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Abstract. Linear-fractional transformations of the pairs with J-property are considered. Ex-

tremal functions from an important subclass obtained in this way are expressed as mean values of

extremal functions from another subclass of these linear-fractional transformations. Applications to

some spectral and interpolation problems are discussed.
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1. Introduction. We shall consider families of the linear-fractional transforma-
tions in the open upper half-plane C+:

ϕ(λ) = i
(
a(λ)R(λ) + b(λ)Q(λ)

)(
c(λ)R(λ) + d(λ)Q(λ)

)−1
,(1.1)

where a, b, c, d are fixed n × n matrix functions and each linear fractional transfor-
mation is induced by a pair of n × n matrix functions

(
R(λ), Q(λ)

)
. Such transfor-

mations are widely used in the interpolation and spectral theories (see, for instance,
[2, 6, 10, 12, 13] and various references therein). Introduce the analytic matrix func-
tion A and the matrix J = J∗ = J−1:

A :=
[
a b

c d

]
, J :=

[
0 In
In 0

]
,(1.2)

where In is the n×n identity matrix. As usual, we assume that A maps J-nonnegative
vectors g �= 0 into J-positive vectors, that is, the relations

g ∈ C
2n, g �= 0, g∗Jg ≥ 0(1.3)

imply

h∗Jh > 0 for h = A(λ)g, λ ∈ C+.(1.4)
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Here C is the complex plane and C+ (C−) is the upper (lower) complex half-plane.

Definition 1.1. When (1.3) implies (1.4), we say that A satisfies the plus-
condition. It is required that the pairs of meromorphic matrix functions (R, Q) are
nonsingular and have J-property, that is,

R(λ)∗R(λ) +Q(λ)∗Q(λ) > 0,
[
R(λ)∗ Q(λ)∗

]
J

[
R(λ)
Q(λ)

]
≥ 0.(1.5)

We define the class N (A) or simply N to be the class of all functions of the form
(1.1), where (R, Q) is any nonsingular pair having the J-property and where A is the
analytic matrix function of the form (1.2) satisfying the plus-condition.

It is well-known that the matrix functions v ∈ N have the property 2�v =
i(v∗ − v) > 0 for �λ > 0, i.e., they belong to the Herglotz (Nevanlinna) class. An
important subset of N is generated by the pairs

R(λ) ≡ θ, Q(λ) ≡ In, θ = θ∗ > 0.(1.6)

Another important subset of N is generated by the pairs

R(λ) ≡ θ, Q(λ) ≡ iqIn, θ = θ∗ > 0, q ∈ R,(1.7)

where R is the real axis. We shall be interested in the case where the pair
(
R(λ), Q(λ)

)
is given by either (1.6) or (1.7) for a given constant matrix θ and some scalar q and
where the analytic matrix function A is fixed. For the sequel we therefore assume
that we are given a fixed constant matrix θ = θ∗ > 0 together with a fixed analytic
matrix function A satisfying the plus-condition. We then define

v(λ) = i
(
a(λ)θ + b(λ)

)(
c(λ)θ + d(λ)

)−1
,(1.8)

v(q, λ) = i
(
a(λ)θ + iqb(λ)

)(
c(λ)θ + iqd(λ)

)−1
,(1.9)

where q = q is a scalar. We shall be interested in how v(λ) can be recovered from the
collection

{
v(q, λ) : q ∈ R

}
.

Notice, that the Fourier type transformations corresponding to v(λ) have certain
extremal properties [4, 5, 10]. In particular, the scalar products of the Fourier type
transformations in the spaces L2(τ), where τ are the weight functions in the Herglotz
representations of ϕ ∈ N , were considered in [10]. The maximal norms of the Fourier
type transformations in these spaces are achieved for the weight function generated by
v, when θ = In (Theorem 3 [10]). The functions v(q, λ) generate orthogonal spectral
functions and are also, in some sense, extremal [12]. Thus, it is of interest to study the
connection between these extremal functions. We shall show that v(λ) is the mean
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value of v(q, λ), where q changes from −∞ to ∞. This implies that the extremal
properties of v(λ) are directly connected with the extremal properties of v(q, λ).

We shall understand
∫ ∞
−∞ as the principal value integral, that is, limr→∞

∫ r

−r.

Theorem 1.2. Let the matrix function A of the coefficients of the linear frac-
tional transformation (1.1) satisfy the plus-condition, and suppose that det

(
cθ−d) �= 0

almost everywhere in C+. Then for all λ ∈ C+ the matrix function v admits repre-
sentation

v(λ) =
1
π

∫ ∞

−∞
v(q, λ)

dq

1 + q2
.(1.10)

According to (1.9), the matrix functions v(q, λ) are generated by the extremal pairs
R(λ) = θ, Q = iqIn such that R∗Q+Q∗R = 0. It is easy to see that

1
π

∫ ∞

−∞

dq

1 + q2
= 1,(1.11)

i.e., for the measure dµ = π−1(1 + q2)−1dq we have µ(R) = 1.

