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EQUIVALENT CHARACTERIZATIONS OF THE SPECTRA OF GRAPHS AND

APPLICATIONS TO MEASURES OF DISTANCE-REGULARITY∗
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Abstract. The spectrum of a graph usually provides a lot of information about its combinatorial structure. Moreover,

from the spectrum, the so-called predistance polynomials can be defined, as a generalization, for any graph, of the distance

polynomials of a distance-regular graph. Going further, the preintersection numbers generalize the intersection numbers of

a distance-regular graph. This paper describes, for any graph, the closed relationships between its spectrum, predistance

polynomials, and preintersection numbers. Then, some applications to derive combinatorial properties of the given graph,

most of them related to some fundamental characterizations of distance-regularity, are presented. In particular, the so-called

‘spectral excess theorem’ is revisited. This result states that a connected regular graph is distance-regular if and only if its

spectral excess, which is a value computed from the spectrum, equals the average excess, that is, the mean of the numbers of

vertices at maximum distance from every vertex.
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1. Preliminaries. Two main concepts involved in the study of a distance-regular graph Γ are the

intersection parameters and the distance polynomials. The former gives information about the combinatorial

structure of Γ, whereas the latter constitutes an orthogonal sequence and yields the distance matrices of

Γ. Moreover, both pieces of information are determined by the spectrum of Γ (that is, by the eigenvalues

and multiplicities of its adjacency matrix A). Both concepts have been generalized for any graph (see Fiol

and Garriga [19]) and, hence, they were called preintersection numbers and predistance polynomials. In

this more general framework, it happens that some basic properties of the intersection numbers and the

distance polynomials still hold. For instance, the preintersection numbers are somewhat related with the

combinatorial properties of the graph, and the predistance polynomials are also orthogonal sequences having

similar properties as the ones that inspired them.

In this paper, we first show that, for any graph G, the information contained in its spectrum, prein-

tersection polynomials, and preintersection numbers is equivalent. To this end, we use both algebraic and

combinatorial techniques. As a first application of our results, we derive some combinatorial properties of

the given graphs, which can be inferred from any of the above three pieces of information. In particular, we

present different characterization of different measures of distance-regularity.

In this context, recall that distance-regular graphs play a key role in the study of mathematical struc-

tures with a high degree of symmetry or regularity. Thus, since they were proposed by Biggs in the early
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Corresponding Author: Miquel Àngel Fiol. This research has been partially supported by AGAUR from the Catalan Government

under project 2017SGR1087, and by MICINN from the Spanish Government under project PGC2018-095471-B-I00.
†(victordierrez@gmail.com).
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V. Diego, J. Fàbrega, and M.A. Fiol 630

70’s, the distance-regular graphs have been the subject of an intensive study, which includes numerous char-

acterizations, both combinatorial and algebraic. As an example of the former, Rowlinson [24] showed that a

graph is distance-regular if and only if the number of walks of a given length between two vertices depends

only on the distance between such vertices.

A quasi-spectral characterization of distance-regular graphs, which is due to Fiol and Garriga [19], is

known in the literature as the ‘spectral excess theorem’. This result states that a graph G with d+1 distinct

eigenvalues is distance-regular if and only if its spectral excess (a number computed from the adjacency

spectrum of G) equals its mean excess (that is, the mean number of vertices at maximum distance d from each

vertex). Apart from the spectrum, the predistance polynomials are a key concept in the proof of the spectral

excess theorem. Since its inception, this theorem has given rise to several variants, concerning both specific

families of distance-regular graphs and other more general combinatorial structures. For instance, these

include the completely regular codes [6], and P -polynomial association schemes ([22], where the predistance

polynomials are also used in the proofs. Moreover, the spectral excess theorem has been a key tool for

proving other important results, such as the construction, by Van Dam and Koolen [14], of the first infinite

family of distance-regular graphs that are not vertex-transitive.

Thus, the main purpose of this paper is to show how our three pieces of information, spectrum, pre-

distance polynomials and preintersection numbers, can be used both to give alternative characterizations of

some of the above distance-regularity properties, and to derive some new related results.

For more background on spectra of graphs, distance-regular graphs, and their characterizations, we refer

to the reader to [2, 3, 5, 7, 15, 17, 20].

2. Three equivalent pieces of information. In this section, we define our three pieces of information

and their basic properties. First, let us recall some basic concepts, notation, and results on which our study

is based. Throughout the paper, Γ = (V,E) stands for a (simple and finite) connected graph with vertex set

V and edge set E. We denote by n the number of vertices and by e the number of edges. Adjacency between

vertices u and v (uv ∈ E) will be denoted by u ∼ v. The adjacency matrix A of Γ is the (0, 1)-matrix with

rows and columns indexed by the vertices, such that (A)uv = 1 if and only if u ∼ v.

