,

then

ρα (Gp,q (u)) < ρα (Gp−1,q+1 (u)) .

Given a graph G and a vertex u ∈ V (G), let ΓG (u) be the set of neighbors of u.

We are ready to extend Theorem 2.1 to all α ∈ [0, 1).

Theorem 2.4. Let α ∈ [0, 1) and T be a tree of order n and k pendent vertices. Then

ρα(T ) ≤ ρα(Tn,k),

with equality if and only if T = Tn,k.

Proof. Let T be a tree on n vertices and k pendent vertices. Let dv be the degree of v ∈ V (T ). Let t be

the number of vertices of T with a degree greater than or equal to 3. The following cases can occur:

Case 1: t = 0. In this case, T = Pn = Tn,2. Then ρα(T ) = ρα(Tn,2).
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Case 2: t = 1. Repeated application of Theorem 2.3 enables to conclude that ρα(T ) ≤ ρα(Tn,k) with

equality if only if T = Tn,k.

Case 3: t > 1. Let x be a positive unit eigenvector corresponding to ρα (T ) in which xv is the component

of x corresponding to v ∈ V (T ). Let u, v ∈ V (T ) such that du ≥ 3 and dv ≥ 3. There is no loss of generality

in assuming xu ≥ xv. There is a unique path P connecting u and v and let z ∈ P be unique neighbour of v.

Let v1, . . . , vdv−2 ∈ ΓT (v)\z. Let T1 be the tree obtained from T by deleting the edges {v, v1},. . . ,{v, vdv−2}
and adding the edges {u, v1},. . . ,{u, vdv−2}. Clearly T1 is a tree of order n with k pendent vertices having

t − 1 vertices with a degree greater than or equal to 3. Since xu ≥ xv, by Lemma 2.2, it follows that

ρα(T ) < ρα(T1). If t − 1 = 1, we stop and if t − 1 > 1, we continue in this fashion to obtain a sequence of

trees T1, T2, . . . , Tt−1 of order n with k pendent vertices such that ρα(T ) < ρα(T1) < ρα(T2) < · · · < ρα(Tt−1),

in which Tt−1 has a unique vertex with a degree greater than or equal to 3. Finally, we apply Case 2 to

conclude that ρα(T ) < ρα(Tn,k).

3. The Aα−spectrum of the coalescence of generalized Bethe trees at their roots. Let σ(M)

be the spectrum of the matrix M . From now on, let β = 1− α.

The Aα−spectrum of a generalized Bethe tree was studied in [3] and the results are presented in Theorem

3.2 below.

Let Bk be a generalized Bethe tree on k levels. For j = 1, . . . , k, let nk−j+1 be the number of vertices

at level j and let dk−j+1 be their degree. In particular, d1 = 1 and nk = 1. Let

(3.1) Ω = {j : 1 ≤ j ≤ k − 1, nj > nj+1}.

Definition 3.1. For j = 1, 2, . . . , k − 1, let Tj be the j × j leading principal submatrix of the k × k
symmetric tridiagonal matrix

T =



α β
√
d2 − 1 0 0

β
√
d2 − 1 αd2

. . .

. . .
. . . β

√
dk−1 − 1

β
√
dk−1 − 1 αdk−1 β

√
dk

0 0 β
√
dk αdk


.

Theorem 3.2. (Nikiforov and Rojo [3, Theorem 8]) Let Bk be a generalized Bethe tree, and α ∈ [0, 1).

If the matrices T1, . . . , Tk−1, T are defined as in Definition 3.1, then:

(a)

σ(Aα(Bk)) = (∪j∈Ωσ(Tj)) ∪ σ(T ).

(b) The multiplicity of each eigenvalue of Tj as an eigenvalue of Aα(Bk) is nj − nj+1 if j ∈ Ω and the

eigenvalues of T as eigenvalues of Aα(Bk) are simple. If some eigenvalues obtained in different matrices are

equal, their multiplicities are added together.

(c) The largest eigenvalue of T is the largest eigenvalue of Aα(Bk).

