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Abstract. A new class of operators, larger than C–symmetric operators and different than normal one, named C–normal

operators is introduced. Basic properties are given. Characterizations of this operators in finite dimensional spaces using a

relation with conjugate normal matrices are presented. Characterizations of Toeplitz operators and composition operators as

C–normal operators are given. Bunches of examples are presented.
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1. Introduction and main definition. Let H be a complex Hilbert space and denote by L(H) (by

LA(H), respectively) the algebra (the space, respectively) of all bounded linear (antilinear, respectively)

operators in the space H. The theory of selfadjoint and normal operators has been developed for many

years. However, there are many operators which do not belong to those classes. On the other hand, a

complex Hilbert space can be equipped with additional structure given by conjugation C, i.e., antilinear

isometric involution; (C ∈ LA(H), C2 = I and 〈h, g〉 = 〈Cg,Ch〉 for all h, g ∈ H). Such a structure

naturally appears in physics, see [8]. On the other hand, conjugations are related to adjoint operators in

the antilinear sense. Following Wigner (see [17]), for antilinear operator X ∈ LA(H), there is the unique

antilinear operator X] called the antilinear adjoint of X such that

(1.1) 〈Xx, y〉 = 〈x,X]y〉 for all x, y ∈ H.

The antilinear operator X is called antilinear selfadjoint if X] = X. Conjugations are the examples of such

operators since C] = C.

Having a conjugation C on a space H, an operator T can be called C–symmetric if CAC = A∗, see [9].

It turned out, see [4, Lemma 5.1], that operator A ∈ L(H) is C–symmetric if and only if AC is antilineary

selfadjoint, i.e., (AC)] = AC. The C–symmetric operators have applications in physics especially in the

quantum mechanics and the spectral analysis; let us recall monograph [14] and paper [1]. Authors send

the reader to [8] for more of Mathematical and physical aspects of complex symmetric operators. It is worth

to mention that C–symmetric operators have got interesting properties which was intensively studied, see

[9, 10]. For more references, see [8]. On the other hand, many natural operators belong to this class:

truncated Toeplitz, Voltera operators, normal operators and many others.

It is natural to search for the larger class of operators than C–symmetric ones. Having in mind classical
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selfadjoint and normal operators, it is natural to put forward the following:

Definition 1.1. An operator N ∈ L(H) is called C–normal if

(1.2) NC(NC)] = (NC)](NC).

The definition refers to definition of normality for antilinear operators, see [17]. Namely, an antilinear

operator X ∈ LA(H) is called antylinearly normal if

(1.3) XX] = X]X.

After stating the main definition the aim of the paper is to give equivalent conditions and basic properties

of C–normal operator, Section 2. The next section is devoted to C–normal operators in finite dimensional

Hilbert spaces. Section 3 shows the relation between C–normal operators and conjugate normal matrices;

in fact we fully characterized the C–normal operators. The following sections concern finding a class of

examples in various natural Hilbert spaces having a natural conjugations. Section 4 concerns multiplications

operators in L2 type spaces. Section 5 concerns Hardy space H2 with some natural conjugation. Section

6 deals with composition operators. Especially interesting there are classes of C–normal operators being

neither normal (in classical sense), nor C–symmetric, nor C–skew–symmetric. Theorems 6.6 and 7.3 give

collections of such operators. Authors think that this paper proves that C–normal operators form widely

enough class of operators. On the other hand, we hope there will be many theorems and properties of classical

normal operators which can be moved to this new class and which should be of the future investigations.

2. Equivalent conditions and basic examples. Let H be a complex Hilbert space with conjugation

C. An operator A ∈ L(H) is called C–symmetric if CAC = A∗. It is called C–skew–symmetric if CAC =

−A∗. The immediate consequence of the definition of C–normality (Definition 1.1) is that C–symmetric

operators and C–skew–symmetric operators are C–normal.

The paper concentrates on examples of C–normal operators which are neither C–cymmetric nor C–

skew–symmetric, but let us recall two classes of C–symmetric operators, so also C–normal, to give a feeling

to the reader how large and important is the class of C–normal operators.