2.1. The spectrum. One of the most important tools in the study of the algebraic properties of a

graph Γ is its spectrum. The spectrum of Γ is the set of eigenvalues of its adjacency matrix A together with

their multiplicities:

(2.1) sp Γ = {λm0
0 , λm1

1 , . . . , λmd

d },

where λ0 > λ1 > · · · > λd and, for i = 0, . . . , d, the superscript mi = m(λi) stand for the multiplicity of the

eigenvalue λi. Notice that, since Γ is connected, m0 = 1, and if Γ is k-regular, then λ0 = k. Throughout the

paper, d will always denote the number of distinct eigenvalues minus one.

2.2. The predistance polynomials. Given a graph Γ with spectrum as above, the predistance poly-

nomials p0, . . . , pd, introduced by Fiol and Garriga in [19], are polynomials in Rd[x] (that is, the vector space

of real polynomials with degree at most d), with degree deg(pi) = i, which are orthogonal with respect to

the scalar product

(2.2) 〈f, g〉Γ =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi),
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and normalized in such a way that ‖pi‖2Γ = pi(λ0) (this always makes sense since it is known that pi(λ0) > 0

for every i = 0, . . . , d ). (Notice that such polynomials are determined by the spectrum, for instance, through

the Gram-Schmidt method; see Subsection 3.1.)

Some basic properties of these polynomials, which can be seen as a generalization of the distance poly-

nomials of a distance-regular graph, are given in the following lemma, see [6].

Lemma 2.1. Let Γ be a graph with average degree k = 2e/n, predistance polynomials pi, and consider

their sums qi = p0 + · · ·+ pi, for i = 0, . . . , d. Then,

(a) p0 = 1, p1 = (λ0/k)x, and the constants of the three-term recurrence

(2.3) xpi = βi−1pi−1 + αipi + γi+1pi+1,

where β−1 = γd+1 = 0, satisfy:

(a1) αi + βi + γi = λ0, for i = 0, . . . , d;

(a2) pi−1(λ0)βi−1 = pi(λ0)γi, for i = 1, . . . , d.

(b) pd(λ0) = n

(
d∑
i=0

π2
0

miπ2
i

)−1

, where πi =
∏
j 6=i

|λi − λj |, for i = 0, . . . , d.

(c) 1 = q0(λ0) < q1(λ0) < · · · < qd(λ0) = n, and qd(λi) = 0 for every i 6= 0. Thus, qd = H is the

Hoffman polynomial characterizing the regularity of Γ by the condition H(A) = J , where J stands

for the all ones matrix (see Hoffman [21] ).

(d) The three-term recurrence (2.3) can be represented through a tridiagonal (d+ 1)× (d+ 1) matrix R

such that, in the quotient ring R[x]/(m), where (m) is the ideal generated by the minimal polynomial

m =
∏d
i=0(x− λi) of A, it satisfies

(2.4) xp = x


p0

p1

p2

...

pd

 =


α0 γ1

β0 α1 γ2

β1 α2

. . . γd
βd−1 αd




p0

p1

p2

...

pd

 = Rp .

2.3. The preintersection numbers. The preintersection numbers can be seen as a generalization of

the intersection numbers of a distance-regular graph, which are closely related to its combinatorial properties

(see e.g. Biggs [2]). In the more general context of any graph, the preintersection numbers give us an

algebraic information on the graph, which is of the same nature as the spectrum of its adjacency matrix.

More precisely, the preintersection numbers ξhij , i, j, h ∈ {0, . . . , d}, are the Fourier coefficients of pipj in

terms of the basis {ph}0≤h≤d, that is,

(2.5) ξhij =
〈pipj , ph〉Γ
‖ph‖2Γ

=
1

nph(λ0)

d∑
r=0

m(λr)pi(λr)pj(λr)ph(λr).

Notice that, in particular, the coefficients of the three-term recurrence (2.3) are αi = ξi1,i, βi = ξi1,i+1, and

γi = ξi1,i−1. In fact, from our derivations it will be clear that such coefficients determine all the other

preintersection numbers.

3. Formulas and procedures for equivalence. In this section, we study the equivalence between

the three pieces of information described in Section 2. Namely, the spectrum, the predistance polynomials,

and the preintersection numbers of a given graph.
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3.1. From the spectrum to the predistance polynomials. As mentioned above, the spectrum

of a graph plays a central role in the study of its algebraic and combinatorial properties. To obtain the

predistance polynomials introduced in Subsection 2.2 we consider the scalar product defined in (2.2) and

apply the Gram-Schmidt orthogonalization method to the basis {1, x, . . . , xd}, normalizing the obtained

sequence of orthogonal polynomials in such a way that ||pi||2 = pi(λ0). (This makes sense since, from

the theory of orthogonal polynomials, it is known that pi(λ0) > 0 for any i = 0, . . . , d.) As mentioned in

Lemma 2.1, H = p0 + · · · + pd is the Hoffman polynomial satisfying H(λi) = 0 for i > 0, H(λ0) = n, and

characterizing the regularity of the graph by the condition H(A) = J .

3.2. From the predistance polynomials to the spectrum. In this subsection, we show how the

spectrum of a graph Γ can be obtained from its predistance polynomials.

