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ON JACOB’S CONSTRUCTION OF THE RATIONAL

CANONICAL FORM OF A MATRIX∗

MEINOLF GECK†

Abstract. H.G. Jacob’s elegant approach to the rational canonical, or Frobenius normal form of a linear map is pre-

sented here in pure matrix language, thereby avoiding the abstract machinery and prerequisites in the original paper. Related

algorithmic aspects and an efficient implementation in the computer algebra system GAP are also discussed.
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1. Introduction. Jacob [6] presents one of the shortest and most elegant approaches to the rational

canonical form of a matrix A over an arbitrary field K. The argument relies on the abstract dictionary

between vector spaces and their duals. It is one purpose of this note to point out that, when dressed in pure

matrix language, the argument becomes particularly simple, short and transparent, where no consideration

of any duality operation is required; see Section 3. Once this is done, a strengthening of the whole argument

presents itself quite naturally. Namely, a further prerequisite in [6] is the existence of vectors whose minimal

polynomial equals the global minimal polynomial of A. (The usual proofs of this fact require some arguing

and rely on the prime factorisation of polynomials; see, for example, [6, § 2 (i)], [1, 8.13] or [9].) We shall see

that we do not need this existence result as a prerequisite any more, but can simply deduce it as a very easy

corollary.

As pointed out in Bongartz [4] or Ballester–Bolinches et al. [3], one can also produce such vectors by an

algorithm which only relies on the usual matrix operations and the Euclidean algorithm for polynomials. In

Section 4, we revise these arguments and discuss some further algorithmic issues.

A new GAP [5] program, based on this note and incorporating all these ingredients, including Jacob’s

construction [6] and the Neunhöffer–Praeger algorithm [7] for computing minimal polynomials of matrices, is

available at the author’s webpage at https://pnp.mathematik.uni-stuttgart.de/iaz/iaz2/geckmf/; it appears

to perform well even on the large test matrices in [7].

We have tried to keep this note as elementary as possible and, hence, to make it suitable for inclusion

in a basic Linear Algebra course. (In fact, it was motivated by teaching such a course.)

2. Preliminaries. Let us fix some notation. Let Mn(K) be the vector space of n × n matrices over

K. Let Kn be the vector space of column vectors of length n. Let {e1, . . . , en} be the standard basis of Kn.

Let K[X] be the polynomial ring over K with indeterminate X.

The minimal polynomial of A ∈ Mn(K) is the unique monic polynomial f ∈ K[X] of smallest possible
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degree such that f(A) = 0; it will be denoted by µA. The minimal polynomial of a vector v ∈ Kn is the

unique monic polynomial f ∈ K[X] of smallest possible degree such that f(A)v = 0; it will be denoted

by µA,v. It is well-known and easy to see that µA,v | µA for all v ∈ Kn. Note that, if v ∈ Kn and

d := deg(µA,v) ≥ 1, then the subspace

UA,v := 〈v,Av,A2v, . . . , Ad−1v〉K ⊆ Kn

is A-invariant and has dimension d. Furthermore, since µA,v(A)v = 0, it immediately follows that µA,v(A)x =

0 for all x ∈ UA,v. For all this see, for example, [1, § 8.2].

Of particular importance is the case where dimUA,v is as large as possible. We say that v0 ∈ Kn is a

maximal vector if

deg(µA,v0) = max{deg(µA,v) | v ∈ Kn}.

(We shall see in Section 3 that µA,v0
= µA for any maximal vector v0.)

Finally, let f = a0 + a1X + · · · + an−1X
n−1 + Xn ∈ K[X] be a monic polynomial of degree n. The

corresponding companion matrix is given by

Af :=


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 ∈Mn(K).

Thus, Afen = −(a0e1 +a1e2 + · · ·+an−1en) and Afei = ei+1 for 1 ≤ i ≤ n− 1. Note that the first standard

basis vector e1 is a maximal vector for Af .