We now search for Aα−spectrum of v{Bi : 1 ≤ i ≤ m}. We recall that {Bi : 1 ≤ i ≤ m} is a set of trees

such that, for i = 1, 2, . . . ,m,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 38-46, January 2020.
http://repository.uwyo.edu/ela

Oscar Rojo 42

(1) Bi is a generalized Bethe tree of ki levels,

(2) the vertices of Bi at the level j have degree di,ki−j+1 for j = 1, 2, . . . , ki, and

(3) the edges of Bi joining the vertices at the level j with the vertices at the level (j + 1) have weight

wi,ki−j for j = 1, 2, . . . , ki − 1.

We recall the results obtained in [5] on the spectrum of L(v {Bi : 1 ≤ i ≤ m}). Assume that the common

root v is at the level 1. For j = 1, . . . , ki, let ni,ki−j+1 be the number of vertices at the level j of Bi. Let

δi,1 = wi,1,

δi,j = (di,j − 1)wi,j−1 + wi,j

for j = 2, . . . , ki − 1, and

δ =

m∑
i=1

di,kiwi,ki−1.

Definition 3.3. For i = 1, . . . ,m and for j = 1, . . . , ki − 1, let Ti,j be the j × j leading principal

submatrix of the (ki − 1)× (ki − 1) symmetric tridiagonal matrix

Ti,ki−1 =


δi,1 wi,1

√
di,2 − 1

wi,1
√
di,2 − 1 δi,2

. . .

. . .
. . . wi,ki−2

√
di,ki−1 − 1

wi,ki−2

√
di,ki−1 − 1 δi,ki−1

 .

Definition 3.4. Let r =
∑m
i=1 ki −m+ 1. Let T be the symmetric matrix of order r × r defined by

T =



T1,k1−1 0 · · · 0 w1,k1−1p1

0 T2,k2−1
. . . w2,k2−1p2

...
. . .

. . . 0
...

0 0 Tm,km−1 wm,km−1pm
w1,k1p

T
1 w2,k2−1p

T
2 · · · wm,km−1p

T
m δ


,

where T1,k1−1, T2,k2−1, . . . , Tm,km−1 are the symmetric tridiagonal matrices defined in Definition 3.3 and

pTi =
[

0 · · · · · · 0
√
ni,ki−1

]
for i = 1, . . . ,m.

For i = 1, . . . ,m, let

(3.2) Ωi = {j : 1 ≤ j ≤ ki − 1, ni,j > ni,j+1} .
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Theorem 3.5. (Rojo [5, Theorem 2]) (a) σ (L (v {Bi : 1 ≤ i ≤ m})) = (∪mi=1 ∪j∈Ωi σ (Ti,j)) ∪ σ (T ) ,

where the matrices Ti,j and T are as in Definitions 3.3 and 3.4.

(b) The multiplicity of each eigenvalue of the matrix Ti,j , as an eigenvalue of L (v {Bi : 1 ≤ i ≤ m}) ,
is at least (ni,j −ni,j+1) for j ∈ Ωi, and the eigenvalues of T as eigenvalues of L (v {Bi : 1 ≤ i ≤ m}) are

simple.

Taking into consideration that the diagonal entries δi,j and δ defined above become

δi,1 = α,

δi,j = αdi,j ,

for j = 1, . . . , ki − 1, and

δ = α

m∑
i=1

di,ki

in case of the matrix Aα(v{Bi : 1 ≤ i ≤ m}) and using the fact that Aα(G) can be viewed as a matrix on a

weighted graph G in which all its edges have a weight β = 1− α, the technique and the same steps used in

[5] to obtain Theorem 3.5 can be applied to find the spectrum of Aα(v{Bi : 1 ≤ i ≤ m}) getting that :

Theorem 3.6. (a)

σ (Aα (v {Bi : 1 ≤ i ≤ m})) = (∪mi=1 ∪j∈Ωi
σ (Ti,j(α))) ∪ σ (T (α)) ,

where the matrices Ti,j(α) and T (α) are as in Definitions 3.7 and 3.8.