Example 2.1. Let C be a conjugation in Cn given by C(z1, . . . , zn) = (z̄n, z̄n−1, . . . , z̄1). The operators

are C–symmetric if and only if its matrix is symmetric according to “second diagonal”. (Notations are in

Sections 3 and 4. This is an immediate consequence of Lemma 4.1.)

Let m be the normalized Lebesgue measure on the unit circle T and let us consider space L2 = L2(T,m).

The Hardy space H2 is a subspace of those elements of L2 which have negative Fourier coefficient equal to

0. One of the most interesting examples of C–symmetric, hence also C–normal, operators are truncated

Toeplitz operators (TTO). (See [7] for more details about TTO.)

Example 2.2. By Beurling’s theorem all subspaces which are invariant for the unilateral shift S in the

Hardy space H2 (Sf(z) = zf(z) for f ∈ H2) can be written as θH2, where θ is an inner function. Consider,

so-called, the model space K2
θ = H2	θH2 and the orthogonal projection Pθ : L2 → K2

θ . A truncated Toeplitz

operator Aθϕ with a symbol ϕ ∈ L2 is defined as

Aθϕ : D(Aθϕ) ⊂ K2
θ → K2

θ ; Aθϕf = Pθ(ϕf)

for f ∈ D(Aθϕ) = {f ∈ K2
θ : ϕf ∈ L2}. If Aθϕ is bounded, it naturally extends to the operator in L(H).

The model space K2
θ is equipped with natural conjugation Cθ, Cθf = θz̄f̄ for f ∈ K2

θ . Denote by T (θ) the
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set of all bounded truncated Toeplitz operators on K2
θ . As it was shown in [16, 7], operators from T (θ) are

Cθ–symmetric, hence Cθ–normal.

We have the following equivalent conditions:

Theorem 2.3. Let C be a conjugation on H and let N ∈ L(H). The followings conditions are equivalent:

(1) N is C–normal,

(2) N∗ is C–normal,

(3) CNC is C–normal,

(4) CN∗C is C–normal,

(5) CNN∗ = N∗NC,

(6) CN∗N = NN∗C,

(7) CN(CN)] = (CN)](CN),

(8) ||NCh|| = ||N∗h||,
(9) ||N∗Ch|| = ||Nh||,

(10) N+
df
= 1

2 (CN +N∗C) and N−
df
= 1

2 (CN −N∗C) commute,

(11) N+ df
= 1

2 (NC + CN∗) and N−
df
= 1

2 (NC − CN∗) commute.

Proof. We prove, for instance, equivalences (1) and (5), (1) and (6). Let’s assume (1). From (1.1) and

(1.2) we have following:

NCCN∗ = CN∗NC,

and from Definition 1.1,

NN∗ = CN∗NC.

Then, by covering the above equation from the left side by C, we get condition (5). Furthermore, by covering

the above equation from the right side by C, we get condition (6).

Lemma 2.4. Let C be a conjugation in H. If N ∈ L(H) is C–normal, then NL = CNCN and NR =

NCNC are normal.

Example 2.5. The reverse implication is not true, which follows from the following example. Let

H = C3, C(z1, z2, z3) = (z̄3, z̄2, z̄1) and

N =

0 1 0

0 0 0

0 0 0

 .
Next, we will present some results on relations between C–normal operators and unitary ones.

Proposition 2.6. Let C be a conjugation in H and U ∈ L(H) be a unitary operator. Then:

(1) U is C–normal,

(2) UCU∗ is a conjugation,

(3) CUC is unitary,

(4) if T is C–symmetric, then UTU∗ is UCU∗–symmetric,

(5) if N is C–normal, then UNU∗ is UCU∗–normal,

(6) moreover, if U is C–symmetric, then

(a) if T is C–symmetric, then UTU∗ is C–symmetric,

(b) if N is C–normal, then UNU∗ is C–normal.
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Proposition 2.7. Let C be a conjugation in H and let U ∈ L(H) be unitary operator. An operator N

is C–normal if and only if U∗NCUC (U∗C N UC, respectively) is C–normal.

It is a consequence of the following:

Lemma 2.8. Let X ∈ LA(H) and let U ∈ L(H) be unitary operator. If X is antilinearly normal, then

U∗XU is also antilinearly normal.

Proof. The direct computation shows that

(U∗XU) (U∗XU)] = U∗XUU∗(U∗X)] = U∗XX]U

= U∗X]XU = U∗X]U U∗X]U

= (U∗XU)](U∗XU).

