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INJECTIVITY OF LINEAR COMBINATIONS IN B(H)∗

MARKO KOSTADINOV†

Abstract. The aim of this paper is to provide sufficient and necessary conditions under which the linear combination

αA + βB, for given operators A,B ∈ B(H) and α, β ∈ C \ {0}, is injective. Using these results, necessary and sufficient

conditions for left(right) invertibility are given. Some special cases will be studied as well.
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1. Notations, motivations, and preliminaries. IfM is a closed subspace of a Hilbert space H, we

use the symbol PM to denote the orthogonal projection onto M. For a given operator A ∈ B(H,K), the

symbols N (A) and R(A) denote the null space and the range of A, respectively. For a projection PM,N :

H → H onto M parallel to N , we introduce the operator P ′M,N : H →M defined as P ′M,Nx = PM,Nx, for

x ∈ H (as all spaces we use in this paper are separable Hilbert spaces, there is no danger of confusing this

notation with the adjoint operator).

If A ∈ B(K,H) andM is a subspace of K, then the restriction of the operator A to the subspaceM will

be denoted by A|M. The inverse image of a set S ⊆ H will be denoted by A−1(S).

The motivation behind this paper are the papers [15] and [11] where the invertibility of the linear

combination αA+βB was considered in the case when A,B ∈ B(H) are regular operators and α, β ∈ C\{0},
and also some recently published papers (see [17, 12, 18, 19, 22, 20]) which considered the independence

of the invertibility of the linear combination αA + βB in the cases when A,B ∈ B(H) are projectors or

orthogonal projectors (see [12, 17, 18, 19, 20, 22] for results concerning specifically projections and orthogonal

projections). The aim of this paper is to investigate injectivity of the linear combination αA + βB where

A,B ∈ B(H) are given operators and α, β ∈ C \ {0}. Expanding on that analysis, sufficient and necessary

conditions for left invertibility (right invertibility) will be given and some special cases will be considered.

One of the basic ideas of this paper is to utilize results concerning the injectivity and left (right) invert-

ibility of the operator matrix

MC =

[
A C

0 B

]
: X1 ⊕ Y1 → X2 ⊕ Y2,

where Xi,Yi, i = 1, 2 are Banach (Hilbert) spaces and A ∈ B(X1,X1), B ∈ B(Y1,Y2), C ∈ B(Y1,X2), in

order to obtain analogous results for the linear combination αA + βB. Completions of operator matrices

have been studied extensively (for some examples, see [1, 4, 5, 6, 7, 8, 9, 10]) and have found applications;

some examples include [2, 3].
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To this end, we will use the following Theorems.

Theorem 1.1 ([1]). Let A ∈ B(X ), B ∈ B(Y), and C ∈ B(Y,X ) be given operators, where X and

Y are Banach spaces. The operator matrix MC =

[
A C

0 B

]
is injective if and only if A is injective and

R(C|N (B)) ∩R(A) = {0}.

Remark 1.2. Analysing the proof of Theorem 1.1 given in [1] we see that without any modification, it

holds for the operator matrices of the type:

MC =

[
A C

0 B

]
: X1 ⊕ Y1 → X2 ⊕ Y2,

where Xi,Yi, i = 1, 2 are Banach spaces, that is:

Theorem 1.3. Let A ∈ B(X1,X2), B ∈ B(Y1,Y2), and C ∈ B(Y1,X2) be given operators, where Xi,Yi,

i = 1, 2 are Banach spaces. The operator matrix MC =

[
A C

0 B

]
is injective if and only if A is injective and

R(C|N (B)) ∩R(A) = {0}.

Theorem 1.4 ([1]). Let A ∈ B(X ), B ∈ B(Y), and C ∈ B(Y,X ) be given operators. The operator

matrix MC is left invertible if and only if:

(i) A is left invertible;

(ii)

[
(I − PR(A))C

B

]
is left invertible.

Remark 1.5. The notation PR(A) denotes an arbitrary, but fixed, oblique projection onto R(A). Simi-

larly, bellow we will use the notation PN (B) for an arbitrary, but fixed oblique projection onto N (B).

Theorem 1.6 ([1]). Let A ∈ B(X ), B ∈ B(Y) and C ∈ B(Y,X ) be given operators. The operator matrix

MC is right invertible if and only if:

(i) B is right invertible;

(ii)
[
A CPN (B)

]
is right invertible.

