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SPECTRAL PROPERTIES OF SIGN PATTERNS∗

MICHAEL CAVERS† , JONATHAN FISCHER‡ , AND KEVIN N. VANDER MEULEN§

Abstract. In this paper, an infinite family of irreducible sign patterns that are spectrally arbitrary, for which the nilpotent-

Jacobian method does not apply, is given. It is demonstrated that it is possible for an irreducible sign pattern to be refined

inertially arbitrary and not spectrally arbitrary. It is observed that not every nonzero spectrally arbitrary pattern has a signing

which is spectrally arbitrary. It is also shown that every superpattern of the reducible pattern T2 ⊕ T2 is spectrally arbitrary.

Key words. Sign pattern, Nonzero pattern, Spectrally arbitrary pattern, Inertially arbitrary pattern, Nilpotent-Jacobian
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1. Introduction. The concept of a sign pattern being spectrally arbitrary was introduced in [12].

Since then there has been a lot of activity (see, for example, [15] and [22]) around recognizing when a sign

pattern is spectrally arbitrary and relating it to other concepts, such as a pattern being potentially nilpotent,

potentially stable, inertially arbitrary, or refined inertially arbitrary. In this paper we answer a number of

open questions about spectrally arbitrary patterns, over the real numbers. In particular, we demonstrate

the following items:

(a) There exists an irreducible sign pattern that is refined inertially arbitrary, but not spectrally arbi-

trary (Theorems 3.2 and 4.7 (iii)).

(b) There exists irreducible sign patterns S1 and S2 both of which are not spectrally arbitrary, but

S1 ⊕ S2 is spectrally arbitrary (Theorem 3.3).

(c) Not every nonzero spectrally arbitrary pattern has a signing which is spectrally arbitrary (Theorem

4.7 (iii)).

(d) Some irreducible spectrally arbitrary patterns do not allow a nonderogatory nilpotent realization

(Corollary 4.8 (i)).

(e) There exists irreducible spectrally arbitrary sign patterns for which the nilpotent-Jacobian method

does not apply (Corollary 4.8 (ii)).

(f) Given T2 =

[
+ +

− −

]
, then every superpattern of T2⊕T2 allows a nilpotent matrix (Theorem 5.1).

(g) Every superpattern of T2 ⊕ T2 is spectrally arbitrary (Theorem 5.1).

Previous work has explored the relationship between classes of refined inertially arbitrary patterns and

spectrally arbitrary patterns. It was shown in [11] that an irreducible nonzero pattern exists which is refined
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inertially arbitrary, but not spectrally arbitrary. In [21], it was demonstrated that there exists a reducible

sign pattern that is refined inertially arbitary but not spectrally arbitray. In Sections 3 and 4, we illustrate

item (a) by providing irreducible sign patterns S and Cn,k, with n and k both odd, that are refined inertially

arbitrary but not spectrally arbitrary. This gives a negative answer to an open question raised in [22], [11],

and [16]. A pattern equivalent to C4,2 was shown to be inertially arbitrary but not spectrally arbitrary

in [7] and the nonzero patterns of order 4 which are inertially arbitrary but not spectrally arbitrary were

characterized in [8]. The question of characterizing the (nonzero) patterns with this property for all orders

n was raised in [1]. In Theorem 4.7, we demonstrate that Cn,k (and its nonzero pattern C∗n,k), with n and k

even, provide a class of patterns that are inertially arbitrary but not refined inertially arbitrary (and hence

not spectrally arbitrary) for all even n ≥ 4.

The idea of constructing reducible spectrally arbitrary patterns from irreducible spectrally arbitrary

patterns was first considered in [12]. In [7], it was demonstrated that one can construct a reducible sign

pattern that is inertially arbitrary, using irreducible blocks, not all of which were inertially arbitrary. An

example of a reducible inertially arbitrary nonzero pattern with none of the blocks inertially arbitrary was

given in [17]. A corresponding example of a sign pattern was provided in [5]. In [10], it was shown that

a sign pattern M4 ⊕ T2 is spectrally arbitrary, even though M4 is not spectrally arbitrary. Work in [21]

demonstrates that is possible to construct a direct sum of two reducible blocks which is spectrally arbitrary,

but for which neither of the reducible blocks are spectrally arbitrary. In Section 3, we illustrate item (b) by

providing the pattern S⊕M4 which is spectrally arbitrary, but both S andM4 are irreducible sign patterns

that are not spectrally arbitrary. This answers a question raised in [4], [11], and recently in [22].

The spectrally arbitrary nonzero patterns of order four were characterized in [9]. Each of these patterns

were shown to have a corresponding sign pattern that is spectrally arbitrary. In [8], an order four nonzero

pattern was described that was inertially arbitrary, but had no signing which is is inertially arbitrary. The

question was raised in [9] if every spectrally arbitrary nonzero pattern has a spectrally arbitrary signing.

In Section 4, we illustrate item (c) by showing that for any odd order larger than four, there is a nonzero

spectrally arbitrary pattern that has no corresponding sign pattern which is spectrally arbitrary.

The nilpotent-Jacobian method was developed in [12] as a tool to demonstrate an irreducible sign

pattern is spectrally arbitrary, but the question was raised (see e.g. [18]) if this method would work on every

irreducible spectrally arbitrary pattern. The authors of [18] demonstrated that there are spectrally arbitrary

patterns over the complex numbers for which the nilpotent-Jacobian method does not apply. It is also known

that there are reducible sign patterns that are spectrally arbitrary, for which the nilpotent-Jacobian method

does not apply (see e.g. T2 ⊕ T2 in [5]; see also [21]), since the nilpotent-Jacobian method will not apply to

reducible patterns (see e.g. [19, Theorem 1.1]). In Section 4, we show that there are irreducible spectrally

arbitrary patterns for which the nilpotent-Jacobian method does not apply. We use an observation developed

in [2]: If a nilpotent matrix is successfully employed with the nilpotent-Jacobian method, then that nilpotent

matrix must have been nonderogatory. This raised the question if every spectrally arbitrary sign pattern

allows a nonderogatory nilpotent realization. We note that full sign patterns that are spectrally arbitrary

do allow a nonderogatory nilpotent realization [20]. We demonstrate item (e) by first demonstrating item

(d) and answer the question raised in [2]. The technique we use to show a pattern is spectrally arbitrary

involves analyzing an associated characteristic polynomial and showing that by taking a certain variable

to be sufficiently large, we can obtain all possible characteristic polynomials. This technique has been

used previously for spectrally arbitrary patterns over the complex numbers [18] and for reducible spectrally

arbitrary sign patterns [21].