Let h, g ∈ H then, by h ⊗ g ∈ L(H) we will denote rank one operator given by (h ⊗ g)x = 〈x, g〉h for

x ∈ H.

Lemma 2.9. Let C be a conjugation in H. Let x, y, h, g ∈ H. Then:

(1) (h⊗ g)∗ = g ⊗ h,
(2) C(h⊗ g)C = Ch⊗ Cg,
(3) (h⊗ g)(x⊗ y) = 〈x, g〉h⊗ y.

Let H be a complex Hilbert space with conjugation C. Direct calculations show that all C–normal

rank–one operators have the form h⊗ Ch, where h ∈ H. This operators are C–cymmetric, see [13]. Hence,

there can be found interesting examples among rank–two or rank–three operators. Let dimH > 3. Then,

by [8, Lemma 2.1], there is an orthonormal basis {ek} such that Cek = ek. Denote h = 1√
2
(e1 + ie2), g = e3

then h,Ch, g are orthonormal. Let us consider two operators

A1 = h⊗ h+ h⊗ Ch+ Ch⊗ h− Ch⊗ Ch,(2.4)

A2 = h⊗ Ch+ g ⊗ h+ 2 g ⊗ g + 2Ch⊗ h− Ch⊗ g.(2.5)

A direct calculation, using Lemma 2.9, shows that operators A1 and A2 are neither C–symmetric, nor

C–skew–symmetric, but they are C–normal. Moreover, the operator A2 is neither selfadjoint nor normal.

3. Finite dimensional case. Let Mn denote the algebra of all n × n complex matrices. Except the

algebra structure, which was recalled, there are some operations on matrices which are defined as follows;

let M = [ajk] ∈Mn, then we denote

M = [ājk], M t = [akj ], M∗ = [ākj ], Ms = [an−j+1 n−k+1].

We will call the matrix unitary if its columns (or rows) form an orthonormal basis.

Let us recall relations between antilinear operators and matrices. Let X ∈ LA(Cn). Let e1, . . . , en be

an orthonormal basic in Cn. There is a matrix MX = [ajk] such that for any x =
∑n
k=1〈x, ek〉ek ∈ Cn we

have

Xx =

n∑
j=1

( n∑
k=1

ajk 〈x, ek〉
)
ej .
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Moreover, ajk = 〈Xek, ej〉. The matrix MX will be called a matrix representation of antilinear operator X

as to basis e1, . . . , en. (The standard matrix for linear operator T ∈ L(Cn) is also denoted by MT .) The

following properties hold.

Lemma 3.1. Let X,Y ∈ LA(Cn) and T ∈ L(Cn). Let MX ,MY ,MT be a matrix representation of

operators X, Y , T as to certain orthonormal basis e1, . . . , en, respectively. Then:

(1) MXT = MX MT ,

(2) MTX = MT MX ,

(3) MXY = MX MY ,

(4) MX] = M t
X .

There is quite large literature concerning conjugate normal matrices.

Definition 3.2 ([6]). Matrix M ∈Mn(C) is conjugate normal if

MM∗ = M∗M.

The theorem bellow shows the relationships between antilinearly normal operators and conjugate normal

matrices.

Theorem 3.3. Let X ∈ LA(Cn). Then X is antilineary normal if and only if the matrix MX is

conjugate normal.

Proof. The antilinear operator X is antilinearly normal, if (1.3) is fulfilled, which is equivalent to

MXX] = MX]X .

By Lemma 3.1, we have

MXMX] = MX]MX

and

MXM
∗
X = M∗XMX .

Remark 3.4. Let M ∈ Mn be a conjugate normal matrix and Mu be an unitary matrix. As it was

observed in [6, Condition 4.13], the matrix MuMM t
u was also conjugate normal. On the other hand,

having fixed orthonormal basis, if matrix M is the matrix of some antilinear operator X ∈ LA(Cn), i.e.,

M = MX and matrix Mu is a matrix of unitary operator U ∈ L(Cn), i.e., Mu = MU then, by Lemma 3.1,

MuMM t
u = MUMXM

t
U = MUXU∗ and UXU∗ is antilineary normal (see Theorem 3.3, or else Lemma 2.8).