Remark 1.7. As noted in the paper, in the case of Hilbert spaces H,K some of these conditions have the

following form. Condition (ii) from Theorem 1.4 is equivalent to that
[
C∗PR(A)⊥ B∗

]
is right invertible,

that is

R(C∗PR(A)⊥) +R(B∗) = K,

and condition (ii) from Theorem 1.6 is equivalent to

R(A) +R(CPN (B)) = H.

Furthermore, as in the case of Theorem 1.1, Theorems 1.4 and 1.6 can be reformulated in the case when

A ∈ B(H1,H2), B ∈ B(K1,K2) and C ∈ B(K1,H2), where Hi,Ki, i = 1, 2 are Hilbert spaces.

2. Injectivity.

Theorem 2.1. Let A,B ∈ B(H) be given operators and α, β ∈ C \ {0}. Then the operator αA+ βB is

injective if and only if the following conditions hold:
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(i) N (A) ∩N (B) = {0} ;
(ii) N (αA+ βB) ∩N (B)⊥ = {0};
(ii) R((αA+ βB)|T ) ∩R(APN (B)) = {0},

where T = B−1(R(A)) ∩N (B)⊥.

Proof. First, observe that the operator A and B have the following representations:

(2.1) A =

[
A1 A2

0 0

]
:

[
N (B)

N (B)⊥

]
→

[
R(A)

R(A)⊥

]
,

(2.2) B =

[
0 B1

0 B2

]
:

[
N (B)

N (B)⊥

]
→

[
R(A)

R(A)⊥

]
,

where H = N (B)⊕N (B)⊥ = R(A)⊕R(A)⊥ are decompositions of the space H. So, the linear combinations

αA+ βB is injective if and only if the operator matrix

(2.3)

[
αA1 βB1 + αA2

0 βB2

]
:

[
N (B)

N (B)⊥

]
→

[
R(A)

R(A)⊥

]
,

is injective. According to Theorem 1.3, the operator matrix in (2.3) is injective if and only if the following

holds:

(i) A1 is injective;

(ii) (αA2 + βB1)|N (B2) is injective and R((αA1 + βB2)|N (B2)) ∩R(A1) = {0}.

Obviously, (i) holds if and only if N (A) ∩ N (B) = {0}. Now we examine the conditions in (ii). Since

αA2 +βB1 = P ′
R(A)

(αA+βB)|N (B)⊥ , and T ′ = N (B2) ⊆ N (B)⊥, we have that (αA2 +βB1)|T ′ is injective

if and only if P ′
R(A)

(αA+βB)|T ′ is injective and its range intersected withR(A1) = R(A|N (B)) = R(APN (B))

contains only the null vector. Since T ′ = B−1(R(A)) ∩ N (B)⊥ we have that the second condition in (ii) is

equivalent to R((αA+ βB)|T ′)∩R(APN (B)) = {0} (here we utilize the fact that R((αA+ βB)|T ′) ⊆ R(A)

implies that P ′R(A)(αA + βB)T ′ = (αA + βB)T ′). Again, since R((αA + βB)|T ′) ⊆ R(A), we have that

PR(A)
(αA+βB)|T ′ is injective if and only ifN (PR(A)(αA+βB)|N (B)⊥)∩T ′ = {0}, which is clearly equivalent

to N (αA+βB)∩N (B)⊥ = {0}. To complete the proof let us show thatR((αA+βB)|T ′)∩R(APN (B)) = {0}
if and only of R((αA + βB)|T ) ∩ R(APN (B)) = {0} where T = B−1(R(A)) ∩ N (B)⊥. We only need to

consider the case R(A) 6= R(A). We can write T ′ as T ′ = T ∪ T1 where

T1 = B−1(R(A) \ R(A)) ∩N (B)⊥.