Proposition 3.1. Let p0, p1, . . . , pd be the predistance polynomials of a graph Γ, with ωji being the

coefficient of xj in pi. Then,

(a) The different eigenvalues λi 6= λ0 of Γ are the d distinct zeros of the Hoffman polynomial H =

p0 + p1 + · · ·+ pd.

(b) The largest eigenvalue (spectral radius) is

(3.6) λ0 = −ω
1
1ω

0
2

ω2
2

.

(c) The multiplicity of the eigenvalue λi, for i = 0, . . . , d, is

(3.7) mi = n

 d∑
j=0

pj(λi)
2

pj(λ0)

−1

.

Proof. (a) As mentioned in Lemma 2.1, H = p0+· · ·+pd is the Hoffman polynomial satisfying H(λi) = 0

for i = 1, . . . , d.

(b) The expressions for p0 and p1 (see Lemma 2.1 (a)) imply that ω0
0 = 1 and ω0

1 = 0. Then,

(3.8) α0 = 0, α1 = −ω
1
2

ω2
2

, and β0 = −ω
1
1

ω2
2

ω0
2 ,

and (3.6) follows from λ0 = α0 + β0.

(c) See the proof of Proposition 3.6 (b). This is a result from [17]. (The corresponding result for distance-

regular graphs was first proved by Biggs in [2].)

The spectral radius can also be determined as the largest root of the polynomial

(3.9) h =

 d∑
i=1

λi
pd(λi)

d∏
j=1
j 6=i

x− λj
λi − λj

 pd(x)− x.

This comes from the combination of the following two facts: the multiplicity of each eigenvalue can be also

calculated as

(3.10) mi =
φ0 pd(λ0)

φi pd(λi)
, for i = 0, . . . , d,
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where φi =
∏d
j=0,j 6=i(λ0 − λj), see [17], and the sum of all the eigenvalues has to be zero,

∑d
i=0miλi =

trA = 0. Note that, in fact, the polynomial h has also the roots λ1, . . . , λd.

Another approach is to notice that each coefficient of H(x) =
∑d
j=0 hjx

j can be written as hj =

wjj + wjj+1 + · · · + wjd, where ωji is the coefficient of degree j of the polynomial pi. In particular, if Γ is

regular, then

H(x) =
n

π0

d∏
i=1

(x− λi) =
n

π0

∑
C⊂[d]

(−1)|C|xd−|C|

∏
j∈C

λj

 ,

where [d] = {0, 1, . . . , d}, π0 =
∏d
j=1 |λ0 − λj |, and, hence, we have the system of d equations

hj = wjj + wjj+1 + · · ·+ wjd =
n

π0

∑
|C|=d−j

(−1)d−j

(∏
i∈C

λi

)
, j = 0, . . . , d− 1,

with unknowns λ1, . . . , λd.

3.3. From the predistance polynomials to the preintersection numbers. In this subsection,

we assume that the predistance polynomials of a graph Γ are given and, from them, we want to obtain its

preintersection numbers. Of course, we could do so by applying (2.5), but this requires to know the spectrum

of Γ, which requires an intermediate computation (as shown in Subsection 3.2). Consequently, we want to

directly relate the preintersection numbers to (the coefficients of) the predistance polynomials. With this

aim, we use both the three-term recurrence (2.3) and the generic expression of each polynomial pi as above.

This leads to the following result.

Proposition 3.2. Given the predistance polynomials of a graph Γ, pi =
∑i
j=0 ω

j
i x
j, its preintersection

numbers are:

(a) α0 = −ω
0
1

ω1
1

, αi =
ωi−1
i

ωii
−
ωii+1

ωi+1
i+1

(1 ≤ i ≤ d− 1);

(b) βi =
ωi−1
i+1

ωii
−
ωii+1

ωii

(
ωii+1

ωi+1
i+1

−
ωi+1
i+2

ωi+2
i+2

)
−
ωi+1
i+1

ωi+2
i+2

ωii+2

ωii
(0 ≤ i ≤ d− 2);

(c) γi =
ωi−1
i−1

ωii
(1 ≤ i ≤ d).

Proof. By using the expressions of pi−1, pi, and pi+1 in (2.3), and considering the terms of degree i+ 1,

we get

ωii = γi+1ω
i+1
i+1 , i = 0, . . . , d− 1,

giving (c).

Analogously, from the term of degree i, we have

ωi−1
i = αiω

i
i + γi+1ω

i
i+1

whence, by using the value of γi+1, we obtain

ωi−1
i = αiω

i
i +

ωii
ωi+1
i+1

ωii+1

giving (a) for 1 ≤ i ≤ d− 1. The value of α0 is obtained from (2.3) with i = 0 and the value of γ1.
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Finally, looking at the terms of degree i− 1:

ωi−2
i = βi−1ω

i−1
i−1 + αiω

i−1
i + γi+1ω

i−1
i+1 ,

and using the values for αi and γi+1, we have

ωi−2
i = βi−1ω

i−1
i−1 +

(
ωi−1
i

ωii
−
ωii+1

ωi+1
i+1

)
ωi−1
i +

ωi−1
i−1

ωii
ωi−1
i+1 .