Theorem 1.2 is closely related to the papers [7, 8]. For the subcase n = 1 and
ad− bc = 1, a description of the functions ϕ ∈ N such that

ϕ(λ) =
∫ ∞

−∞
v(q, λ)dµ(q),

∫ ∞

−∞
dµ(q) = 1,(1.12)

where µ is a non-decreasing matrix function, was given in [7].

2. Proof of theorem.

Proof. Step 1. We shall need several inequalities. First, prove by contradiction
that

det
(
c(λ)R(λ) + d(λ)Q(λ)

) �= 0 (λ ∈ C+)(2.1)

for R and Q satisfying (1.5). In particular, it will imply that

det(cθ − izd) �= 0 (z ∈ C+ ∪ R).(2.2)

Suppose that (2.1) is not true. That is, assume that for some λ ∈ C+ and f �= 0 the
equality

(
c(λ)R(λ) + d(λ)Q(λ)

)
f = 0 is valid. It is immediate that

(
A(λ)g

)∗
JA(λ)g = 0, g :=

[
R(λ)
Q(λ)

]
f.(2.3)

On the other hand, by (1.5) we get

g∗Jg ≥ 0, g �= 0.(2.4)
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By the plus-condition the inequalities (2.4) yield
(
A(λ)g

)∗
JA(λ)g > 0, which contra-

dicts (2.3).

By the plus-condition we have also

det d(λ) �= 0 (λ ∈ C+).(2.5)

Indeed, let df = 0, f �= 0, and put g = col[0 f ], where col means column. It is
immediate, that for this g the equality g∗Jg = 0 is valid, and so the inequality (1.4)
holds. On the other hand, we have h∗Jh = f∗(d∗b+ b∗d)f = 0. Thus, (2.5) is proved
by contradiction.

Step 2. Let us consider λ ∈ C+ such that

det(c(λ)θ − d(λ)) �= 0.(2.6)

Now, omitting the variable λ in the notations, put

u := −id−1cθ, X1 := (ibu− aθ)(In + u2)−1d−1,

X2 := −iX1d, X3 := (iaθ −X2)(idu)−1.(2.7)

The matrix functions u and Xk (k = 1, 2, 3) are well-defined. Indeed, the invertibility
of d follows from (2.5) and the invertibility of In + u2 follows from the inequalities
det(u ± iIn) �= 0. Here, the inequality det(u + iIn) �= 0 is true by the assumption
(2.6). The relation det(u − iIn) �= 0 is a particular case of (2.2). In view of (2.2)
we get also that σ(u) ⊂ C−, where σ is spectrum. Thus qIn + u is invertible for all
q ∈ C− ∪ R.

Next let us show that

v(q, λ)
1 + q2

=
qX1(λ) +X3(λ)

1 + q2
+X2(λ)

(
qIn + u(λ)

)−1(
id(λ)

)−1
.(2.8)

Indeed, taking into account (1.9) and the definition of u in (2.7) we obtain

v(q, λ)
(
id(λ)

)(
qIn + u(λ)

)
= v(q, λ)

(
iqd(λ) + c(λ)θ

)
= i

(
a(λ)θ + iqb(λ)

)
.(2.9)

On the other hand, for the right-hand side

Z(λ) =
qX1(λ) +X3(λ)

1 + q2
+X2(λ)

(
qIn + u(λ)

)−1(
id(λ)

)−1(2.10)

of (2.8), the definitions of Xk in (2.7) imply

i(1 + q2)Zd
(
qIn + u

)
= (1 + q2)X2 + i(qX1 +X3)d(qIn + u) = q2(X2 + iX1d)
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+iq(X1du+X3d) +X2 + iX3du = iq
(
X1du+ (aθ +X1d)u−1

)
+ iaθ

= iq
(
X1d(In + u2)u−1 + aθu−1

)
+ iaθ = −qb+ iaθ.(2.11)

From (2.9)-(2.11) formula (2.8) is immediate.

As σ(u) ⊂ C−, it is evident that for the principal value integral we get

1
i

∫ ∞

−∞
X2

(
qIn + u

)−1
d−1dq

=
1
i
X2

(
lim

r→∞

∫ r

0

(
(qIn + u)−1 − (qIn − u)−1

)
dq

)
d−1

=
1
2i
X2

(
lim

r→∞

∫ r

−r

(
(qIn + u)−1 − (qIn − u)−1

)
dq

)
d−1 = πX2d

−1.(2.12)

It is immediate also that ∫ ∞

−∞

qdq

1 + q2
X1 = 0,(2.13)

and ∫ ∞

−∞

dq

1 + q2
X3 = πX3.(2.14)

By (2.8) and (2.12)-(2.14) we have

1
π

∫ ∞

−∞
v(q, λ)

dq

1 + q2
= X2d

−1 +X3.(2.15)

From (2.7) it follows that

X2 = (bu+ iaθ)(In + u2)−1,

X3 = aθu−1d−1 + i(bu+ iaθ)(In + u2)−1u−1d−1.(2.16)

Hence, using (2.16) we derive

X2d
−1 +X3 =

(
bu2 + iaθu+ aθ(In + u2) + ibu− aθ)(In + u2)−1u−1d−1

= (aθ + b)(u2 + iu)(In + u2)−1u−1d−1 = i(aθ + b)(d+ idu)−1.(2.17)

From the definitions of u and v and formula (2.17) we obtain

X2d
−1 +X3 = i(aθ + b)(cθ + d)−1 = v.(2.18)

Formulas (2.15) and (2.18) yield (1.10).