(b) The multiplicity of each eigenvalue of the matrix Ti,j(α), as an eigenvalue of Aα (v {Bi : 1 ≤ i ≤ m}) ,
is at least (ni,j −ni,j+1) for j ∈ Ωi, and the eigenvalues of T (α) as eigenvalues of Aα (v {Bi : 1 ≤ i ≤ m})
are simple.

Definition 3.7. For i = 1, 2, . . . ,m and for j = 1, 2, 3, . . . , ki−1, let Ti,j(α) be the j×j leading principal

submatrix of the (ki − 1)× (ki − 1) symmetric tridiagonal matrix

Ti,ki−1(α) =


α β

√
di,2 − 1

β
√
di,2 − 1 αdi,2

. . .

. . .
. . . β

√
di,ki−1 − 1

β
√
di,ki−1 − 1 αdi,ki−1

 .

Definition 3.8. Let r =
∑m
i=1 ki −m+ 1. Let T (α) be the symmetric matrix of order r× r defined by

T (α) =



T1,k1−1(α) 0 · · · 0 βp1

0 T2,k2−1(α)
. . . βp2

...
. . .

. . . 0
...

0 0 Tm,km−1(α) βpm
βpT1 βpT2 · · · βpTm α

∑m
i=1 di,ki


,
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where T1,k1−1(α), T2,k2−1(α), . . . , Tm,km−1(α) are the symmetric tridiagonal matrices defined in Definition

3.7 and

pTi =
[

0 · · · · · · 0
√
ni,ki−1

]
for i = 1, . . . ,m.

4. The Aα−spectrum of Tn,k. We recall that n− 1 = kq + r where q = [n−1
q ] and 0 ≤ r ≤ k − 1. As

we will see later, the matrix

(4.3) T (α) =



α β 0 0

β 2α
. . .

. . .
. . . β

β 2α β
√
k

0 0 β
√
k kα


of the appropriate order plays a special role in this section.

We recall that if A is an m×m symmetric tridiagonal matrix with nonzero codiagonal entries then the

eigenvalues of any (m− 1)× (m− 1) principal submatrix strictly interlace the eigenvalues of A. Hence, the

eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple.

There are two cases:

4.1. Case r = 0.

Theorem 4.1. Let n = kq + 1. If the matrix T (α) in (4.3) is of order q + 1 and Tq(α) is its leading

principal submatrix of order q, then

(a)

(4.4) σ(Aα(Tn,k)) = σ(Tq(α)) ∪ σ(T (α));

(b) the multiplicity of each eigenvalue of Tq(α) as an eigenvalue of Aα(Tn,k) is exactly k − 1, and the

eigenvalues of T (α) as eigenvalues of Aα(Tn,k) are simple; and

(c) the largest eigenvalue of T (α) is the α−index of Tn,k.

Proof. (a) Assume r = 0. Then n = kq+ 1 and Tn,k is a generalized Bethe tree of q+ 1 levels in which,

from the pendent vertices to the root, the vertex degrees and the number of vertices are

d1 = 1, d2 = · · · = dq = 2, dq+1 = k, n1 = n2 = · · · = nq = k, nq+1 = 1.

Then the set Ω in (3.1) is Ω = {q} and the matrix T in Definition 3.1 becomes the matrix T (α) in (4.3) of

order (q + 1). We apply Theorem 3.2, part (a), to obtain that the Aα−spectrum of Tn,q is given by (4.4).

(b) The eigenvalues of Aα(Tn,k) are the eigenvalues of Tq(α) and T (α); and, the eigenvalues of Tq(α)

strictly interlace the eigenvalues of T (α). These facts and part (b) of Theorem 3.2 imply that the multiplicity

of each eigenvalue of Tq(α) as eigenvalue of Aα(Tn,k) is exactly k−1 and each eigenvalue of T (α) as eigenvalue

of Aα(Tn,k) is simple.