This yields the value of βi for 1 ≤ i ≤ d − 2. The value of β0 is obtained from (2.3) with i = 1, and the

values of α1 and γ2. This also yields (b) with i = 0, by setting ω−1
1 = 0.

Note that, in the above result, αd and βd−1 do not need to be mentioned, since they are computed by

using Lemma 2.1 (a1) with λ0 = α0 + β0.

A matrix approach. The above computation can be also carried out by using a matrix approach. To

this end, let us consider the given matrices

(3.11) Ω =


ω0

0

ω0
1 ω1

1

ω0
2 ω0

2 ω2
2

...
. . .

ω0
d · · · ωdd

 and U =


0 1 0 · · · 0

0 0 1
...

. . .

0 · · · 0 1

0 0 0 · · · 0

 ,

where, as above, the ωji , i, j = 0, . . . , d stand for the coefficients of the predistance polynomials, and U is a

(d+ 1)× (d+ 1) matrix. From them, we want to find the tridiagonal matrix of the preintersection numbers

of Γ:

R =


α0 γ1

β0 α1 γ2

β1 α2

. . . γd
βd−1 αd

 .

Then, we have the following result.

Proposition 3.3. Let Γ be a graph with predistance polynomials p0, . . . , pd, and coefficient matrix Ω.

Let Ω′ and R′ be the matrices obtained, respectively, from Ω and R by removing its last row. Then,

R′ = Ω′UΩ−1,

Proof. By using the (column) vectors p = (p0, p1, . . . , pd)
> and x = (1, x, . . . , xd)>, and p′ and x′

obtained from p and x by deleting the last entry, we have p = Ωx, p′ = Ω′x′, and xx′ = Ux. Moreover,

the first d equations in (2.4) are xp′ = R′p. Then, all together yields

xΩ′x′ = Ω′Ux = R′Ωx,

so that (Ω′U −R′Ω)x = 0 and, then, it must be Ω′U = R′Ω, whence the result follows.

Finally, the last row of R is computed by using Lemma 2.1 (a1).
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3.4. From the preintersection numbers to the predistance polynomials. To obtain the pre-

distance polynomials from the preintersection numbers of a graph Γ, we just need to apply the three-term

recurrence (2.3) which, initialized by p0 = 1, yields:

(3.12) pi =
1

γi
[(x− αi−1)pi−1 − βi−2pi−2], i = 1, . . . , d.

In particular, as stated in Lemma 2.1 (a), we get p1 = (λ0/k)x, so that Γ is regular if and only if p1 = x.

Alternatively, we can also compute pi directly by using the principal submatrix of the recurrence matrix

R in (2.4). Namely,

Ri =


α0 γ1

β0 α1 γ2

β1 α2

. . . γi
βi−1 αi

 , i = 0, 1, . . . , d.

Proposition 3.4. The predistance polynomial pi associated to the recurrence matrix R is

(3.13) pi =
1

γ0 · · · γi
pc(Ri−1), i = 1, . . . , d,

where pc(Ri−1) stands for the characteristic polynomial of Ri−1.

Proof. We use induction on the degree. The result holds for i = 1, 2 since, by (3.12), we get

p1 =
1

γ1
(x− α0) =

1

γ1
pc(R0) and p2 =

1

γ1γ2
[(x− α0)(x− α1)− β0γ1] =

1

γ1γ2
pc(R1).

Then, we assume that the result holds for all values smaller than i(≥ 3) and prove that det(xI −Ri−1) = pi
developing by expansion of the determinant along its last column.

Also, we can obtain explicit formulas for the coefficients of the polynomials in terms of the preintersection

numbers.

Lemma 3.5. Given the preintersection numbers αi, βi, and γi of a graph Γ, the three coefficients of the

higher degree terms of its predistance polynomial pi = ωiix
i + ωi−1

i xi−1 + · · ·+ ω0
i , are:

(i) ωii =
1

γ1γ2 · · · γi
;

(ii) ωi−1
i = −α0 + · · ·+ αi−1

γ1γ2 · · · γi
;

(iii) ωi−2
i =

∑
0≤r<s≤i−1 αrαs −

∑i−2
r=0 βrγr+1

γ1γ2 · · · γi
.

Proof. By using induction with the three-term recurrence (2.3), we get:

(i) The principal coefficient of the polynomial pi = 1
γi

[(x − αi−1)pi−1 − βi−2pi−2] is the principal

coefficient of 1
γi
pi−1, that is, 1

γi
ωi−1
i−1 .

(ii) The second coefficient of pi can be expressed in terms of the previous coefficients as:

ωi−1
i =

ωi−2
i−1 − αi−1ω

i−1
i−1

γi
,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 629-644, September 2020.
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and using the first statement we have:

ωi−1
i =

ωi−2
i−1

γi
− αi−1

1

γ2 · · · γi
.