By the theorem’s conditions, assumption (2.6) is true everywhere in C+, exclud-
ing, perhaps, isolated points. Let λ0 be such an isolated point. Then, (1.10) is valid
in some neighborhood O(λ0) \ λ0. According to (2.1) and (2.5), the functions v(q, λ)
are bounded, uniformly in q and in λ, in some neighborhood O(λ0) ⊂ C+. Now, it is
immediate that (1.10) at λ = λ0 holds as the limit of equalities (1.10), where λ tends
to λ0. Thus, (1.10) holds everywhere in C+.
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3. Examples.

3.1. Canonical system. Consider the well-known canonical system

dW (x, λ)/dx = iλJH(x)W (x, λ), 0 ≤ x ≤ l <∞, W (0, λ) = Im,(3.1)

where H(x) ≥ 0 and m = 2n. Its Weyl functions are defined [13] by (1.1), where

A(x, λ) :=W (x, λ)∗, A(λ) := A(l, λ).(3.2)

By (3.1) we have

l∫
0

A(x, λ)H(x)A(x, z)∗dx = i
A(λ)JA(z)∗ − J

λ− z .(3.3)

The “positivity type” condition: ∫ l

0

H(x)dx > 0(3.4)

is often assumed [9] to be true. Then, according to [9], p.249 we get∫ l

0

A(x, λ)H(x)A(x, λ)∗dx =
∫ l

0

W (x, λ)∗H(x)W (x, λ)dx > 0.(3.5)

From (3.3) and (3.5) it follows that A(λ)∗JA(λ) > J for λ ∈ C+, and therefore the
plus-condition is satisfied.

According to (3.1) we get A(x, 0) = Im, and so, by partitioning (1.2), we have
det

(
c(0)θ − d(0)

)
= det(−In) �= 0. Thus, the inequality det

(
c(λ)θ − d(λ)) �= 0 holds

almost everywhere. So, under the “positivity type” condition (3.4) the conditions of
Theorem 1.2 are fulfilled, and Weyl functions of the canonical systems satisfy (1.10).

Canonical systems include Dirac type systems, matrix Schrödinger equations,
and matrix string equations [11, 13]. For the scalar string equation a non-orthogonal
spectral function is represented in [3] as the convex continuous linear combination
(with respect to the measure dµ = π−1(1 + q2)−1dq from (1.10)) of the orthogonal
spectral functions.

3.2. Nevanlinna matrices. The 2 × 2 matrix function

N(λ) =
[
A(λ) B(λ)
C(λ) D(λ)

]

is called Nevanlinna matrix [1] if its entries are entire transcendental functions such
that AD −BC ≡ 1 and for each q = q the function

φ(q, λ) := −A(λ)q −B(λ)
C(λ)q −D(λ)

(3.6)
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satisfies the inequalities

�φ(q, λ)/�λ > 0 (�λ �= 0).(3.7)

For the Nevanlinna matrices corresponding to the moment problem treated in [1], the
functions φ admit representations

φ(q, λ) =
∫ ∞

−∞

dσ(q, x)
x− λ ,(3.8)

where σ(q, x) are bounded functions, which do not decrease with respect to x. The
functions σ constructed in this way are calledN -extremal in [1]. There is a simple con-
nection between the functions φ(q, λ) and the functions v(q, λ), which are considered
in Theorem 1.2. Namely, putting

A(λ) =
[
i 0
0 1

]
N(λ)

[ −i 0
0 1

]
J =

[
iB(λ) A(λ)
D(λ) −iC(λ)

]
(3.9)

and putting θ = 1 in (1.9), we get φ(q, λ) = v(−q, λ).
To show that A satisfies the plus-condition, consider functions φ(τ, λ) (�τ ≥ 0)

given by the formula (3.6) after we substitute τ instead of q. When λ ∈ C+ and
�τ ≥ 0 or τ = ∞, one can show that the inequality (3.7) implies C(λ)τ −D(λ) �= 0,
C(λ) �= 0 and �φ(τ, λ) > 0. In other words, we have

[τ − 1]N(λ)∗J̃N(λ)
[
τ

−1

]
= i|C(λ)τ −D(λ)|2(φ(τ, λ) − φ(τ, λ)) > 0,(3.10)

[1 0]N(λ)∗J̃N(λ)
[

1
0

]
> 0, J̃ :=

[
0 −i
i 0

]
.(3.11)

By (3.10) and (3.11) the inequalities g∗J̃g ≥ 0, g �= 0 imply g∗N(λ)∗J̃N(λ)g > 0 for
λ ∈ C+. So, in view of (3.9) it follows that A satisfies the plus-condition, and we
can apply Theorem 1.2. Therefore, the mean of the extremal functions φ(q, λ) equals
v(λ).
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