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 183-197, April 2020.

185 Spectral Properties of Sign Patterns

In [5], it was shown that T = T2⊕T2 is spectrally arbitrary. This result also follows from the result noted

in [10] that if the direct sum of spectrally arbitrary sign patterns has at most one odd order summand, then

the direct sum is spectrally arbitrary. In [19], it was shown that every superpattern of T is inertially arbitrary,

and it was left as an open problem whether every superpattern is spectrally arbitrary. In Section 5 we

demonstrate item (g) by showing every superpattern of T is spectrally arbitrary using the nilpotent-Jacobian

method. This also answers a question raised in [16] by demonstrating item (f), that every superpattern of

T is in fact potentially nilpotent.

2. Technical terms and background results. Throughout, we will assume matrices are n×n unless

specified otherwise. A sign pattern is a matrix A = [Aij ] with entries in {+,−, 0}. A real matrix A is said

to have sign pattern A (or is called a realization of A) if Aij > 0 when Aij = +, Aij < 0 when Aij = −,

and Aij = 0 when Aij = 0. A nonzero pattern is a matrix A = [Aij ] with entries in {∗, 0}. A real matrix A

is said to have nonzero pattern A (or is called a realization of A) if Aij 6= 0 if and only if Aij 6= 0. We use

the term pattern when statements hold for both sign patterns and nonzero patterns. A signing of a nonzero

pattern A is a sign pattern B such that Bij = 0 whenever Aij = 0 and Bij ∈ {+,−} whenever Aij = ∗. We

say A is a subpattern of B if A can be obtained from B by replacing some (or possibly none) of the nonzero

symbols in B with 0. If A is a subpattern of B, then we say B is a superpattern of A. A sign pattern A
is signature similar to sign pattern B if A = DBDT where D is a diagonal matrix with diagonal entries

from {+,−}. Since we will be focusing on the eigenvalues that a pattern allows, we say a sign pattern A is

equivalent to B if A can be obtained from B by a combination of signature similarity, negation, transposition

and permutation similarity. Likewise a nonzero pattern A is equivalent to B if A can be obtained from B via

transposition and/or permutation similarity. A pattern A is irreducible if there is no permutation matrix P

such that PAPT is a nontrivial block triangular matrix.

A pattern A allows a particular property if there is some real matrix A with pattern A that has the

specified property. A pattern A is a spectrally arbitrary pattern (SAP), if A allows every characteristic

polynomial, that is, for every polynomial f(x) = xn + r1x
n−1 + · · ·+ rn−1x+ rn with real coefficients, there

is some real matrix A with pattern A such that f(x) is the characteristic polynomial of A. The inertia of

a matrix A is an ordered triple i(A) = (i+, i−, i0) with i+ (resp., i− and i0) the number of eigenvalues of

A with positive (resp., negative and zero) real part. A pattern A is an inertially arbitrary pattern (IAP) if

A allows every possible inertia, that is, if for each triple of nonnegative integers a, b, c with a + b + c = n,

there is some matrix A with pattern A and inertia i(A) = (a, b, c). The refined inertia of a matrix A

is ri(A) = (i+, i−, iz, 2ip) with iz being the number of zero eigenvalues and 2ip is the number of purely

imaginary eigenvalues of A. A pattern A is a refined inertially arbitrary pattern (rIAP) if it allows every

refined inertia.

We next describe a method for determining that a pattern is spectrally arbitrary. Given a matrix A with

m nonzero entries, let X be the matrix obtained from A by replacing the nonzero entries of A with variables

x1, x2, . . . , xm. Suppose that X has characteristic polynomial xn + f1x
n−1 + f2x

n−2 + · · ·+ fn−1x+ fn. The

Jacobian matrix JX has entry (i, j) equal to the partial derivative ∂fi
∂xj

. If rank(JX |X=A) = n, then we say

that A has a full-rank Jacobian.

Theorem 2.1. [12] If a nilpotent matrix A with sign pattern A has a full-rank Jacobian, then every

superpattern of A is spectrally arbitrary.

Theorem 2.1 essentially provides a method, called the nilpotent-Jacobian method, to demonstrate a

pattern is spectrally arbitrary: Find a nilpotent matrix that has a full-rank Jacobian. This nilpotent-
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Jacobian method has often been the key tool for demonstrating a pattern is spectrally arbitrary (see, for

example, [12] and [22]).

A matrix is nonderogatory if its characteristic polynomial is equal to its minimum polynomial. In

particular, if A is a nilpotent matrix, then A is nonderogatory if k = n is the smallest positive integer such

that Ak = 0. It was observed in [2] that being nonderogatory is a necessary condition for a nilpotent matrix

to have a full-rank Jacobian. That is, it is necessary that a pattern A allows a nonderogatory nilpotent

matrix if the nilpotent-Jacobian method applies to A.

A variation of the nilpotent-Jacobian method has been used to help show a pattern is refined inertially

arbitrary when a pattern fails to be spectrally arbitrary. The following lemma is an abbreviated version of

Lemma 3.4 in [6] that can be used recursively to obtain many refined inertias.

Lemma 2.2. [6] Let A be an n × n sign pattern. Suppose there is a matrix A, with sign pattern A,

that has a full-rank Jacobian. Suppose ri(A) = (ap, an, az, 2ai). If ai ≥ 1, then (ap + 2, an, az, 2ai −
2), (ap, an +2, az, 2ai−2) ∈ ri(A) and if az ≥ 1 then (ap +1, an, az−1, 2ai), (ap, an +1, az−1, 2ai) ∈ ri(A).

Furthermore, for each modified refined inertia, there is a realization of A with this refined inertia that has a

full-rank Jacobian.