3. The basic construction according to Jacob. Let A ∈Mn(K). Take any non-zero v0 ∈ Kn and

let f := µA,v0 ∈ K[X] be the minimal polynomial of v0; we set d := deg(f) ≥ 1. We can extend the d

linearly independent vectors v0, Av0, . . . , A
d−1v0 to a basis of Kn. With respect to this new basis, the linear

operator on Kn defined by A is represented by a matrix in block triangular shape as follows

T :=

(
Af ∗
0 B

)
∈Mn(K), where B ∈Mn−d(K).

Since A and T represent the same linear operator on Kn with respect to different bases, we certainly have

µA = µT . Also note that, now, f = µT,e1 is the minimal polynomial of e1 with respect to T ; furthermore,

v0 is a maximal vector for A if and only if e1 is a maximal vector for T . The next and crucial step is to try

to find a T -invariant complementary subspace to the T -invariant subspace 〈e1, . . . , ed〉K of Kn (on which T

acts via Af ). For any x ∈ Kn, we denote by [x]d ∈ K the d-th component of x.

Proposition 3.1. (Cf. Jacob [6, § 3]) With the above notation, let

W := {x ∈ Kn | [T j−1x]d = 0 for 1 ≤ j ≤ d}.

Then W is a subspace of Kn such that Kn = 〈e1, . . . , ed〉K ⊕W . If e1 is a maximal vector for T , then W

is T -invariant.
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Proof. Each of the d equations [T j−1x]d = 0 is a homogeneous linear equation for the components

of x. Thus, W is defined by a system of d linear equations, and so dimW ≥ n − d. Next we show that

W ∩ 〈e1, . . . , ed〉K = {0}. Let x ∈ W and assume that x = s1e1 + · · · + sded, where si ∈ K. First, since

x ∈ W , we certainly have sd = [x]d = [T 0x]d = 0. Next, since Tei = ei+1 for 1 ≤ i ≤ d− 1, we obtain that

Tx = s1e2 + · · ·+ sd−1ed. If d > 1, we conclude again that sd−1 = [Tx]d = 0. Continuing in this way with

T 2x, T 3x, . . . , T d−1x, we find that si = 0 for all i, and so x = 0. Hence, Kn = 〈e1, . . . , ed〉K ⊕W .

Now assume that e1 is a maximal vector for T . Let x ∈ W ; we must show that Tx ∈ W . Now,

let 1 ≤ j ≤ d and d′ := deg(µT,x) ≥ 1; by assumption, we have d′ ≤ d. Then [T j−1(Tx)]d = [T jx]d
and T jx ∈ 〈x, Tx, . . . , T d′−1x〉K ; writing T jx as a linear combination of x, Tx, . . . , T d′−1x, we see that

[T jx]d = 0. Thus, W is T -invariant.

Corollary 3.2. Assume that e1 is a maximal vector for T . Then µT,e1 = µT .

(Consequently, we also have µA,v0 = µA if v0 is a maximal vector for A.)

Proof. Let f = µT,e1 ∈ K[X] as above, and W ⊆ Kn as in Proposition 3.1. Since 〈e1, . . . , ed〉K = UT,e1

(see Section 2), we have f(T )x = 0 for all x ∈ 〈e1, . . . , ed〉K . So it is enough to show that f(T )w = 0 for all

w ∈W . Now, given w ∈W , we set h := µT,e1+w ∈ K[X]. Then h(T )(e1 +w) = 0 and so h(T )e1 = −h(T )w.

The left-hand side lies in 〈e1, . . . , ed〉K and the right-hand side lies in W . Hence, we must have h(T )e1 = 0

and h(T )w = 0. It follows that f | h. Since e1 is a maximal vector for T , we have deg(h) ≤ deg(f). This

forces f = h and, hence, f(T )w = 0.