Notice that R((αA + βB)|T1) ∩ R(APN (B)) = {0} always holds. Indeed, if we assumed that there exists a

non-zero vector in R((αA+βB)|T1)∩R(APN (B)), there would exist vectors x ∈ T1 and y ∈ N(B) such that

αAx+ βBx = Ay. But then we would get

βBx = A(αx+ y),

which implies that x ∈ T , which is a contradiction since T ∩ T1 = ∅. Because

R((αA+ βB)|T ′) = R((αA+ βB)|T ) ∪R((αA+ βB)|T1),

we see from the previous conclusion that R((αA + βB)|T ) ∩ R(APN (B)) = {0} if and only if R((αA +

βB)|T ′) ∩R(APN (B)) = {0}. This completes the proof.
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It is important to note that due to the nature of Theorem 1.3 we do not need to utilize orthogonal

decompositions of H and we can use

H = N (B)⊕N = R(A)⊕M,

where M and N are closed subspaces complementary to R(A) and N (B), respectively. So condition (ii)

from Theorem 2.1 becomes: N (αA+ βB) ∩N = {0}; and the subspace T is now B−1(R(A)) ∩N .

Before we continue our investigations, in the following elementary examples, we will see that the injec-

tivity of a linear combination of operators can depend on choice of constants, which will serve as motivation

to find special cases where injectivity of a linear combination of operators is independent on the choice of

the constants.

Example 1: Let A,B ∈ B(l2) be operators defined as block diagonal operators whose block-diagonal entries

are the matrices

MA =

 1
2

1
2 0

1
2

1
2 0

0 0 1
2

 , MB =

− 1
2

1
2 0

1
2 − 1

2 0

0 0 1
2

 ,
for A, and B, respectively. It is easy to see that A+B is injective, whereas A−B is not. If we analyze this

situation using Theorem 2.1 (and its conditions) we see that:

N (A) = {(xn)n∈N | x3k−1 = −x3k−2, x3k = 0, k ∈ N},

N (B) = {(xn)n∈N | x3k−1 = x3k−2, x3k = 0, k ∈ N},

N (B)⊥ = {(xn)n∈N | x3k−1 = −x3k−2, k ∈ N},

R(A) = {(xn)n∈N | x3k−1 = x3k−2, k ∈ N},

T = {0}.

We see that N (A) ∩ N (B) = {0}, and since T = {0}, condition (i) from Theorem 2.1 is satisfied, and

condition (iii) trivially holds. It is easy to check that A+ B is injective on N (B)⊥, whereas A− B is not,

so by Theorem 2.1 we have that A+B is injective, and A−B is not.

Example 2: Let A,B ∈ B(l2) be block-diagonal operators whose diagonal blocks are the matrices

NA =

0 1 0

0 0 0

1 1 0

 , NB =

0 0 0

0 0 1

1 0 0

 .
It is easy to check that A+B is injective, but A−B is not. Furthermore, since N3

A = N3
B = 0 we see that

A and B are nilpotent operators.

This example shows that even elementary classes of operators do not have the property that the injec-

tivity of the linear combination is independent of the choice of scalars.

Some special cases in which the injectivity of the linear combination αA + βB is independent of the

choice of scalars α, β ∈ C \ {0} are investigated now:

Theorem 2.2. Let A,B ∈ B(H) be given operators such that R(A) ∩ R(B) = {0}, and α, β ∈ C \ {0}.
Then αA+ βB is injective of and only if N (A) ∩N (B) = {0}.
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Proof. From the assumption that R(A)∩R(B) = {0} we have that T = {0} so conditions (ii) and (iii)

from Theorem 2.1 trivially hold. So, we can conclude that the linear combination αA + βB is injective if

and only if N (A) ∩N (B) = {0}.

Similarly, we get

Theorem 2.3. Let A,B ∈ B(H) be given operators such that R(A) = R(APN (B)), and α, β ∈ C \ {0}.
Then αA+ βB is injective if and only if N (A) ∩N (B) = R(A) ∩R(B) = {0}.

Proof. Assume that the linear combination αA+ βB is injective. It is evident that in that case N (A)∩
N (B) = {0}. It follows that the conditions from Theorem 2.1 hold. Assume that R(A)∩R(B) 6= {0}. This

means that there exists a non-zero z ∈ H such that z = Ax = By, where x ∈ N (B) (here we used the fact

that R(A) = R(APN (B))) and y ∈ N (B)⊥ (this also means that y ∈ T = B−1(R(A))∩N (B)⊥). Now, since

αA+ βB is injective we have

(αA+ βB)(
1

α
x− 1

β
y) = −α

β
Ay 6= 0.