(iii) For the coefficient of the third highest degree term, we get:

ωi−2
i =

ωi−3
i−1 − αi−1ω

i−2
i−1 − βi−2ω

i−2
i−2

γi
,

which, in addition with the previous results, it can be expressed as:

ωi−2
i =

ωi−3
i−1

γi
− α1αi−1 + · · ·+ αi−2αi−1

γ2 · · · γi
− βi−2γi−1

γ2 · · · γi
.

Of course, this procedure can be carried on by calculating each ωji from the three-term recurrence and using

the expressions of the previously computed ωii , . . . , ω
j+1
i .

The above computations can also be performed by using a matrix approach. Indeed, they can be set as

a linear system by using the matrix approach in Proposition 3.3 of the previous subsection.

3.5. From the preintersection numbers to the spectrum. Let us now see how the preintersection

numbers of a graph allow us to compute its spectrum.

Proposition 3.6. Given a graph Γ with d + 1 distinct eigenvalues and matrix R of preintersection

numbers, its spectrum sp Γ = {λm0
0 , λm1

1 , . . . , λmd

d } can be computed in the following way:

(a) The different eigenvalues λ0 > λ1 > · · · > λd of Γ are the eigenvalues of R, that is, the (distinct)

zeros of its characteristic polynomial pc(R) = det(xI −R).

(b) Let ui and vi be the ‘standard’ (that is, normalized with first component 1) left and right eigenvectors

corresponding to λi. Then, the multiplicities are given by the formulas

(3.14) mi =
n

〈ui,vi〉
, i = 0, . . . , d,

where n = 〈u0,v0〉 is the number of vertices of Γ.

Proof. Let P be the matrix indexed with 0, . . . , d, and with entries P ij = pi(λj). Then, because of

(2.4), its i-th column vi is a right λi-eigenvector of the recurrence matrix R: RP = PD, where D =

diag(λ0, . . . , λd). Then, as P−1R = DP−1, the i-th row ui of P−1 is a left λi-eigenvector of R. Moreover,

because of the orthogonal property of the predistance polynomials with respect to the scalar product (2.2),

the inverse of the matrix P is

P−1 =
1

n


m0

p0(λ0)
n0

m0
p1(λ0)
n1

· · · m0
pd(λ0)
nd

m1
p0(λ1)
n0

m1
p1(λ1)
n1

· · · m1
pd(λ1)
nd

...
...

...

md
p0(λd)
n0

md
p1(λd)
n1

· · · md
pd(λd)
nd

 ,

where ni = pi(λ0). Then, from (P−1P )ii = 1, 0 ≤ i ≤ d, we get

(3.15) mi = n

 d∑
j=0

pj(λi)
2

pj(λ0)

−1

=
n

〈ui,vi〉
, i = 0, . . . , d,

as claimed. Finally, notice that, as m0 = 1, n = 〈u0,v0〉.
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Note also that, in (3.15), the right and left eigenvectors are, respectively,

vi = (p0(λi), p1(λi), . . . , pd(λi))
>, and ui =

(
p0(λi)
p0(λ0) ,

p1(λi)
p1(λ0) , . . . ,

pd(λi)
pd(λ0)

)
. In the particular case when Γ is

a distance-regular graph, an alternative proof of (3.14) without using the orthogonal polynomials was given

by Biggs [2].

3.6. From the spectrum to the preintersection numbers. As far as we know, in the case of

distance-regular graphs there are no formulas directly relating the preintersection numbers to the eigenvalues

and multiplicities of a graph. Within this context, in the Appendix of the paper by Van Dam and Haemers

[12], the authors wrote the following: “In this appendix we sketch a proof of the following result: for a

distance-regular graph the spectrum determines the intersection array. This less-known but relevant result

(mentioned in the introduction) has been observed before, but it does not seem to be readily available in

the literature.”

Their method consists of three steps: first, use the scalar product (2.2) to find the (pre)distance polynomi-

als, as explained in Subsection 3.1 (apply Gram-Schmidt orthogonalisation and the normalization condition);

second, compute the distance matrices of the graph by applying the distance polynomials to its adjacency

matrix; and third, calculate the intersection parameters from the distance matrices.

However, in our context of a general graph, this method does not apply. The reason is that neither

the distance matrices can be obtained from the predistance polynomials, nor the preintersection numbers

are related to such matrices. Instead, an alternative would be to compute the predistance polynomials as

in Subsection 3.1, and then calculate the preintersection numbers by applying the results of Subsection 3.3.

Let us see that, if we follow properly this procedure, we can obtain explicit formulas for the preintersection

numbers in terms only of the information given by the spectrum. To this end, we call into play the average

numbers of closed walks as a new piece of information. In fact, these averages also determine the spectrum,

in the same way as the predistance polynomials and the preintersection numbers do. These averages can be

seen as a generalization of the numbers of closed `-walks in a distance-regular graph, where, for any fixed

length `, they do not depend on the root vertex.