Assume, as above, that e1 is a maximal vector for T and let w1, . . . , wn−d be a basis of W . Then

e1, . . . , ed, w1, . . . , wn−d is a new basis of Kn and, with respect to this new basis, the linear operator on Kn

defined by T is represented by a matrix in block diagonal form as follows(
Af 0

0 A′

)
, where A′ ∈Mn−d(K).

By Corollary 3.2, we have f(A′) = 0 and so µA′ | f . Applying an inductive argument to A′, we eventually

obtain a matrix in block diagonal form

Ã =


Af1 0 · · · 0

0 Af2

. . .
...

...
. . .

. . . 0

0 · · · 0 Afr

 ,

where f = f1, f2, . . . , fr ∈ K[X] are monic polynomials such that fi+1 | fi for 1 ≤ i ≤ r − 1. Thus, the

above matrix Ã really is the rational canonical form of A. (The unicity of the rational canonical form is

easily proved as in [4, Lemma 3], by a rank consideration.)

Remark 3.3. The above procedure yields an algorithm for constructing Ã, which involves the following

computational tasks.

(1) Compute a maximal vector v ∈ Kn for A and the polynomial µA,v.

(2) Perform the base change transformation from A to T as above.

(3) Compute complementary subspaces W as in Proposition 3.1.
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In Section 4, we comment on (1). The task in (2) is standard Linear Algebra. To solve (3), note that

[T j−1x]d = etrd (T j−1x) = (etrd T
j−1)x for any x ∈ Kn and 1 ≤ j ≤ d. Hence, if F denotes the d × n matrix

with rows given by etrd T
j−1 for 1 ≤ j ≤ d, then W = {x ∈ Kn | Fx = 0}. Thus, (3) reduces to the

computation of the null space of a matrix.

Remark 3.4. Assume that A is nilpotent. Then µA,v ∈ K[X] is a power of X for any v ∈ Kn. Now

note that AXm , for any m ≥ 1, is just a Jordan block with eigenvalue 0. Hence, the above procedure yields

a particularly efficient proof for the Jordan normal form of A.

4. Maximal vectors and the minimal polynomial. Recall that a maximal vector for A ∈Mn(K)

is a vector v0 ∈ Kn such that the degree of µA,v0
∈ K[X] is as large as possible. We now briefly discuss the

algorithmic problem of finding such a vector v0. As indicated in Section 1, we will do this by avoiding any

appeal to the prime factorisation of polynomials.

Let a, b ∈ K[X] be non-zero. Then the Euclidean Algorithm yields the existence of a unique monic

greatest common divisior d = gcd(a, b) ∈ K[X], as well as polynomials r, s ∈ K[X] such that d = ra + sb.

This is all we require in the following discussion. Here is a simple illustration.

Remark 4.1. We say that non-zero a, b ∈ K[X] are coprime if gcd(a, b) = 1. Assume that this is the

case, and let r, s ∈ K[X] be such that 1 = ra+ sb.

(a) If also c ∈ K[X] is non-zero and gcd(a, c) = 1, then gcd(a, bc) = 1.

(b) For any m ∈ Z≥1, we also have gcd(a, bm) = 1.

(c) If c ∈ K[X] and a | bc, then a | c.

To prove (a), let u, v ∈ K[X] such that 1 = ua+vc. Then 1 = (ra+sb)(ua+vc) = (rua+rvc+sbu)a+(sv)bc.

To get (b), apply (a) repeatedly with c = b. For (c), note that a | rac+ sbc = c.

Lemma 4.2. Let a, b ∈ K[X] be non-zero. Set c := gcd(bdeg(a), a) ∈ K[X] and write a = ca′ with

a′ ∈ K[X]. Then gcd(a′, b) = 1.

Proof. Let d := gcd(a′, b) and assume, if possible, that deg(d) ≥ 1. Since a′ | a, we have d | a. Let i ≥ 1

be the largest integer such that di | a. Then i ≤ deg(di) ≤ deg(a). On the other hand, since d | b, we conclude

that di | bi and, hence, di | bdeg(a). Thus, we have di | gcd(bdeg(a), a) = c. But then di+1 = did | ca′ = a,

contradiction to the definition of i.