3. A refined inertially arbitrary sign pattern. While every irreducible SAP is an rIAP, it has been

an open question, raised in [11] and [22], if the converse is true. In this section, we demonstrate that there

is an irreducible sign pattern that is refined inertially arbitrary but not spectrally arbitrary. In Section 4,

we determine other patterns with this property. We end this section by demonstrating the existence of a

reducible spectrally arbitrary pattern which is a direct sum of two irreducible patterns, both of which are

not spectrally arbitrary.

First we define a nonzero pattern L∗, introduced in [11], along with a particular signing S of L∗:

L∗ =


∗ ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 ∗ 0

0 0 ∗ 0 ∗
∗ ∗ 0 0 ∗

 and S =


+ + 0 0 +

0 0 + 0 +

0 0 0 + 0

0 0 + 0 +

− − 0 0 −

 .
Note that in [11], the notation L is used for the nonzero pattern L∗. In [11, Theorem 2.9], it is shown that

L∗ is refined inertially arbitrary but not spectrally arbitrary. We tweak the proofs given in [11] to apply to

the sign pattern S.

Proposition 3.1. Let f(x) = x5 + r1x
4 + r2x

3 + r3x
2 + r4x+ r5. Then S does not allow characteristic

polynomial f(x) if and only if r1 = r3 = 0 while r5 6= 0.

Proof. Follow the proof of [11, Proposition 2.7] and consider appropriate choices for the variables: In

Case 1, take a and c to be sufficiently large and positive. This guarantees that the variables a, b, c, h are

positive and the variables d, f, g are negative. In Case 2, take c to be sufficiently large and positive and let

h = 1/c2. Then 1 + c+ p3 − hq4(c) is asymptotically equivalent to c as c → ∞. Thus, for sufficiently large

c, we are guaranteed that a, b, c, h are positive while d, f, g are negative.

Similarly, the proofs of [11, Corollary 2.8] and [11, Theorem 2.9] also hold for S. This gives the following

result:

Theorem 3.2. The irreducible sign pattern S of order 5 is an rIAP but not a SAP.
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In [21], a spectrally arbitrary reducible sign pattern is constructed with none of its summands spectrally

arbitrary. In [11], an example is provided in the case of nonzero patterns of order 9. This example also

extends to an example for sign patterns. Consider the sign pattern M4 introduced in [10] with nonzero

pattern M∗:

M4 =


+ + − 0

− − + 0

0 0 0 −
+ + 0 0

 and M∗ =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗
∗ ∗ 0 0

 .
Properties of the characteristic polynomials realized by M4 are given in [10, Proposition 2.2] and in [11,

Lemma 2.2] (see [11, p. 465], where it is mentioned that [11, Lemma 2.2] also remains true for the sign

pattern M4). Since [11, Lemma 4.1] also holds for the sign pattern S, and the proof of [11, Theorem 4.2]

only relies on [11, Lemma 2.2 and Lemma 4.1], we have the following result for sign patterns.

Theorem 3.3. The reducible sign pattern S ⊕M4 of order 9 is a SAP with neither of its summands a

SAP.

4. A class of inertially arbitrary patterns. Given 2 ≤ k ≤ n, and n ≥ 4, consider the n × n sign

pattern Cn,k and its corresponding nonzero pattern C∗n,k defined as

Cn,k =



+ + · · · + 0 · · · 0

0 0 · · · 0 + · · · +

− − 0 0 · · · · · · 0

0 0 −
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 0

0 · · · · · · 0 0 − −


and C∗n,k =



∗ ∗ · · · ∗ 0 · · · 0

0 0 · · · 0 ∗ · · · ∗
∗ ∗ 0 0 · · · · · · 0

0 0 ∗
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 0

0 · · · · · · 0 0 ∗ ∗


,

each with k nonzero entries in the first row. Note that Cn,n (resp., C∗
n,n) has a row of zeros, and hence

is not an IAP. In this section, we will observe that Cn,k (resp., C∗n,k) is inertially arbitrary if k 6= n, and

we will characterize when it is also refined inertially arbitary and spectrally arbitrary. Further, we show in

Lemma 4.3 that Cn,k (resp., C∗n,k) does not allow a nilpotent matrix that is nonderogatory, unless k = n− 1.

Thus, when k < n − 1 with values of n and k for which Cn,k (resp., C∗n,k) is a SAP, the nilpotent-Jacobian

method does not apply and an alternative argument is needed.

By a positive diagonal similarity (resp., diagonal similarity), every matrix having sign pattern Cn,k (resp.,

nonzero pattern C∗n,k) is equivalent to a matrix having all nonzero entries below the main diagonal equal to

−1. Then, without loss of generality, any Bn,k ∈ Q(Cn,k) (resp., Bn,k ∈ Q(C∗n,k)) is equal to

(4.1) Bn,k =



c1 c2 · · · ck 0 · · · 0

0 0 · · · 0 ck+1 · · · cn
−1 −1 0 0 · · · · · · 0

0 0 −1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0 0

0 · · · · · · 0 0 −1 −d


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for some d, c1, c2, . . . , cn ∈ R>0 (resp., d, c1, c2, . . . , cn ∈ R \ {0}).

Lemma 4.1. Let fn,k(x) be the characteristic polynomial of Bn,k and wi = (−1)i(ci+1 − cid) for i =

3, 4, . . . , n− 1. Then,

fn,n(x) = xn + (d− c1)xn−1 + (c3 − c1d)xn−2 +

n−1∑
i=3

wix
n−i,

fn,n−1(x) = fn,n(x) + cn(c2 − c1)(−1)n−1,

and for 2 ≤ k < n− 1,

fn,k(x) = xn + (d− c1)xn−1 + (c3 − c1d)xn−2 +
k∑

i=3

wix
n−i

+
[
wk+1 + (−1)k(c2 − c1)ck+1

]
xn−k−1

+

n−1∑
i=k+2

[wi + (c2 − c1)wi−1]xn−i + (c2 − c1)wn−1.

Proof. We start by showing fn,n(x) = xn+(d−c1)xn−1+(c3−c1d)xn−2+
∑n−1

i=3 wix
n−i. We calculate the

characteristic polynomial by first applying cofactor expansion along row two, then applying the linearity of

a determinant to the last row, and then observing the remaining two determinants come from characteristic

polynomials of companion matrices:

fn,n(x) = det



x− c1 −c2 −c3 · · · · · · −cn
0 x 0 · · · · · · 0

1 1 x
. . .