Recall after [5, 6] the following theorem characterizes conjugate normal matrices.

Theorem 3.5. Let matrix M ∈Mn be conjugate normal. Then there is unitary matrix Mu ∈Mn such

that matrix Md = MuMM t
u, where Md is block diagonal matrix with block diagonal matrices (Md)

′
i of size

1× 1 and (Md)
′′
j of size 2× 2 of a form

(Md)
′
i = [ri], ri > 0 and (Md)

′′
j =

[
sj tj
−tj sj

]
, sj > 0, tj ∈ R.

The consequence of the above is the following characterization of C–normal operators:
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Theorem 3.6. Let C be a conjugation in Cn. Let N ∈ L(Cn) be a C–normal operator. Then, there is

unitary operator U ∈ L(Cn) such that

(1) N = U∗ (DC) (CUC), noticing that U∗, DC,CUC ∈ L(Cn), or

(2) N = (UC)] (DC)CU , noticing that (UC)], CU ∈ LA(Cn) and DC ∈ L(Cn),

where D is block diagonal operator given by block diagonal matrices (Md)
′
i of size 1 × 1 and (Md)

′′
j of size

2× 2 of a form

(Md)
′
i = [ri], ri > 0 and (Md)

′′
j =

[
sj tj
−tj sj

]
, sj > 0, tj ∈ R.

Proof. Operator N is C–normal, and thus, NC is antilinearly normal. Let us fix some orthonormal basis

in Cn, for example canonical one. Hence, by Theorem 3.3, the matrix MNC of NC is conjugate normal. Now

by Theorem 3.5 there is a unitary matrix Mu and specific block diagonal matrix Md described in Theorem

3.5 such that Md = MuMNCM
t
u. Let D ∈ LA(Cn) be an antilinear operator represented by matrix Md and

U ∈ L(Cn) be the unitary operator represented by the matrix Mu. Then, MD = MUMNCM
t
U = MUNCU∗

by Lemma 3.1. Hence, D = UNCU∗ and we get (1). Condition (2) can be proved similarly starting with

CN .

4. Case of canonical conjugation in Cn. Let Czn be a canonical conjugation in Cn given by

Czn(z1, . . . , zn) = (z̄n, z̄n−1, . . . , z̄1). Recall the model spaces defined in Example 2.2. If we consider the

inner function θ(z) = zn then Cn can be seen as a model space Cn = H2	znH2. Moreover, the conjugation

Czn is exactly the conjugation Cθ with θ = zn considered in Example 2.2.

Lemma 4.1. Let T ∈ L(Cn) and MT = [aij ]i=1,...,n
j=1,...,n

. Then MCzn T Czn = [ān−i+1 n−j+1]i=1,...,n
j=1,...,n

. That

means

Czn

a11 · · · a1n

...
. . .

...

an1 · · · ann

Czn =

ann · · · an1

...
. . .

...

a1n · · · a11

 .

By the second diagonal of the matrix M = [aij ] ∈ Mnn we will mean the set of elements aij such that

i+ j = n+ 1.

Theorem 4.2. Let N ∈ L(Cn) be Czn–normal operator. Then, there is a unitary operator U ∈ L(Cn)

and the operator D̃ ∈ L(Cn) having a matrix representation concentrated on the second diagonal given by

block diagonal matrices (M ′d)i of the size 1× 1 and (M ′′d )j of the size 2× 2 of the form (M ′d)i = [ri], ri > 0

and (M ′′d )j =

[
tj sj
sj −tj

]
, sj > 0, tj ∈ R such that

(1) N = U D̃ (CznU
∗Czn), which can be written using matrix representation as,

(2) MN = MU MD̃ (Ms
U )t.

Proof. By Theorem 3.6 (1) there is a unitary operator U ∈ L(Cn) and decomposition such that N =

U (DCzn) (CznU
∗Czn) where DCzn ∈ L(Cn) (CznU

∗Czn) ∈ L(Cn). Define D̃ = DCzn ∈ L(Cn) and

applying Lemma 3.1 the operator D̃ has got a suitable representation. Hence, we get (1). Applying Lemma

4.1, we obtain (2).
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Example 4.3. For n = 3, having a canonical conjugation Cz3(z1, z2, z3) = (z̄3, z̄2, z̄1), all Cz3–normal

operators have the matrix representation MUMD̃(Ms
U )t, where MU is any unitary matrix and MD̃ =0 0 r

t s 0

s −t 0

, r > 0, s > 0 , t ∈ R or MD̃ =

 0 0 r1

0 r2 0

r3 0 0

, r1, r2, r3 > 0.