The following result, taken from [4], shows that a least common multiple of two non-zero polynomials

a, b ∈ K[X] can always be written as the product of two coprime factors, one of which divides a and the

other one divides b. In [4], a proof is sketched based on the prime factorisation of polynomials in K[X]. Our

argument avoids that completely. (A similar result appears in [3, § 2] and, implicitly, also in [9, Lemma 2].)

Lemma 4.3. (Bongartz [4, Lemma 5]) Let a, b ∈ K[X] be non-zero. Let d = gcd(a, b) and write a = dã,

b = db̃ with ã, b̃ ∈ K[X]. (Thus, dãb̃ is a least common multiple of a, b.) Set b1 := gcd(b̃deg(b), b) and

a1 := ãb′, where b′ ∈ K[X] is such that b = b′b1. Then

a1b1 = dãb̃, a1 | a, b1 | b and gcd(a1, b1) = 1.

Proof. We verify that a1, b1 have the desired properties. First, b1 | b and a1b1 = ãb′b1 = dãb̃. Next,

gcd(ã, b̃) = 1 by the definition of ã, b̃. By Lemma 4.2, we also have gcd(b′, b̃) = 1. So Remark 4.1(a) yields

that gcd(a1, b̃) = gcd(ãb′, b̃) = 1. Since a1 | dãb̃, this implies that a1 | dã = a; see Remark 4.1(c). Now
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consider gcd(a1, b1). Since gcd(a1, b̃) = 1, we also have gcd(a1, b̃
deg(b)) = 1; see Remark 4.1(b). On the other

hand, b1 = gcd(b̃deg(b), b) | b̃deg(b) and so we conclude that gcd(a1, b1) = 1.

Finally, let us recall from [3], [4] and [9] how the above result leads to a solution for the problem of finding

maximal vectors. The following two properties easily follow from the definition of the minimal polynomial

of a vector; see, e.g., [4, Lemma 6].

(1) If v ∈ Kn and µA,v = fg, where f, g ∈ K[X], then µA,f(A)v = g.

(2) If v, w ∈ Kn and gcd(µA,v, µA,w) = 1, then µA,v+w = µA,vµA,w.

We obtain the following immediate consequence. Note that the proof provides an explicit construction of

the new vector z.

Lemma 4.4. Let v, w ∈ Kn. Then there exists some z ∈ Kn such that µA,v | µA,z and µA,w | µA,z.

Proof. Let d = gcd(µA,v, µA,w) and write µA,v = df , µA,w = dg, where f, g ∈ K[X]. Applying Lemma 4.3

to µA,v, µA,w, we obtain f1, g1 ∈ K[X] such that f1 | µA,v, g1 | µA,w, gcd(f1, g1) = 1 and f1g1 = dfg. Now

set

z := f̃(A)v + g̃(A)w ∈ Kn,

where f̃ , g̃ ∈ K[X] are such that µA,v = f1f̃ and µA,w = g1g̃. Using the above two properties (1) and (2),

we find that µA,z = f1g1.

As a by-product, the following result yields yet another proof for the fact that µA is the minimal

polynomial of a maximal vector for A.

Corollary 4.5. (Bongartz [4, Lemma 6]) There is an effective algorithm (which only requires the usual

matrix operations, including Gaussian elimination, and gcd computations in K[X]) for finding a maximal

vector for A. If v0 ∈ Kn is any maximal vector for A, then µA,v0
= µA.