Using the condition R(A) = R(APN (B)), exists a w ∈ N (B) such that α
βAy = Aw. It follows that :

0 6= (αA+ βB)(
1

β
y) = A(w + x),

where we again use the fact that αA + βB is injective, and that N (A) ∩ N (B) = {0}. This implies that

R((αA+βB)|T )∩R(APN (B)) 6= {0} which is in contradiction with condition (iii) from Theorem 2.1. Hence,

R(A) ∩R(B) = {0}.

Conversely, if N (A) ∩ N (B) = {0} and R(A) ∩ R(B) = {0} conditions (i) and (iii) of Theorem 2.1 are

satisfied. Assume that condition (ii) does not hold. That means that there exists a nonzero vector x ∈ N (B)⊥

such that Bx = A(−αβx). This is in contradictions with R(A)∩R(B) = {0}, so condition (ii) is satisfied as

well.

From Theorems 2.2 and 2.3, we get the following corollary:

Corollary 2.4. Let A,B ∈ B(H) be given operators and α, β ∈ C \ {0}. If one of the conditions,

R(A)∩R(B) = {0} or R(A) = R(APN (B)) holds, then the injectivity of the linear combination αA+ βB is

independent of the choice of the scalars α, β ∈ C \ {0}.

Injectivity of linear combinations of projections is investigated next (in a manner which will cover both cases

of sums and differences).

Theorem 2.5. Let P,Q ∈ B(H) be given projections and α, β ∈ C \ {0}. Then the operator αP + βQ is

injective if and only if: {
N (P ) ∩N (Q) = R(Q) ∩R(P (I −Q)) = {0}, α+ β 6= 0;

N (P ) ∩N (Q) = R(P ) ∩R(Q) = {0}, α+ β = 0.

Proof. First let us note that since H is the direct sum N (Q)⊕R(Q) and N (P )⊕R(P ). We have that

the linear combination αP + βQ has the following representation in this case:

(2.4) αP + βQ =

[
αP1 αP2 + βQ1

0 βQ2

]
:

[
N (Q)

R(Q)

]
→
[
R(P )

N (P )

]
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 359-369, April 2021.

M. Kostadinov 364

Applying Theorem 1.3 to (2.4) αP + βQ is injective if and only if P1 : N (Q) → R(P ) is injective and

(αP2 +βQ1)|N (Q2) is injective with range disjoint from R(P1). P1 is injective if and only if N (P )∩N (Q) =

{0}. We have N (Q2) = R(P )∩R(Q). So for x ∈ R(P )∩R(Q), we have (αP2 +βQ1)x = (α+β)x. Because

of this, we continue this proof analyzing two separate cases, α+ β 6= 0 and α+ β = 0.

If α+β 6= 0, then (αP2+βQ1)|N (Q2) is obviously injective and R((αP2+βQ1)|N (Q2)) = R(P )∩R(Q) so

the second condition of Theorem 1.3 is equivalent to {0} = R(P )∩R(Q)∩R(P |N (Q)) = R(Q)∩R(P (I−Q)).

In conclusion, αP+βQ, where α+β 6= 0 will be injective if and only if N (P )∩N (Q) = R(Q)∩R(P (I−Q)) =

{0}.

If α + β = 0, we have that for each x ∈ R(P ) ∩ R(Q) (αP2 + βQ1)x = 0, so Theorem 1.3 will hold if

and only if R(P ) ∩R(Q) = {0}.

Conditions for injectivity in the case of orthogonal projections are:

Theorem 2.6. Let P,Q ∈ B(H) be given orthogonal projections and α, β ∈ C \ {0}. Then the operator

αP + βQ is injective if and only if{
N (P ) ∩N (Q) = {0}, α+ β 6= 0;

N (P ) ∩N (Q) = R(P ) ∩R(Q) = {0}, α+ β = 0.

Proof. This theorem immediately follows from Theorem 2.5 and from

R(Q) ∩R(P (I −Q)) = R(Q) ∩N ((I −Q)P )⊥ =

= R(Q) ∩ (N (P )⊕ (R(P ) ∩R(Q)))⊥ =

= R(Q) ∩N(P )⊥ ∩ (R(P ) ∩R(Q))⊥ =

= R(Q) ∩R(P ) ∩ (R(P ) ∩R(Q))⊥ = {0},

where we simply utilize the fact that P and Q are orthogonal projections.