...

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 1 x+ d



= x


det



x− c1 −c3 · · · · · · −cn
1 x 0 · · · 0

0 1 x
. . .

...
...

. . .
. . . x 0

0 · · · 0 1 x


+ det



x− c1 −c3 · · · · · · −cn
1 x 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . 1 x 0

0 · · · 0 0 d




= x

(
xn−1 − c1xn−2 +

n∑
i=3

cix
n−i(−1)i+1

)
+ xd

(
xn−2 − c1xn−3 +

n−1∑
i=3

cix
n−i−1(−1)i+1

)

= xn + (d− c1)xn−1 + (c3 − c1d)xn−2 +

n−1∑
i=3

wix
n−i.

Next we consider fn,k for k < n, noting its relationship with fn,k+1. In particular, observe that every

nonzero transversal of xI − Bn,k+1 containing ck+1 also contains the (2, 2) entry; each such transversal

corresponds to a nonzero transversal of xI − Bn,k corresponding ck+1 in row two and using an x from the
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(1, 1) position. The remaining transversals are indicated in the following:

fn,n−1(x) = fn,n(x) + cn(c2 − c1)(−1)n−1

and for 2 ≤ k < n− 1,

fn,k(x) = fn,k+1(x) + (x+ d)ck+1(c2 − c1)xn−k−2(−1)k.

It follows that for 2 ≤ k < n− 1,

fn,k(x) = fn,n(x) + cn(c2 − c1)(−1)n−1 +

n−1∑
i=k+1

(x+ d)ci(c2 − c1)(−1)i+1,

and hence,

fn,k(x) = fn,n(x) + (−1)kck+1(c2 − c1)xn−k−1 +

n−1∑
i=k+1

wi(c2 − c1)xn−i−1.

Remark 4.2. The nilpotent-Jacobian method can be used to show that the sign pattern Cn,n−1 (resp.,

nonzero pattern C∗n,n−1) is a SAP. In particular, consider Bn,n−1 with d = 1 and variables ci, i = 1, 2, . . . , n.

From Lemma 4.1, suppose that Bn,n−1 has characteristic polynomial xn + f1x
n−1 + f2x

n−2 + · · ·+ fn−1x+

fn, and note that the matrix is nilpotent when c1 = · · · = cn = 1. Then the Jacobian matrix J =
∂(f1,fn,f2,f3,...,fn−1)

∂(c1,c2,...,cn)
, after rearranging the fi as specified, is equal to

J =



−1 0 0 0 · · · · · · 0

−a a 0 0 · · · 0 b

−1 0 1 0 · · · · · · 0

0 0 (−1)4 (−1)3 0 · · · 0
...

. . .
. . . (−1)5 (−1)4

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · 0 (−1)n (−1)n−1


,

where a = (−1)n−1cn and b = (−1)n−1(c2 − c1). When evaluated at (c1, c2, . . . , cn) = (1, 1, . . . , 1), we have

b = 0 and a 6= 0, and thus, J is a lower triangular matrix with nonzero determinant. Hence, by Theorem 2.1,

every superpattern of Cn,n−1 (resp., C∗n,n−1) is a SAP.

Lemma 4.3. Let n ≥ 4 and 2 ≤ k < n − 1. Then Cn,k (resp., C∗n,k) does not allow a nonderogatory

nilpotent matrix.

Proof. Let B be a nilpotent matrix having sign pattern Cn,k (resp., nonzero pattern C∗n,k). Since nilpo-

tence is invariant under matrix scaling, we may assume the (n, n)-entry of B is equal to −1. Thus, by

a positive diagonal similarity (resp., diagonal similarity), we may further assume B = Bn,k for some

c1, c2, . . . , cn ∈ R>0 (resp., c1, c2, . . . , cn ∈ R \ {0}) with d = 1. By Lemma 4.1, since d = 1 we must

have c1 = 1 and ci = 1 for i = 3, . . . , k + 1. If c2 6= c1, then for detB = 0 to hold we must have wn−1 = 0.

Then wi + (c2 − c1)wi−1 = 0 for i = k + 2, . . . , n − 1 implies that wn−2 = wn−3 = · · · = wk+1 = 0 giving a

nonzero coefficient of xn−k−1, contradicting that B is a nilpotent matrix. Thus, we must have c2 = c1 = 1.

Hence, wi = 0 for i = k+ 1, . . . , n− 1 implying c1 = c2 = · · · = cn = 1. Now, the first two columns of B and

the last two columns of B form two pairs of dependent columns as n − k < 1. [Note if n − k = 1, the last

two columns do not form a pair of dependent columns.] This implies rank(B) ≤ n− 2, hence, B must be a

derogatory matrix.
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Since it was shown in [2] that it is necessary that a nilpotent matrix is nonderogatory if it has a full-rank

Jacobian, by Lemma 4.3, the nilpotent-Jacobian method does not apply to Cn,k (resp., C∗n,k) with n ≥ 4

and 2 ≤ k < n − 1. To analyze characteristic polynomials realizable by Cn,k (resp., C∗n,k) we introduce the

following polynomial.

Notation 4.4. Let n ≥ 4 and 2 ≤ k ≤ n − 1. For a fixed r = (r1, r2, . . . , rn) ∈ Rn and c 6= 0, define

Pr,c(y) to be the polynomial

Pr,c(y) = yn−k +
(−1)k+1rk+1

c
yn−k−1 +

(−1)k+2rk+2

c
yn−k−2 + · · ·+ (−1)nrn

c
.

The next lemma is the main tool used in this paper. It shows a relationship between characteristic

polynomials realizable by Cn,k (resp., C∗n,k) and polynomials Pr,c(y) with real roots.

Lemma 4.5. Let n ≥ 4, 2 ≤ k ≤ n− 1 and fix r = (r1, r2, . . . , rn) ∈ Rn.

(a) If Bn,k has characteristic polynomial xn + r1x
n−1 + · · · + rn, then Pr,ck+1

(y) has a real root and

ck+1 = dk − r1dk−1 + r2d
k−2 + · · ·+ (−1)krk.

(b) If Pr,c(y) has a real root for every c > 0, then Cn,k allows the characteristic polynomial xn+r1x
n−1+

· · ·+ rn.