Proposition 3.7. Let Γ be a graph. Then, its preintersection numbers can be computed directly from its

spectrum sp Γ by using the average number of closed walks of length `, that is, c(`) = 1
n tr(A

`) = 1
n

∑d
i=0miλ

`
i ,

` = 0, 1, 2, . . ., and their first values are:

α0 = 0, β0 = λ0,(3.16)

γ1 =
c(2)

λ0
, α1 =

c(3)

c(2)
, β1 = λ0 − α1 − γ1,(3.17)

γ2 =
λ0[c(2)c(4)− c(3)2 − c(2)3]

c(2)[λ2
0c(2)− c(3)λ0 − c(2)2]

, α2 =
c(2)2c(5)− 2c(2)c(3)c(4)− c(3)3

c(2)[c(2)c(4)− c(3)2 − c(2)3]
, β2 = · · · .(3.18)

Proof. The proof is by induction. We know that, knowing the predistance polynomials p0, . . . , pi−1,

i ≥ 1, the Gram-Schmidt method yields

(3.19) pi =
ri(λ0)

||ri||2
ri

where

ri = xi −
i−1∑
j=0

〈xi, pj〉
||pj ||2

= xi −
i−1∑
j=0

∑d
h=0m(λh)λihpj(λh)∑d
h=0m(λh)p2

j (λh)
.
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Then, from p0 = 1, we obtain that p1 = λ0

c(2)x, whence, applying the formulas

γi =
〈xpi−1, pi〉
||pi||2

=
1

pi(λ0)

d∑
j=0

m(λj)λjpi(λj)pi−1(λj),(3.20)

αi =
〈xpi, pi〉
||pi||2

=
1

pi(λ0)

d∑
j=0

m(λj)λjp
2
i (λj),(3.21)

βi = λ0 − αi − γi.,(3.22)

with i = 0, 1 we get (3.16) and (3.17). In general, if all the coefficients of the predistance polynomials

p0, . . . , pi−1, i ≥ 1, are given in terms of the numbers c(`)’s, we proceed in the same way by first calculating

pi and then applying the formulas (3.20)–(3.21). This assures that the obtained preintersection parameters

αi, βi, and γi will be expressed also in terms of the c(`)’s. For instance, the computation for i = 2 give the

results in (3.18).

4. An example. Let us illustrate the results of Section 3 with one example. Let Γ be the graph 4.47

of Table 4 in the textbook of Cvetković, Doob, and Sachs [7], shown in Figure 1, which has n = 9 vertices,

and spectrum

sp Γ =

31,

(
−1 +

√
13

2

)2

, 03, (−1)1,

(
−1−

√
13

2

)2
 .

Thus, Γ has d+ 1 = 5 distinct eigenvalues.

Figure 1. The graph 4.47 in Table 4 of [7].
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4.1. From the spectrum to the predistance polynomials. As mentioned in Subsection 3.1, the

sequence of predistance polynomials p0, p1, p2, p3, p4 are orthogonal with respect to the scalar product

〈f, g〉Γ =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi),

and normalized in such a way that ‖pi‖2Γ = pi(λ0). Then, we can obtain them by applying the Gram-Schmidt

method, starting from the sequence 1, x, x2, x3, x4, and the result is:

p0(x) = 1,

p1(x) =
9

8
x,

p2(x) = −268

157
− 201

1256
x+

201

314
x2,

p3(x) =
23607

50711
− 83082

50711
x− 732

2983
x2 +

183

646
x3,

p4(x) =
78

323
+

547

1292
x− 32

57
x2 − 113

969
x3 +

1

12
x4.

4.2. From the predistance polynomials to the spectrum. To obtain the spectrum from the

predistance polynomials, we can use the results in Proposition 3.1. So, the Hoffman polynomial H =

p0 + p1 + p2 + p3 + p4 is

H(x) = −1

4
x− 1

6
x2 +

1

6
x3 +

1

12
x4,

with zeros being the distinct eigenvalues different from λ0:

λ1 =
−1 +

√
13

2
, λ2 = 0, λ3 = −1, λ4 =

−1−
√

13

2
.

Moreover, the largest root of the polynomial given by (3.9) is λ0 = 3. Alternatively, by (3.6), λ0 = −ω
1
1ω

0
2

ω2
2

=

−(9/8)(−268/157)/(201/314) = 3.

Moreover, the values of the parameters φi and pd(λi) are:

φ0 = 108, φ1 =
3

2
[13− 7

√
13], φ2 = 9, φ3 = −12, φ4 =

3

2
[13 + 7

√
13],

and

p4(λ0) =
39

646
, p4(λ1) = − 1

646
[39 + 21

√
13], p4(λ2) =

78

323
,

p4(λ3) = −351

646
, p4(λ4) =

1

646
[−39 + 21

√
13].

Thus, by applying (3.10), we get the multiplicities:

m0 = 1, m1 = 2, m2 = 3, m3 = 1, m4 = 2.
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V. Diego, J. Fàbrega, and M.A. Fiol 640

4.3. From the predistance polynomials to the preintersection numbers. To obtain the prein-

tersection numbers by using the predistance polynomials, we apply Proposition 3.3 giving the relationship

between the preintersection matrix and the polynomial coefficient matrix of the graph.