3. Left (right) invertibility. Using Theorems 1.4 and 1.6, we now give necessary and sufficient con-

ditions for left (right) invertibility of the linear combination αA+ βB, where α, β ∈ C \ {0}.

Theorem 3.1. Let A,B ∈ B(H) be given operators and α, β ∈ C \ {0}. Then αA+ βB is left invertible

if and only if the following conditions hold:

(i) N (A) ∩N (B) = {0};
(ii) R(APN (B)) is closed;

(iii) N (B)⊥ = R(B∗PR(A)⊥) +R((αA+ βB)∗|S);

where S = R(APN (B))
⊥ ∩R(A).

Proof. Since H = R(A)⊕R(A)⊥ = N (B)⊕N (B)⊥, αA+ βB has the following representation

(3.5)

[
αA1 βB1 + αA2

0 βB2

]
:

[
N (B)

N (B)⊥

]
→

[
R(A)

R(A)⊥

]
.

Using Theorem 1.4, we see that αA+ βB is left invertible if and only if:
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(i) A1 is left invertible,

(ii) R((αA2 + βB1)∗PS) +R(B∗2) = N (B)⊥,

where S = R(APN (B))
⊥ ∩R(A).

Condition (i) is equivalent with N (A) ∩ N (B) = {0} and R(APN (B)) is closed. As S is a subspace of

R(A) and R(A1)⊥ = N (A∗1), condition (ii) is equivalent

(3.6) R((αA+ βB)∗|S) +R(B∗PR(A)⊥) = N (B)⊥,

which completes the proof.

Remark 3.2. Condition (iii) can be reformulated as:[
PS(αA+ βB)|N (B)⊥

PR(A)⊥B

]
: N (B)⊥ →

[
R(A)

R(A)⊥

]
is left invertible.

Similarly, we can give necessary and sufficient conditions for right invertibility:

Theorem 3.3. Let A,B ∈ B(H) be given operators and α, β ∈ C\{0}. Then αA+βB is right invertible

if and only if the following conditions hold:

(i) R(A) +R(B) = H;
(ii) R(A) = R(APN (B)) +R((αA+ βB)|T ).

where T = B−1(R(A)) ∩N (B)⊥.

Proof. First, let us assume that αA+ βB is right invertible, which is equivalent to the operator matrix

given by (3.5) being right invertible. Using Theorem 1.6, we see that the following holds:

(i) B2 is right invertible,

(ii) R(A1) +R((αA2 + βB1)|T ) = R(A),

where T = N (B2) = B−1(R(A)) ∩ N (B)⊥. The first condition is equivalent to R(A)⊥ ⊆ R(A) + R(B),

which in turn implies that H = R(A) +R(B). Condition (ii) is equivalent to

R(APN (B)) +R((αA+ βB)|T ) = R(A).

This equality together with R(A) +R(B) = H implies that

H = R(A) +R(B) = R(APN (B)) +R((αA+ βB)|T ) +R(B) ⊆
⊆ R(APN (B)) +R(A|T ) +R(B|T ) +R(B) ⊆ R(A) +R(B) ⊆ H.

We have thus proven that if αA+ βB is right invertible conditions (i) and (ii) hold.

Conversely, it is easy to see that if conditions (i) and (ii) hold, the operator matrix given by (3.5) satisfies

the conditions of Theorem 1.6, so αA+ βB is right invertible as well.

Remark 3.4. It is not hard to prove that this theorem holds even if we take any arbitrary decomposition

H = R(A)⊕M = N ⊕N (B),

where M and N are closed subspaces of H complementary to R(A) and N (B).
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In conjunction with Theorems 3.1 and 3.3, we can examine some special cases where left (right) inver-

itiblity of the linear combination is independent of the choice of scalars α, β ∈ C \ {0}.

Theorem 3.5. Let A,B ∈ B(H) be given operators such that R(A) = R(APN (B)) and α, β ∈ C \ {0}.
Then αA+ βB is left invertible if and only if the following conditions hold:

(i) N (A) ∩N (B) = {0};
(ii) R(A) is closed;

(iii) R(PR(A)⊥B) is closed;

(iv) R(B) ∩R(A) = {0}.