Proof. Assume 2 ≤ k < n − 1 for some n ≥ 4 and fix r = (r1, r2, . . . , rn) ∈ Rn. Consider the matrix

Bn,k ∈ Q(Cn,k) (resp., Bn,k ∈ Q(C∗n,k)) and let f(x) = xn + r1x
n−1 + · · · + rn. For the characteristic

polynomial of Bn,k to be equal to f(x), from Lemma 4.1, we require that

d− c1 − r1 = 0(4.2)

c3 − c1d− r2 = 0(4.3) 

w3 − r3 = 0

w4 − r4 = 0

...

wk − rk = 0

(4.4)

wk+1 + (−1)k(c2 − c1)ck+1 − rk+1 = 0(4.5) 

wk+2 + (c2 − c1)wk+1 − rk+2 = 0

wk+3 + (c2 − c1)wk+2 − rk+3 = 0

...

wn−1 + (c2 − c1)wn−2 − rn−1 = 0

(4.6)

(c2 − c1)wn−1 − rn = 0(4.7)

for some choice of d, c1, c2, . . . , cn ∈ R>0 (resp., d, c1, c2, . . . , cn ∈ R \ {0}), where wi = (−1)i(ci+1 − cid) for

i = 3, 4, . . . , n− 1. Making the substitution y = c2 − c1 and applying forward substitution to the system of

equations (4.5) and (4.6) gives

wi = (−1)iyi−kck+1 +

i−(k+1)∑
t=0

(−1)tri−ty
t
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for i = k + 1, . . . , n− 1, and hence, by equation (4.7), we must have

rn = (−1)n−1yn−kck+1 +

n−(k+1)∑
t=0

(−1)trn−ty
t

= (−1)n−1ck+1y
n−k + rn−1y − rn−2y

2 + · · ·+ (−1)n−k−2rk+1y
n−k−1.(4.8)

Note that equation (4.8) is equivalent to Pr,ck+1
(y) = 0 since we require ck+1 > 0 (resp., ck+1 6= 0). Then

the following statements are equivalent with wi = (−1)i(ci+1 − cid):

(i) the characteristic polynomial of Bn,k ∈ Q(Cn,k) (resp., Bn,k ∈ Q(C∗n,k)) is equal to f(x),

(ii) the system of n equations (4.2)–(4.7) has a solution for some d, c1, c2, . . . , cn ∈ R>0 (resp., d, c1,

c2, . . . , cn ∈ R \ {0}),
(iii) the system of n + 1 equations (4.2)–(4.6), Pr,ck+1

(y) = 0 and y = c2 − c1 has a solution for some

d, c1, c2, . . . , cn ∈ R>0 (resp., d, c1, c2, . . . , cn ∈ R \ {0}) and y ∈ R.

We note that we also have the equivalence of (i) and (iii) when k = n− 1 by omitting equations (4.5)–(4.7)

in (iii): For the characteristic polynomial of Bn,k to be equal to f(x), by Lemma 4.1, we require equations

(4.2)–(4.4) along with cn(c2 − c1)(−1)n−1 − rn = 0 to hold, and this last equation is equivalent to both

equation (4.5) by defining wn = 0 and also the equation Pr,ck+1
(y) = 0.

By equations (4.2)–(4.4) any solution in (iii) must satisfy c1 = d − r1, c3 = d2 − r1d + r2 and ci+1 =

cid + (−1)iri for i = 3, 4, . . . , k. That is, c1 = d − r1 and ci+1 = di − r1di−1 + r2d
i−2 + · · · + (−1)iri for

i = 2, 3, . . . , k.

Part (a) follows from the equivalence between (i) and (iii).

For part (b), assume Pr,c(y) has a real root for every c > 0. We show (iii) holds which then implies (i)

holds, completing the proof since Bn,k ∈ Q(Cn,k). For every sufficiently large d, choose any real root yd of

Pr,ĉ(y) where ĉ = dk − r1dk−1 + r2d
k−2 + · · · + (−1)krk; yd exists since ĉ > 0 for every sufficiently large d.

Note that as d→∞ we have yd → 0 since Pr,ĉ(y) is a minor perturbation of yn−k. For equations (4.2)–(4.4)

to hold, let c1 = d− r1 and ci+1 = di− r1di−1 + r2d
i−2 + · · ·+ (−1)iri for i = 2, 3, . . . , k. Note ck+1 = ĉ. For

equation y = c2 − c1 to hold, let c2 = yd + d− r1. Thus, as d→∞, then c1 is asymptotically equivalent to

d and ci is asymptotically equivalent to di−1 for i = 2, 3, . . . , k + 1. The system of equations (4.5) and (4.6)

then yields real solutions ci with ci asymptotically equivalent to di−1 as d→∞ for i = k + 2, . . . , n. Thus,

d, c1, c2, . . . , cn are positive for sufficiently large d. Hence, (iii) holds.

The proof of Lemma 4.5 (b) shows that for sufficiently large d, if Pr,c(y) has a root, then Cn,k is spectrally

arbitrary. This implies that over the complex numbers, C∗n,k will be spectrally arbitrary. Thus, we have the

following theorem.

Theorem 4.6. Let n ≥ 4 and 2 ≤ k ≤ n−1. Then C∗n,k is a spectrally arbitrary pattern over the complex

numbers.

A pattern equivalent to C∗4,2 appears in [18, Lemma 3.1]: It is spectrally arbitrary over the complex

numbers, though it is not spectrally arbitrary over the real numbers. A pattern equivalent to C4,2 appears

in [8, Proposition 3.1]: It is shown to be inertially arbitrary, but not spectrally arbitrary, in [8]. The next

result characterizes the values of n and k for which Cn,k (resp., C∗n,k) is spectrally arbitrary (over the real

numbers), refined inertially arbitrary or inertially arbitrary.
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Theorem 4.7. Let n ≥ 4 and 2 ≤ k ≤ n− 1.

(i) If n− k is odd, then Cn,k (resp., C∗n,k) is a SAP.

(ii) If n and k are both even, then Cn,k (resp., C∗n,k) is an IAP but not an rIAP.

(iii) If n and k are both odd, then Cn,k is an rIAP but not a SAP, and C∗n,k is a SAP but has no signing

that is a SAP.