The matrix Ω containing the polynomial coefficients of the graph Γ is:

Ω =


1 0 0 0 0

0 9/8 0 0 0

−268/157 −201/1256 201/314 0 0

23607/50711 −83082/50711 −732/2983 183/646 0

78/323 547/1292 −32/57 −113/969 1/12

 .

Then, with U given in (3.11), Proposition 3.3 yields:

R′ = Ω′UΩ−1 =


0 8/9 0 0 0

3 1/4 471/268 0 0

0 67/36 387/628 21641/9577 0

0 0 6588/10519 27036/50711 1098/323

 ,

and finally, we add the last row of the matrix R of preintersection numbers by using the equality αi+βi+γi =

β0 = 3: 

α0 γ1

β0 α1 γ2

β1 α2 γ3

β2 α3

β3 γ4

α4


=


0 8/9

3 1/4 471/268

67/36 387/628 21641/9577

6588/10519 27036/50711 1098/323

4082/19703 −129/323

 .

4.4. From the preintersection numbers to the predistance polynomials. In order to obtain

the predistance polynomials from the preintersection numbers of Γ, we apply the recurrence (3.12) which,

initialized with p0 = 1, yields:

p0(x) = 1,

p1(x) =
(x− α0)p0 − β(−1)p(−1)

γ1
=

9

8
x,

p2(x) =
(x− 1

4 )p1 − 3
471
268

= −268

157
− 201

1256
x+

201

314
x2,

p3(x) =
(x− 387

628 )p2 − 67
36p1

21641
9577

=
23607

50711
− 83082

50711
x− 732

2983
x2 +

183

646
x3,

p4(x) =
(x− 27036

50711 )p3 − 6588
10519p2

1098
323

=
78

323
+

547

1292
x− 32

57
x2 − 113

969
x3 +

1

12
x4.

Alternatively, we can compute the characteristic polynomial of each submatrix Ri−1 for i = 1, . . . , d.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 629-644, September 2020.

641 Equivalent Characterizations of the Spectra of Graphs and Applications

Then, we get:

p1(x) =
9

8
det
(
xI −

(
0
))

=
9

8
x,

p2(x) =
9

8
· 268

471
det

(
xI −

(
0 8/9

3 1/4

))
= −268

157
− 201

1256
x+

201

314
x2,

p3(x) =
9

8
· 268

471
· 9577

21641
det

xI −
 0 8/9

3 1/4 471/268

67/36 387/628


=

23607

50711
− 83082

50711
x− 732

2983
x2 +

183

646
x3,

p4(x) =
9

8
· 268

471
· 9577

21641
· 323

1098
det

xI −


0 8/9

3 1/4 471/268

67/36 387/628 21641/9577

6588/10519 27036/50711




=
78

323
+

547

1292
x− 32

57
x2 − 113

969
x3 +

1

12
x4.

We can also check that the principal coefficients of each predistance polynomials are easily determined

by the parameters γi’s:

ω1
1 =

1

γ1
=

9

8
,

ω2
2 =

1

γ1γ2
=

9

8
· 268

471
=

201

314
,

ω3
3 =

1

γ1γ2γ3
=

9

8
· 268

471
· 9577

21641
=

183

646
,

ω4
4 =

1

γ1γ2γ3γ4
=

9

8
· 268

471
· 9577

21641
· 323

1098
=

1

12
.

4.5. From the preintersection numbers to the spectrum. To obtain the spectrum of Γ, we first

compute the characteristic polynomial of the preintersection matrix

R =


0 8/9

3 1/4 471/268

67/36 387/628 21641/9577

6588/10519 27036/50711 1098/323

4082/19703 −129/323

 ,

which turns out to be φΓ(x) = x5 − x4 − 8x3 + 3x2 + 9x. Then, its roots are

λ0 = 3, λ1 =
1

2
(−1 +

√
13), λ2 = 0, λ3 = −1, λ4 =

1

2
(−1−

√
13).

To compute the multiplicities, we first consider the left and right eigenvectors of λ0:

u0 = j = (1, 1, 1, 1, 1) and v0 =

(
1,

27

8
,

4489

1256
,

100467

101422
,

39

646

)>
,
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so giving n = 〈u0,v0〉 = 9. Now, let us consider, for example, the eigenvalue λ2 = 0. Then, the corresponding

left and right normalized eigenvectors of R are

u2 =

(
1, 0,−32

67
, 0,

86

183
, 4

)
and v2 =

(
1, 0,−286

157
,

23607

50711
,

78

323

)>
.

Then, we get

m2 =
n

〈u2,v2〉
= 3,

and similar computations give 〈u1,v1〉 = 9
2 , 〈u3,v3〉 = 9, and 〈u4,v4〉 = 9

2 , so giving the other multiplicities

m1 = 2, m3 = 1, and m4 = 2 .