(c) It is an immediate consequence of the facts mentioned in the proof of part (b).
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4.2. Case r 6= 0. At this point, we introduce the following additional notations: 0 is the all zeros

matrix of the appropriate order, In is the identity matrix and Rn is the reversal identity matrix, both of

order n× n. We recall that Rn is a permutation matrix where the 1 entries reside on the back diagonal and

all other entries are zero. If A is a matrix with n rows then RnA reverses the rows of A and if A is a matrix

with n columns then ARn reverses the columns of A.

Theorem 4.2. Let n = kq + r + 1 with 0 < r ≤ k − 1. If the matrix Tq(α) and Tq+1(α) are the leading

principal submatrices of order q and q + 1, respectively, of the matrix T (α) as in (4.3), then

(a)

σ(Aα(Tn,k)) = σ(Tq)(α) ∪ σ(Tq+1(α)) ∪ σ(R(α)),

where R(α) is a symmetric tridiagonal matrix of order 2q + 2 with diagonal entries

(4.5) α,

q−1︷ ︸︸ ︷
2α, . . . , 2α, kα,

q︷ ︸︸ ︷
2α, . . . , 2α, α

and codiagonal entries

(4.6)

q−1︷ ︸︸ ︷
β, . . . , β, β

√
k − r, β

√
r,

q︷ ︸︸ ︷
β, . . . , β.

(b) The multiplicity of each eigenvalue of Tq(α) and Tq+1(α) as an eigenvalue of Aα(Tn,k) is k − r − 1

and r − 1, respectively, and the eigenvalues of R(α) as eigenvalues of Aα(Tn,k) are simple.

(c) The largest eigenvalue of R(α) is the α−index of Tn,k.

Proof. (a) Let now n = kq+ r+ 1, with r 6= 0. In this case, Tn,k is the tree obtained by the coalescence

of m = 2 generalized Bethe trees B1 and B2 at their roots in a common vertex v, Tn,k = v{B1, B2}, in which

the number of levels of B1 is q + 1 and the number of levels of B2 is q + 2. Clearly the degree of v is equal

to k. From the pendent vertices to the root, the vertex degrees and the number of vertices are

d1,1 = 1, d1,2 = · · · = d1,q = 2, n1,1 = n1,2 = · · · = n1,q = k − r, n1,q+1 = 1

for the tree B1, and

d2,1 = 1, d2,2 = · · · = d2,q+1 = 2, n2,1 = n2,2 = · · · = n2,q+1 = r, n2,q+2 = 1

for the tree B2.

The sets Ω1 and Ω2 in (3.2) are Ω1 = {q} and Ω2 = {q + 1}. Then, from Theorem 3.6, part (a), we

obtain

σ(Aα(Tn,k)) = σ(Tq(α)) ∪ σ(Tq+1(α)) ∪ σ(S(α)),

where

S(α) =

 Tq(α) 0 βp1

0 Tq+1(α) βp2

βp1
T βp2

T kα
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with p1
T = [0, . . . , 0,

√
k − r] and p2

T = [0, . . . , 0,
√
r]. Let P be the permutation matrix

P =

[
Iq 0

0T Rq+2

]
.

Let R(α) = PS(α)P . Since P 2 = I2q+2, it follows that S(α) and R(α) are similar matrices. We have

PS(α) =

 Tq(α) 0 βp1

βp1
T βp2

T kα

0 Rq+1Tq+1(α) βRq+1p2

 .
Hence,

R(α) = PS(α)P =

 Tq(α) βp1 0

βp1
T kα βp2

TRq+1

0 βRq+1p2 Rq+1Tq+1(α)Rq+1


is a symmetric tridiagonal matrix in which its diagonal entries and codiagonal entries are as in (4.5) and

(4.6), respectively.

(b) Since Ω1 = {q}, n1,q = k− r, n1,q+1 = 1 and Ω2 = {q+ 1}, n1,q+1 = r, n1,q+2 = 1, the results follow

from Theorem 3.6, part (b).

(c) It is an immediate consequence of the interlacing property of the eigenvalues of Hermitian

matrices.
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