Proof. (i) Assume n−k is odd and arbitrarily fix any r1, r2, . . . , rn ∈ R. For every c > 0, the polynomial

Pr,c(y) has a real root since it has odd degree. By Lemma 4.5 (b), it follows that Cn,k allows the characteristic

polynomial xn +r1x
n−1 + · · ·+rn. Since r1, r2, . . . , rn ∈ R were chosen to be arbitrary, Cn,k is a SAP. Hence,

C∗n,k is also a SAP.

(ii) Suppose that n and k are even and that (0, 0, 0, n) ∈ ri(C∗n,k). Then there is a B ∈ Q(C∗n,k) of

the form in equation (4.1) for some d, c1, c2, . . . , cn ∈ R \ {0} with ri(B) = (0, 0, 0, n) and characteristic

polynomial xn + r1x
n−1 + · · · + rn with ri = 0 for all odd i and ri > 0 for all even i. By Lemma 4.5 (a),

Pr,ck+1
(y) has a real root and ck+1 = dk + r2d

k−2 + · · ·+ rk. Note ck+1 > 0 since it is a polynomial in even

powers of d and ri > 0 for all even i. Thus, since n and k are even, the polynomial

Pr,ck+1
(y) = yn−k +

(−1)k+2rk+2

ck+1
yn−k−2 + · · ·+ (−1)n−2rn−2

ck+1
y2 +

rn
ck+1

is strictly positive for all y. Hence, Pr,ck+1
(y) cannot have any real roots, a contradiction. Thus, (0, 0, 0, n) 6∈

ri(C∗n,k) implying C∗n,k is not an rIAP. This also implies Cn,k is not an rIAP.

We next show Cn,k is an IAP when n and k are even. Arbitrarily fix any r1, r2, . . . , rn ∈ R with rn ≤ 0.

For every c > 0, Pr,c(0) = (−1)nrn
c ≤ 0 and Pr,c(y) → ∞ as y → ∞. Thus, for every c > 0, Pr,c(y)

has a real root by the Intermediate Value Theorem. By Lemma 4.5 (b), Cn,k can realize all characteristic

polynomials of the form xn + r1x
n−1 + · · ·+ rn with rn ≤ 0. This implies (n1, n2, n3) ∈ i(Cn,k) for all n3 ≥ 1,

n1 + n2 + n3 = n.

Now consider (n1, n2, 0) with n1 + n2 = n. Choose B ∈ Q(Cn,k) of the form in equation (4.1) with

inertia i(B) = (p, q, 1), p + q = n − 1, and characteristic polynomial xn + r1x
n−1 + · · · + rn for some

d, c1, c2, . . . , cn ∈ R>0; such a B exists since rn = 0 in this case. Consider the perturbation B̂ of B, also of

the form in equation (4.1), by letting ĉ1 = c1 + ε1, ĉn = cn + ε2 and d̂ = d, ĉi = ci for i = 2, 3, . . . , n − 1,

where ε1, ε2 ∈ R remain to be chosen. For ε1, ε2 sufficiently small, ĉ1, ĉn > 0. Let xn + r̂1x
n−1 + · · · + r̂n

denote the characteristic polynomial of B̂. Then

r̂n = (−1)n−1(ĉ2 − ĉ1)(ĉn − ĉn−1d) = (−1)n−1(c2 − c1 − ε1)(cn − cn−1d+ ε2)

= rn − (−1)n−1ε1(cn − cn−1d) + (−1)n−1ε2(c2 − c1)− (−1)n−1ε1ε2.

Since rn = 0, either c2 − c1 = 0 or cn − cn−1d = 0 (or both are zero); if c2 − c1 6= 0 take ε1 = 0 and if

cn − cn−1d 6= 0 take ε2 = 0. Then we may choose the signs of ε1 and ε2 so that r̂n > 0 (resp., r̂n < 0). For

ε1, ε2 sufficiently small of appropriate sign, r̂i−ri is sufficiently close to zero. Since the roots of a polynomial

are continuous functions of its coefficients, ε1 and ε2 may be chosen so that B̂ has inertia (p+ 1, q, 0) or has

inertia (p, q + 1, 0). This implies (n1, n2, 0) ∈ i(Cn,k) for all n1, n2 ≥ 0, n1 + n2 = n. Hence, Cn,k is an IAP,

implying C∗n,k is also an IAP.

(iii) We first show no signings of C∗n,k are a SAP when n and k are both odd. Consider a signing C of

C∗n,k and suppose it is a SAP. By applying a signature similarity, we may assume all entries below the main

diagonal of C are negative. Given B ∈ Q(C), using a positive diagonal similarity, we may assume B = Bn,k for
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some d, c1, c2, . . . , cn ∈ R of appropriate sign. Since C is a SAP, we may choose such a B with characteristic

polynomial xn + r1x
n−1 + · · · + rn satisfying rk+1 = rk+2 = · · · = rn−1 = 0 and rn = −sgn(C(2, k + 1)).

Then by Lemma 4.5 (a), Pr,ck+1
(y) = yn−k− rn

ck+1
has a real root, a contradiction since − rn

ck+1
> 0 and n− k

is even. Thus, no signings of C∗n,k are a SAP. Note this implies that Cn,k is not a SAP.

We now show Cn,k is an rIAP and that C∗n,k is a SAP when n and k are odd. Arbitrarily fix any

r1, r2, . . . , rn ∈ R with rn ≥ 0. For every c > 0, Pr,c(0) = (−1)nrn
c ≤ 0 and Pr,c(y) → ∞ as y → ∞.

Thus, for every c > 0, Pr,c(y) has a real root by the Intermediate Value Theorem. By Lemma 4.5(b), Cn,k
can realize all characteristic polynomials of the form xn + r1x

n−1 + · · · + rn with rn ≥ 0. This implies

that C∗n,k is a SAP since −Cn,k can realize all characteristic polynomials of the form xn + r1x
n−1 + · · ·+ rn

with rn ≤ 0 as n is odd. Furthermore, Cn,k can realize all characteristic polynomials which have a root

at x = 0 with multiplicity at least 1. Therefore, there exists a matrix with sign pattern Cn,k and refined

inertia (ap, an, az, 2ai) for all ap + an + az + 2ai = n and az ≥ 1. To show (ap, an, 0, 2ai) ∈ ri(Cn,k) with

ap+an+2ai = n (note ap+an is odd in this case) we apply Lemma 2.2 recursively to a realization having a full-

rank Jacobian with refined inertia (0, 0, 1, n− 1). Consider Bn,k with d = 1 and variables ci, i = 1, 2, . . . , n.