Proof. Let us first note that since R(A) = R(APN (B)), the subspace S = R(APN (B))
⊥ ∩ R(A) = {0}.

First, assume that αA + βB is left invertible, this means that the following conditions from Theorem 3.1

hold, that is:

1. N (A) ∩N (B) = {0},
2. R(APN (B)) is closed.

3. N (B)⊥ = R(B∗PR(A)⊥) +R((αA+ βB)∗|S).

It is clear that Condition 2. is equivalent to R(A) being closed. Since S = {0}, Condition 3. becomes

N (B)⊥ = R(B∗PR(A)⊥),

which is equivalent to B∗2 being right invertible which in turn implies that B2 is left invertible, which means

that R(B2) = R(PR(A)⊥B) is closed and T = {0}. The equation T = {0} implies that R(A) ∩R(B) = {0}
(here we already used the fact that R(A) is closed).

Conversely, if conditions (i) − (iv) are satisfied we easily see that the conditions of Theorem 3.1 are

satisfied as well.

Theorem 3.6. Let A,B ∈ B(H) be given operators such that R(A) = R(APN (B)) and α, β ∈ C \ {0}.
Then αA+ βB is right invertible if and only if the following conditions hold:

(i) R(A) +R(B) = H;
(ii) R(A) = R(A) +R(B|T ),

where T = N (B2) = B−1(R(A)) ∩N (B)⊥.

Proof. If αA+ βB is right invertible, the conditions of Theorem 3.3 are satisfied. The second condition

of Theorem 3.3 in this setting is

R(A) = R(A) +R((αA+ βB)|T ).

It follows now that

R(A) ⊆ R(A) +R(A|T ) +R(B|T ) ⊆ R(A) +R(B|T ) ⊆ R(A),

where we used that R(B|T ) ⊆ R(A). So, if αA + βB is right invertible, conditions (i) and (ii) hold. It is

easily verified that if conditions (i) and (ii) hold, the conditions of Theorem 3.3 are satisfied as well.

Theorem 3.7. Let A,B ∈ B(H) be given operators such that R(A) ∩ R(B) = {0} and α, β ∈ C \ {0}.
Then αA+ βB is right invertible if and only if the following conditions hold:
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(i) R(A)⊕R(B) = H;
(ii) R(APN (B)) = R(A).

Proof. The theorem follows from the fact that in this setting we have that T = B−1(R(A))∩N (B)⊥ =

{0}.

Now conditions for left (right) invertibility are given for the case of orthogonal projections:

Theorem 3.8. Let P,Q ∈ B(H) be given orthogonal projections and α, β ∈ C \ {0}. Then αP + βQ is

left invertible if and only if {
R(P ) +R(Q) = H, α+ β 6= 0;

R(P )⊕R(Q) = H, α+ β = 0.

Proof. In this case, the space H has the following natural orthogonal decompositions H = R(P ) ⊕
N (P ) = N (Q)⊕R(Q). Let us note that in this setting T = R(P ) ∩R(Q) and

S = R(P (I −Q))⊥ ∩R(P ) = N ((I −Q)P ) ∩R(P ) = R(P ) ∩R(Q) = T .

So R((αP + βQ)|T ) = R((αP + βQ)∗|S) =

{
R(P ) ∩R(Q) , α 6= −β
{0} , α = −β.

Using Theorem 3.1 the linear com-

bination αP + βQ, where α, β ∈ C, is left invertible if and only if

(i) N (P ) ∩N (Q) = {0},
(ii) R(P (I −Q)) is closed,

(iii) R(Q) = R(Q(I − P )) + (R(P ) ∩R(Q)) when α 6= −β and R(Q) = R(Q(I − P ) when α = −β.

To be more precise condition (iii) in the case when α 6= −β can be rewritten as R(Q) = R(Q(I − P )) ⊕
(R(P ) ∩R(Q)) since R(Q(I − P )) ∩R(P ) = {0} (which we saw in the proof of Theorem 2.6).

Let us first assume that αP + βQ is left inverible, that is the aforementioned conditions hold.

Condition (i) implies that R(P ) +R(Q) = H. Condition (ii) is equivalent to R((I−Q)P ) being closed,

and using Corollary 2.5 from [16] we have that this is equivalent to R(Q) + R(P ) being closed. Thus, if

αP + βQ is left invertible and α 6= −β, we have that R(P ) +R(Q) = H.