Proof. We describe a procedure for obtaining a maximal vector. Set z1 := 0 and consider the standard

basis {e1, . . . , en} of Kn. Applying Lemma 4.4 repeatedly, we obtain a sequence of vectors z2, . . . , zn ∈ Kn

such that µA,zi−1
| µA,zi and µA,ei | µA,zi for 2 ≤ i ≤ n. Consequently, µA,ei | µA,zn for all i and, hence,

µA,zn(A)v = 0 for all v ∈ Kn, which means that µA,zn(A) = 0. Since µA,v | µA for any v ∈ Kn, we conclude

that µA = µA,zn and that zn is a maximal vector for A.

Finally, let v0 ∈ Kn be an arbitrary maximal vector. Then we have deg(µA,v0
) = deg(µA,zn) = deg(µA).

Since also µA,v0 | µA, this forces that µA,v0 = µA.

There are some straightforward optimisations of the procedure in the above proof (for example, one

does not have to use all standard basis vectors ei but rather work along a chain of cyclic subspaces). In

any case, based on Corollary 4.5 and the construction of W in Proposition 3.1, one obtains an algorithm for

computing maximal vectors, their minimal polynomials and, finally, the rational canonical form of a matrix

which works for matrices over any field K. An implementation of that algorithm in GAP [5] can be found

on the author’s website; the main functions it provides are MaximalVectorMat and FrobeniusNormalForm.

As far as we are aware of, this is the first efficient implementation incorporating all of the above features.

Now assume, finally, that K is a finite field with q elements. Then one motivation for making the

above procedures as efficient as possible comes from applications in finite group theory; see, for example,

Bäärnhielm et al. [2, § 1]. The currently best algorithm for computing µA is probably that in Neunhöffer–

Praeger [7, Theorem 1.1]. Its efficiency analysis relies on the difficulty of computing the prime factorisation
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of polynomials, which becomes an issue if q is large (see [7, Remark 3.3]). The above approach based on the

Euclidean algorithm alone would avoid this issue; a similar remark applies to the algorithm in Steel [8].

But note that the Neunhöffer–Praeger algorithm does not output a maximal vector. Therefore, we have

also written a function NPMaximalVectorMat which first obtains µA from the existing GAP implementation

of [7] (available via the package cvec), and then determines a maximal vector. For this purpose, we follow

again the basic strategy in the proof of Corollary 4.5, but note that we can stop the iteration over the basis

vectors ei as soon as a vector zi is found such that the degree of µA,zi equals the already known degree of

µA. Applied to the — quite challenging — test matrix

A = M2 ∈M4370(K) (with K = F2, see [7, § 9.2 (b)]),

this yields µA and a maximal vector in about 10 seconds. Here, µA has degree 2097, with irreducible factors

of degrees 1, 2, 4, 6, 88, 197, 854, 934. Once there is an efficient procedure to obtain maximal vectors, the

computation of the Frobenius normal form proceeds with a simple recursion (using Jacob’s complement in

Proposition 3.1). For example, the normal form for A = M2 is obtained in less than 90 seconds; it has 2212

diagonal blocks, one of size 2097, one of size 5, one of size 3, a further 56 blocks of size 2 and, finally, 2153

blocks of size 1. Our program also returns an invertible matrix performing the base change and, thus, the

correctness of the canonical form computation can be verified independently.
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[3] A. Ballester-Bolinches, R. Esteban-Romero, and V. Pérez-Calabuig. A note on the rational canonical form of an

endomorphism of a vector space of finite dimension. Oper. Matrices, 12:823–836, 2018. Available at https:

//doi.org/10.7153/oam-2018-12-49.

[4] K. Bongartz. A direct approach to the rational normal form. Preprint, arXiv:1410.1683, 2014. Available at https:

//arxiv.org/abs/1410.1683.

[5] The GAP Group. GAP – Groups, Algorithms, and Programming. Version 4.10.0, 2018. Available at http://www.

gap-system.org.

[6] H.G. Jacob. Another proof of the rational decomposition theorem. Amer. Math. Monthly, 80:1131–1134, 1973. Available

at https://doi.org/10.1080/00029890.1973.11993470.
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