Define functions f1, f2, . . . , fn of c1, c2, . . . , cn, r1, r2, . . . , rn to be the left sides of the equations (4.2)–(4.7),

in order. Note that setting c1 = 1 and c2i = c2i−1 for i = 1, 2, . . . , n−1
2 gives the characteristic polynomial

of Bn,k to be xn +
∑(n−1)/2

i=1 (c2i+1 − c2i−1)xn−2i. This implies we can choose ci so that the characteristic

polynomial is equal to x(x2 + 1)(n−1)/2, in particular, let ĉ1 = 1, ĉ2i+1 = ĉ2i−1 +
(
(n−1)/2

i

)
and ĉ2i = ĉ2i−1

for i = 1, 2, . . . , n−1
2 . Note that ĉi > 0, i = 1, 2, . . . , n, and that ĉ1 = ĉ2, ĉn 6= ĉn−1. Then the Jacobian

matrix J = ∂(f1,fn,f2,f3...,fn−1)
∂(c1,c2,...,cn)

, after rearranging the fi as specified, has the form

J =



−1 0 0 0 · · · · · · 0

~ a 0 · · · 0 −b b

−1 0 1 0 · · · · · · 0

~ · · · ~ (−1)3 0 · · · 0
...

. . .
... ~ (−1)4

. . .
...

...
. . .

...
...

. . .
. . . 0

~ · · · ~ ~ · · · ~ (−1)n−1


,

where a = (cn−cn−1), b = (c2−c1), and ~ represents an arbitrary entry. When evaluated at (ĉ1, ĉ2, . . . , ĉn),

b = 0 and a 6= 0, and thus, J is a lower triangular matrix with nonzero determinant. Thus, there is a

realization of Cn,k with refined inertia (0, 0, 1, n− 1) that has a full-rank Jacobian. By recursive application

of Lemma 2.2, Cn,k can realize all refined inertias of the form (ap, an, 0, 2ai) with ap+an+2ai = n. Therefore,

Cn,k is an rIAP.

Lemma 4.3, Theorem 4.6 and Theorem 4.7 give the following corollary.

Corollary 4.8.

(i) For all n ≥ 5, there is an irreducible sign (resp., nonzero) pattern of order n that is a SAP which

does not allow a nonderogatory nilpotent matrix.

(ii) For all n ≥ 5, there is an irreducible sign (resp., nonzero) pattern of order n that is a SAP for which

the nilpotent-Jacobian method does not apply.

(iii) For all n ≥ 4, there is an irreducible nonzero pattern of order n that is a SAP over the complex

numbers for which the nilpotent-Jacobian method does not apply.
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(iv) For all odd n ≥ 5, there is an irreducible sign pattern of order n that is an rIAP but not a SAP.

(v) For all odd n ≥ 5, there is an irreducible nonzero pattern of order n that is a SAP with no signing

that is a SAP.

Proof. By considering Cn,n−3 and C∗n,n−3 with n ≥ 5, (i) and (ii) follow from Theorem 4.7 (i) and

Lemma 4.3. By considering C∗n,2 with n ≥ 4, (iii) follows from Theorem 4.6 and noting that the proof of

Lemma 4.3 also holds over the complex numbers. By considering Cn,3 and C∗n,3 with n ≥ 5 and n odd, (iv)

and (v) follow from Theorem 4.7 (iii).

Note that Corollary 4.8 (iii) for n = 4 follows from [18, Lemma 3.1] where it was proven that C∗4,2 is

spectrally arbitrary over the complex numbers and has no nilpotent realization that has a full-rank Jacobian.

Remark 4.9. Let d = 1 and define functions f1, . . . , fn of c1, . . . , cn, r1, . . . , rn to be the left sides of

the equations (4.2)–(4.7), in order. When the nilpotent-Jacobian method is applicable, then the Implicit

Function Theorem guarantees for (r1, . . . , rn) sufficiently close to (0, . . . , 0) there are unique continuous

functions c1, . . . , cn of r1, . . . , rn that maintain f1 = · · · = fn = 0. We remark that for the pattern Cn,k, with

n− k > 1, we do not necessarily have uniqueness for every (r1, . . . , rn) sufficiently close to (0, . . . , 0).

For example, consider Bn,k with n − k > 1, d = 1, ri = 0 for all i 6= k + 1 and rk+1 sufficiently close

to 0. Then both c1 = · · · = ck+1 = 1, ck+2 = · · · = cn = 1 + (−1)k+1rk+1 and c1 = 1, c2 = 1 + (−1)krk+1,

c3 = · · · = cn = 1 maintain f1 = · · · = fn = 0, that is, give characteristic polynomial xn + rk+1x
n−k−1.

These two solutions are obtained from the two roots of Pr,ck+1
(y) = yn−k + (−1)krk+1

ck+1
yn−k−1 for y = c2 − c1

and r = (0, . . . , 0, rk+1, 0, . . . , 0).

When n−k = 1, the polynomial Pr,c(y) is linear and has a unique solution for all c > 0. As demonstrated

in Remark 4.2, the nilpotent-Jacobian method does indeed apply to Cn,n−1 to show it is a SAP.

5. Superpatterns of T2 ⊕ T2 are spectrally arbitrary. In [5], it was shown that the reducible sign

pattern T2 ⊕T2 is spectrally arbitrary. In this section, we demonstrate that every superpattern of T2 ⊕T2 is

in fact spectrally arbitrary.

Theorem 5.1. Every superpattern of T2 ⊕ T2 is spectrally arbitrary.

Proof. If a superpattern of T2 ⊕ T2 is reducible, it is spectrally arbitrary. Let

T =

[
T2 A
B T2

]
be an irreducible superpattern of T2 ⊕ T2. Since T is irreducible, there must be at least one nonzero entry

in each of A and B. Thus, T must have at least ten nonzero entries. Hence, by Theorem 2.1, it is sufficient

to show that each superpattern of T2 ⊕ T2 with exactly ten nonzero entries, with exactly one nonzero entry

in each of A and B, allows a nilpotent matrix with a full-rank Jacobian.