Assume on the contrary, R(P ) +R(Q) = H and α 6= −β. Let us prove that conditions (i) − (iii) are

satisfied, which means that αP + βQ is left invertible. R(P ) +R(Q) is closed and that (as already noted)

implies that R(P (I − Q)) is closed, so condition (ii) holds. Furthermore, R(P ) +R(Q) = H implies that

N (P ) ∩ N (Q) = {0} so the condition is satisfied as well. It remains to prove that condition (iii) holds as

well. We have that the operator Q2 (from the decomposition given by (3.5)) is right invertible, so Q∗2 is left

invertible. Since R(Q∗2) = R(Q(I−P )), after applying Corollary 2.5 from [16], we have that R(Q∗2) is closed

and that

R(Q) = R(Q∗2)⊕ (R(Q∗2)⊥ ∩R(Q)).

Since R(Q∗2)⊥ ∩R(Q) = N (Q2) = T we have that

R(Q) = R(Q(I − P ))⊕ T = R(Q(I − P ))⊕ (R(P ) ∩R(Q)),

so condition (iii) holds as well.
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Now, assume that R(P ) ⊕ R(Q) = H and α = −β. We now know that Conditions (i) and (ii) are

satisfied. We commented that Q2 is right invertible, and since R(P ) ∩ R(Q) = {0}, we have that Q2 is

invertible, and so is Q∗2, so R(Q) = R(Q∗2) = R(Q(I − P )); hence condition (iii) holds as well which

completes the proof.

Since from this theorem we see that the linear combinations αP + βQ and αP + βQ are simultaneously

left invertible, and it is easily concluded that αP+βQ will be right invertible if and only if it is left invertible.

This gives the following corollaries:

Corollary 3.9. Let P,Q ∈ B(H) be given orthogonal projections and α, β ∈ C \ {0}. Then αP + βQ

is right invertible if and only if {
R(P ) +R(Q) = H, α+ β 6= 0;

R(P )⊕R(Q) = H, α+ β = 0.

Corollary 3.10. Let P,Q ∈ B(H) be given orthogonal projections and α, β ∈ C \ {0}. Then the

following statements are equivalent:

(i) αP + βQ is left (right) invertible,

(ii) αP + βQ is invertible.

Remark 3.11. in Corollary 4.3 from [17] it was proven that the sum of orthogonal projections P and

Q will be invertible if and only if

N (P ) ∩N (Q) = R(P ) ∩R(Q(I − P )) = {0} and P +Q has closed range.

This result is equivalent to Corollary 3.9 (for the case of sums of orthogonal projections). Indeed, if N (P )∩
N (Q) = {0}, we have that R(P ) +R(Q) = H. Furthermore, if R(P +Q) is closed, from Lemma 2.4 in [18],

we have that R(P ) +R(Q) is closed as well so finally R(P ) +R(Q) = H. Conversely, if R(P ) +R(Q) = H,

we have that N (P ) ∩ N (Q) = {0} and using Lemma 2.4 from [18] again, we have that P + Q has closed

range.

In Theorem 6.2 of [19], condition (ii) is indeed the corresponding condition of Corollary 3.9.

Some interesting results can be attained for right invertibility of linear combinations of oblique projec-

tions as well:

Theorem 3.12. Let P,Q ∈ B(H) be given projections and α, β ∈ C \ {0}. Then αP + βQ is right

invertible if and only if R(P ) +R(Q) = H and

{
R(P ) = R(P (I −Q)) + (R(P ) ∩R(Q)), α 6= −β,
R(P ) = R(P (I −Q)), α = β.

Proof. Using Theorem 3.3, we see that the linear combination αP + βQ will be right invertible if and

only if R(P )+R(Q) = H and R(P ) = R(P (I−Q))+R((αP +βQ)|T ). It is easy to see that when we utilize

the natural decomposition H = R(P )⊕N (P ) = R(Q)⊕N(Q), we have that T = R(P )∩R(Q). To complete

this proof, it remains to be pointed out that when α 6= −β we have that R((αP + βQ)|T ) = R(P ) ∩R(Q),

and when α = −β we have that R((αP + βQ)|T ) = {0}.
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