5. C–normal operators on L2 spaces. Now, we would like to find examples of C–normal operators

in L2 spaces. Direct calculation shows the following:

Proposition 5.1. Let (X,µ) be a measure space. Let L2(X,µ) be a space of complex valued functions

with conjugation C given by Cf(x) = f(x). Let ϕ ∈ L∞ and Mϕ be a multiplication operator on L2(X,µ),

Mϕf = ϕf . Then Mϕ is C–symmetric, thus also C–normal.

Recall that any normal operator N ∈ L(H) is unitary equivalent to the multiplication operator Mϕ, i.e.,

Mϕ = UNU∗, where U ∈ L(H, L2(X,µ)) is unitary. Let C be a conjugation in H such that (UCU∗)f(x) =

f(x). Then N is C–normal. On the other hand, we have the following

Example 5.2. Consider L2[0, 1]. A conjugation C on L2[0, 1] is given by (Cf)(t) = f(1− t), t ∈ [0, 1].

Let ϕ ∈ L∞ and consider Mϕ ∈ L(L2[0, 1]), Mϕf = ϕf . It turns out, that operator Mϕ is C–normal if and

only if |ϕ|2(t) = |ϕ|2(1− t).

Proposition 5.3. Let Mϕ ∈ L2(R, 1√
2π

exp(−x
2

2 ) dx) and ϕ ∈ L∞. Let conjugation C be given by

Cf(x) = f(−x). It turns out, that the operator Mϕ is C–normal if and only if |ϕ|2 is an even mapping.

6. C–normal Toeplitz operators on Hardy spaces. In the following section, we would like to

characterize C–symmetric, C–skew–symmetric, C–normal operators in the Hardy space H2. Recall that

L2 = L2(T,m) and the Hardy space H2 is its subspace of those elements of L2 which have negative Fourier

coefficient equal to 0. Now, we will consider Toeplitz operators. Let ϕ ∈ L∞ = L∞(T,m) and define the

Toeplitz operator with symbol ϕ as

Tϕf = PH2(ϕf).

Note also after [2, Theorem 9] that conditions for a Toeplitz operator to be selfadjoint (i.e., a symbol

have to be real) or to be normal (i.e., a symbol have to be linear function of a real function) are very

restrictive. In the following section, we will show that, the classes of C–symmetric, C–skew–symmetric,

C–normal operators Toeplitz operators are much more wider. In fact, we fully characterize these classes of

operators with respect to some natural conjugations.

First natural conjugation (see [15, p. 103]) which can be studied is given by

(6.6) (C0f)(z) = f(z̄) for f ∈ H2.

In [11], for a given real ξ, θ, there was also considered more general conjugation given by

(6.7) (Cξ,θf)(z) = eiξ · f(eiθ z̄).

The Hardy space has the natural basis ek(z) = zk, k = 0, 1, . . . Note that Cξ,θek = eiξ · e−ikθek, k ∈ Z+.

Lemma 6.1. Let Cξ,θ, ξ, θ ∈ R, be a conjugation on H2 given by (Cξ,θf)(z) = eiξ · f(eiθ z̄). Let an

operator T ∈ L(H2) be given by a matrix [alk]k,l>0 as to the basis {ek}k∈Z+
,i.e alk = 〈Tek, el〉. Then
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(1) the operator Cξ,θTCξ,θ has a matrix [blk]k,l>0, blk = ei(k−l)θ ālk,

(2) the operator T is Cξ,θ–symmetric if and only if alk = ei(k−l)θakl, k, l > 0; in particular all are

arbitrary,

(3) the operator T is Cξ,θ–skew–symmetric if and only if alk = −ei(k−l)θakl, k, l ∈ Z+; in particular

all = 0.