4.6. From the spectrum to the preintersection numbers. In our case, the average numbers of

walks of length ` = 0, 1, . . . , 5 turn out to be

c(0) = 1, c(1) = 0, c(2) =
8

3
, c(3) =

2

3
, c(4) = 16, c(5) =

40

3
,

and, then, Proposition 3.7 gives:

α0 = 0, β0 = 3, γ1 =
8

9
, α1 =

1

4
, β1 =

67

36
, γ2 =

471

268
, α2 =

387

628
, β2 =

6588

10519
, . . .

and we can keep applying the method to obtain the remaining preintersection numbers.

5. Some applications. In this section, we present some applications of the information given by the

spectrum, the predistance polynomials, and the preintersection numbers of a given graph. Moreover, we

show how the equivalences of these pieces of information allows us to rewrite some of the properties or

conditions in different forms. We begin with some combinatorial properties of a graph that can be deduced

from its preintersection numbers (see [1]).

5.1. Properties of the preintersection numbers. We can see if the graph is bipartite, or how large

is its odd girth, with simply checking at its matrix Ω of coefficients.

Proposition 5.1. Let Γ be a graph with d+ 1 distinct eigenvalues. Then,

(a) Γ is bipartite if and only if α0 = · · · = αd = 0.

(b) If Γ is not bipartite, then it has odd girth 2m+ 1 if and only if α0 = · · · = αm−1 = 0 and αm > 0.

From the results in Subsection 3.3, we observe that if αi = 0 for 0 ≤ i ≤ m then the coefficients of the

preintersection polynomials ωji equals 0 if i+ j is odd (that is, when i and j have distinct parity). Then, we

can rewrite the previous proposition as follows:

Proposition 5.2.

(a) A graph Γ with d + 1 distinct eigenvalues is bipartite if and only if, in the matrix Ω, ωji = 0 for

every i+ j odd.

(b) If Γ is not bipartite, then it has odd girth 2m+ 1 if and only if ωji = 0 for every i+ j odd and i ≤ m.

Concerning the girth, we have the following results.
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Proposition 5.3.

(a) A regular graph Γ has girth 2m + 1 if and only if α0 = · · · = αm−1 = 0, αm 6= 0 and γ1 = · · · =

γm = 1.

(b) A regular graph Γ has girth 2m if and only if α0 = · · · = αm−1 = 0, γ1 = · · · = γm−1 = 1 and

γm > 1.

Using again the results of Subsection 3.3, we have:

Proposition 5.4.

(a) A regular graph Γ has girth 2m + 1 if and only if the polynomial coefficients satisfies ωji = 0 for

every i+ j odd and i ≤ m− 1, ωjm 6= 0 for some m+ j odd, and ω1
1 = · · · = ωmm = 1.

(b) A regular graph Γ has girth 2m if and only if the polynomial coefficients satisfies ωji = 0 for every

i+ j odd and i ≤ m− 1, ω1
1 = · · · = ωm−1

m−1 = 1, and ωmm < 1.

5.2. Characterizations of distance-regularity. Now we give some characterizations of distance-

regularity in graphs, which are given in terms of the different pieces of information considered. We begin

with the so-called ‘spectral excess theorem’ (see Fiol and Garriga [19]), which can be seen as a quasi-spectral

characterization of a distance-regular graph.

Theorem 5.5. (The spectral excess theorem) A regular graph Γ = (V,E) is distance-regular if an only

if its spectral excess

pd(λ0) =
β0β1 · · ·βd−1

γ1γ2 · · · γd
= n

(
d∑
i=0

π2
0

miπ2
i

)−1

,

(where πi =
∏
j 6=i

|λi − λj |, for i = 0, . . . , d) equals the average excess

kd =
1

n

∑
u∈V
|Γd(u)|.

Proof. The result was proved in [19] with the spectral excess pd(λ0) given in terms of the spectrum.

The condition involving the preintersection numbers comes from applying Lemma 2.1 (a2) starting from

p1(λ0) = 1.

The following result was proved by Abiad, Van Dam, and Fiol [1] for a more particular family of distance-

regular graphs. (Here it can be shown that the conditions on the preintersection numbers γi’s is related to

the existence of unique geodetic paths between vertices.)

Theorem 5.6. Let Γ be a graph with d + 1 distinct eigenvalues and preintersection numbers γi, i =

1, . . . , d.

(a) If γ1 = · · · = γd−1 = 1, then Γ is distance-regular.

(b) If Γ is bipartite and γ1 = · · · = γd−2 = 1, then Γ is distance-regular.

This result implies that a graph is distance-regular if its predistance polynomials are monic.

Theorem 5.7. Let Γ be a graph with d + 1 distinct eigenvalues and predistance polynomials pi, i =

0, 1, . . . , d.
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(a) If all the pi’s, are monic (ωii = 1) for i = 1, . . . , d− 1, then Γ is distance-regular.

(b) If Γ is bipartite and all the pi’s, are monic, then Γ is distance-regular.

Proof. Apply Theorem 5.6 and Proposition 3.2 (c) recursively from ω0
0 = 1.
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