Case 1. Suppose A(2, 1) 6= 0. By using a signature similarity (+,+,−,−) if necessary, we may assume

A(2, 1) < 0. Since B has exactly one nonzero entry equal to either + or −, there are eight subcases to

consider. In each case, the resulting sign pattern allows a nilpotent matrix having a full-rank Jacobian, as

illustrated with the following nilpotent realizations:


2 1 0 0

−1 −2 −3 0

0 −3 2 4

0 0 −4 −2

 ,


4 2 0 0

−4 −1 −1 0

0 1 1 2

0 0 −4 −4

 ,


4 4 0 0

−10 −8 −4 0

0 0 8 4

−1 0 −10 −4

 ,


1 1 0 0

−4 −1 −1 0

0 0 3 3

3 0 −2 −3

 ,
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
1 1 0 0

−7 −4 −1 0

− 9 0 5 1

0 0 −16 −2

 ,


1 1 0 0

−22 −4 −1 0

81 0 5 1

0 0 −1 −2

 ,


8 8 0 0

−2 −20 −8 0

0 0 40 8

0 −81 −176 −28

 ,


8 8 0 0

−32 −20 −8 0

0 0 40 8

0 9 −146 −28

 .

Case 2. Suppose A(1, 1) 6= 0. If B(1, 2) 6= 0, then T is equivalent to a spectrally arbitrary pattern

considered in Case 1 via transpose and signature similarity (+,−,+,−). Similarly, if B(2, 1) 6= 0, then −T
is equivalent to a spectrally arbitrary pattern considered in Case 1 via transpose and permutation similarity

(12)(34). By using a signature similarity (+,+,−,−) if necessary, we may assume A(1, 1) > 0. For each of

the remaining four subcases with B(1, 1) ∈ {+,−} or B(2, 2) ∈ {+,−}, the resulting sign pattern T allows

a nilpotent matrix having a full-rank Jacobian, as illustrated with the following nilpotent realizations:


2 2 2 0

−9 −6 0 0

1 0 10 2

0 0 −36 −6

 ,


1 1 1 0

−4 −2 0 0

− 1 0 3 1

0 0 −4 −2

 ,


1 2 1 0

−1 −1 0 0

0 0 2 1

0 1 −3 −2

 ,


10 10 10 0

−25 −20 0 0

0 0 20 10

0 −1 −25 −10

 .

Case 3. Suppose A(1, 2) 6= 0 (resp., A(2, 2) 6= 0). Then −T is equivalent to a spectrally arbitrary

pattern considered in Case 1 (resp., Case 2), via permutation similarity (12)(34).

Note that some of the patterns described in the proof of Theorem 5.1 are tridiagonal patterns. Tridiag-

onal spectrally arbitrary patterns of order 4 were classified in [13] and [1].

A pattern A is a minimal irreducible spectrally arbitrary pattern if A is not a proper superpattern of

any other irreducible spectrally arbitrary pattern. Not every irreducible pattern described in the proof of

Theorem 5.1 is a minimal irreducible spectrally arbitrary pattern. For example, let A be the pattern of the

nilpotent matrix

A =

 0 1 0 0

−1 −1 −1 0

0 0 2 1

0 1 −2 −1

 .
Since A has a full-rank Jacobian, A is spectrally arbitrary via the nilpotent-Jacobian method. Hence, the

pattern corresponding to the last matrix in Case 1 is not a minimal irreducible spectrally arbitrary pattern

since it is a proper superpattern of A.

6. Concluding comments. In [11, Theorem 2.5], it is shown that for n ≤ 4, a nonzero pattern of

order n is an rIAP if and only if it is a SAP. It was also observed in [11] that this does not hold for n = 5.

It is known (see e.g. [7]) that for n ≤ 3, a sign pattern is an IAP if and only if it is a SAP, and hence, a

sign pattern is an rIAP if and only if it is a SAP when n ≤ 3. In Corollary 4.8 we have shown that rIAP

does not imply SAP for each odd n ≥ 5 when working with sign patterns. It would be interesting to know

if there exists a sign pattern of order 4 that is an rIAP but not a SAP, or if all sign patterns of order 4 that

are an rIAP are also a SAP.

When the nilpotent-Jacobian method is used to show a pattern A is spectrally arbitrary, then all of the

superpatterns of A must also be spectrally arbitrary [12]. It would be interesting to know if the superpatterns

of Cn,k (resp., C∗n,k) are also spectrally arbitrary when n− k is odd (resp., n− k is odd or n, k are both odd).

An outstanding problem is to determine the minimum number of nonzero entries in an irreducible

spectrally arbitrary sign pattern. The 2n-conjecture, introduced in [3], states that an irreducible spectrally
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arbitrary sign pattern of order n requires at least 2n nonzero entries. This conjecture has been demonstrated

to be true for all patterns up to order five [10]. It is known (see e.g. [18]) that if the nilpotent-Jacobian

method is employed to determine a pattern is spectrally arbitrary, then the pattern requires at least 2n

nonzero entries. Most patterns that have been shown to be spectrally arbitrary to date have used the

nilpotent-Jacobian method, or an equivalent method (see e.g. [14]). As demonstrated in Section 4, there

exists irreducible spectrally arbitrary patterns for which the nilpotent-Jacobian method does not apply.

If there is an irreducible spectrally arbitrary sign pattern with 2n − 1 nonzero entries, the technique

used in this paper to show Cn,k is a SAP (whenever n − k is odd) is unlikely to apply to this pattern. In

our arguments, we scaled n − 1 off-diagonal entries to have magnitude 1, had a free variable d taken to be

sufficiently large to guarantee other variables are positive, and we seem to need a variable for each of the n

coefficients of xn−1, . . . , x, 1 in the characteristic polynomial so that these coefficient equations hold true for

arbitrary r1, r2, . . . , rn ∈ R. However, for nonzero patterns we only need to guarantee variables are nonzero,

and perhaps this technique may be applied to different signings of a nonzero pattern A with 2n− 1 nonzero

entries to give all possible spectra.
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