Proof. To see (1), let us compute

blk = 〈Cξ,θTCξ,θek, el〉 = 〈Cξ,θel, TCξ,θek〉 = 〈TCξ,θek, Cξ,θel〉
= 〈Teiξe−ikθek, eiξe−ilθel〉 = ei(k−l)θ 〈Tek, el〉 = ei(k−l)θ ālk.

Conditions (2) and (3) follows from (1) and appropriate definitions.

Corollary 6.2. Let C0 be a conjugation on H2 given by (C0f)z = f(z̄), f ∈ H2. Let T ∈ L(H2)

be given by the matrix [akl]k,l>0 according to the basis {ek}k∈Z+
. Then, T is C0–symmetric if and only if

akl = alk, k, l = 0, 1, 2, . . . , and T is C0–skew–symmetric if and only if all = 0, akl = − alk, k, l = 0, 1, 2, . . . ,

Proposition 6.3. Let ϕ ∈ L∞ have a Fourier expansion ϕ(z) =
+∞∑
−∞

ϕ̂(n)zn. The Toeplitz operator Tϕ

has the matrix [alk]k,l=0,1,2,... and alk = ϕ̂(l − k). Then:

(1) the operator Cξ,θTϕCξ,θ has matrix [blk] with blk= ei(k−l)θϕ̂(l − k),

(2) the Toeplitz operator Tϕ is Cξ,θ–symmetric if and only if ϕ̂(−k) = eikθϕ̂(k), k ∈ Z; in particular

ϕ̂(0) is arbitrary,

(3) the operator Tϕ is Cξ,θ–skew–symmetric if and only if ϕ̂(−k) = −eikθϕ̂(k), k ∈ Z; in particular

ϕ̂(0) = 0 if Argθ 6= π and ϕ̂(0) is arbitrary if Arg θ = π.

Proposition 6.4. Let Cξ,θ, ξ, θ ∈ R, be a conjugation on H2 given by (Cξ,θf)(z) = eiξf(eiθ z̄). Let

ϕ ∈ L∞, ϕ(z) =
+∞∑

n=−∞
ϕ̂(n)zn and denote ϕ+(z) =

+∞∑
n=1

ϕ̂(n)zn, ϕ−(z) =
−1∑

n=−∞
ϕ̂(n)zn. If Tϕ is Cξ,θ–

normal then there is η, |η| = 1 such that

(6.8) ϕ̂(−k) = ηeikθϕ̂(k) for k = 1, 2, . . . ,

or equivalently, there is η, |η| = 1 such that

(6.9) ϕ− = η eiξ Cξ,θϕ+.

Remark 6.5. Let us consider ϕ,ψ ∈ L∞ with the Fourier expansion ϕ(z) =
+∞∑

n=−∞
ϕ̂(n)zn and ψ(z) =

+∞∑
n=−∞

ψ̂(n)zn, respectively. Let Tϕ, Tψ be Toeplitz operators on H2. The operator TϕTψ is not always a

Toeplitz operator. In fact, as it was shown in [2] that

(6.10) 〈TϕTψek+1, el+1〉 − 〈TϕTψek, el〉 = ϕ̂(l + 1) ψ̂(−k − 1).

Proof of Proposition 6.4. Applying Remark 6.5, we have

〈(S∗Tϕ̄TϕS − Tϕ̄Tϕ)ek, el〉 = 〈Tϕ̄TϕSek, Sel〉 − 〈Tϕ̄Tϕek, el〉(6.11)

= 〈Tϕ̄Tϕek+1, el+1〉 − 〈Tϕ̄Tϕek, el〉 = ϕ̂(−l − 1) ϕ̂(−k − 1).
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On the other hand, also using Lemma 6.1 and Remark 6.5, we get

〈(S∗Cξ,θTϕTϕ̄Cξ,θS − Cξ,θTϕTϕ̄Cξ,θ)ek, el〉 = 〈Cξ,θTϕTϕ̄Cξ,θek+1, el+1〉 − 〈Cξ,θTϕTϕ̄Cξ,θek, el〉
= ei(k−l)θ 〈TϕTϕ̄ek+1, el+1〉 − ei(k−l)θ 〈TϕTϕ̄ek, el〉
= ei(k−l)θ ϕ̂(l + 1) ϕ̂(k + 1).

The last equality follows from (6.11) for TϕTϕ̄. If Tϕ is Cξ,θ–normal, by Theorem 2.3 (5), subtracting both

sides we get

ei(k−l)θ ϕ̂(l + 1) ϕ̂(k + 1) = ϕ̂(−l − 1) ϕ̂(−k − 1)(6.12)

for k, l = 0, 1, 2, . . .

Assume for the while that ϕ̂(k) 6= 0, k = ±1,±2, . . . Thus,

(6.13)

(
ϕ̂(−l)
eilθ ϕ̂(l)

)
=

(
ϕ̂(−k)

eikϕ ϕ̂(k)

)−1

for k, l = 1, 2, . . . Hence, there is η such that ϕ̂(−k)
eikϕϕ̂(k)

= η for k = 1, 2, . . . Moreover, by (6.13), we get

|η| = 1. Thus,

(6.14) ϕ̂(−k) = η eikθ ϕ̂(k) for k = 1, 2, . . .

If ϕ̂(k) = 0 and (6.14) is fulfilled, then ϕ̂(−k) = 0 and (6.12) holds.

Theorem 6.6. Let Cξ,θ, ξ, θ ∈ R, be a conjugation on H2 given by (Cξ,θf)(z) = eiξf(eiθ z̄). Let ϕ ∈ L∞,

ϕ(z) =
+∞∑

n=−∞
ϕ̂(n)zn and denote ϕ+(z) =

+∞∑
n=1

ϕ̂(n)zn, ϕ−(z) =
−1∑

n=−∞
ϕ̂(n)zn. Then Tϕ is Cξ,θ–normal if

and only if there is η, |η| = 1 such that

ϕ− = η eiξ Cξ,θϕ+ and(6.15)

(η − η̄)ϕ+ Cξ,θϕ+ + ϕ̂(0)(η − 1)eiξϕ+ − ϕ̂(0)(η̄ − 1)Cξ,θϕ+ = 0.(6.16)

Denote by ϕθ∼(z) = e−iξ Cξ,θϕ+(z) = ϕ+(eiθ z̄). Easy to see that ϕθ∼ = ϕ̄θ∼.

Lemma 6.7. With the notation above, the following hold:

(1) Cξ,θTϕ+
Cξ,θ = Tϕθ∼ ,

(2) Cξ,θTϕ̄+
Cξ,θ = Tϕ̄θ∼ ,

(3) Cξ,θTϕθ∼Cξ,θ = Tϕ+
,

(4) Cξ,θTϕ̄θ∼Cξ,θ = Tϕ̄+ .

Proof. To see (1), let us calculate for f, g ∈ H2:

〈Cξ,θTϕ+
Cξ,θf, g〉 = 〈Cξ,θg, Tϕ+

Cξ,θf〉 = 〈Cξ,θg, PH2Mϕ+
Cξ,θf〉

= 〈Cξ,θg,Mϕ+
Cξ,θf〉 =

∫
eiξ g(eiθ z̄) ϕ+(z) eiξ f(eiθ z̄) dm(z)

=

∫
ϕ̄+(z)f(eiθ z̄) g(eiθ z̄) dm(z).
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Let us substitute ω = eiθ z̄. Then z = eiθω̄. Thus,

〈Cξ,θTϕ+
Cξ,θf, g〉 =

∫
ϕ+(eiθω̄) f(ω) g(ω) dm(ω) = 〈Tϕθ∼f, g〉.

Property (3) follows from (1) since (ϕθ∼)θ∼ = ϕ and (2), (4) follows from (1) and (3) taking ϕ̄ instead of ϕ.

Proof of Theorem 6.6. Let us apply Proposition 6.4 and by (6.9) operator Tϕ being Cξ,θ–normal has to

be represented as

Tϕ = Tϕ+
+ ϕ̂(0)I + ηeiξ TCξ,θϕ+

= Tϕ+
+ ϕ̂(0)I + ηTϕ̄θ∼ .

Therefore,

T ∗ϕ = Tϕ̄+
+ ϕ̂(0)I + η̄Tϕθ∼ .

Let us calculate:

TϕT
∗
ϕ = Tϕ+Tϕ̄+ + ϕ̂(0)Tϕ+ + η̄ Tϕ+Tϕθ∼ + ϕ̂(0)Tϕ̄+ + |ϕ̂(0)|2 I

+ ϕ̂(0) η̄ Tϕθ∼ + ηTϕ̄θ∼Tϕ̄+
+ ϕ̂(0) η Tϕ̄θ∼ + |η|2 Tϕ̄θ∼Tϕθ∼ .

Hence, by Lemma 6.7, we get

Cξ,θTϕT
∗
ϕCξ,θ = Tϕθ∼Tϕ̄θ∼ + ϕ̂(0)Tϕθ∼ + η Tϕθ∼Tϕ+ + ϕ̂(0)Tϕ̄θ∼ + |ϕ̂(0)|2 I

+ ϕ̂(0)η Tϕ+ + η̄ Tϕ̄+Tϕ̄θ∼ + ϕ̂(0)η̄ Tϕ̄+ + Tϕ̄+Tϕ+ .

On the other hand, we have

T ∗ϕTϕ = Tϕ̄+
Tϕ+

+ ϕ̂(0)Tϕ̄+
+ η Tϕ̄+

Tϕ̄θ∼ + ϕ̂(0)Tϕ+
+ |ϕ̂(0)|2 I

+ ηϕ̂(0)Tϕ̄θ∼ + η̄ Tϕθ∼Tϕ+ + η̄ϕ̂(0)Tϕθ∼ + Tϕθ∼Tϕ̄θ∼ .

Since ϕ+ is analytic and ϕ̄+ is coanalytic, by [2], we have the following:

(6.17)

CξθTϕT
∗
ϕCξθ − T ∗ϕTϕ = (η − η̄)Tϕθ∼ϕ+

+ (η̄ − η)Tϕ̄+ϕ̄θ∼

+ (ϕ̂(0)− η̄ϕ̂(0))Tϕθ∼ + (ϕ̂(0)− ηϕ̂(0))Tϕ̄θ∼

+ (ϕ̂(0)η − ϕ̂(0))Tϕ+
+ (ϕ̂(0)η̄ − ϕ̂(0))Tϕ̄+

.

The condition for the operator Tϕ to be Cξ,θ–normal is that the operator above has to be zero. In fact the

operator above is a Toeplitz one with the symbol (let say) ψ ∈ L∞ ⊂ L2. Thus, the symbol ψ has to be a

zero. Hence, the analytic and co-analytic part, which are complex adjoint one to the other, of ψ have to be

0. Extracting the analytical part of the function ψ we get:

0 = (η − η̄)ϕ+ϕ
θ
∼ + ϕ̂(0) (η − 1)ϕ+ + ϕ̂(0)(1− η̄)ϕθ∼

= (η − η̄)e−iξϕ+ Cξ,θϕ+ + ϕ̂(0)(η − 1)ϕ+ − ϕ̂(0)(η̄ − 1)e−iξCξ,θϕ+.

Hence, we get (6.16).

Arguing the other direction, if (6.15) and (6.16) are fulfilled the operator considered in (6.17) have to

be zero.
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Example 6.8. If, in Theorem 6.6, the existing η is real, then we have the following cases:

(1) Let η = 1 then (6.16) is fulfilled and (6.15) means that operator Tϕ is Cξ,θ–symmetric, see Lemma

6.3, (2).

(2) Let η = −1 and ϕ̂(0) = 0 then (6.16) is fulfilled and (6.15) with ϕ̂(0) = 0 means that operator Tϕ
is Cξ,θ-skew–symmetric, see Lemma 6.3, (3).

(3) For η = −1, ϕ̂(0) 6= 0, Argθ 6= π, condition (6.16) is equivalent to

(6.18) ϕ̂(0)ϕ+ = ϕ̂(0) e−iξ Cξ,θϕ+ = ϕ̂(0)ϕθ∼.

Hence, in this case, the operator Tϕ is Cξ,θ–normal (but neither Cξ,θ–symmetric nor Cξ,θ–skew–

symmetric) for ϕ ∈ L∞ if

ϕ̂(−k) = −eikθϕ̂(k) for k = 1, 2, . . . , and

Argϕ̂(k)
mod 2π

= Argϕ̂(0)− k
2 θ for k = 1, 2, . . .

It is worth to notice the special case of Theorem 6.6.

Corollary 6.9. Let C0, be a conjugation on H2 given by (C0f)(z) = f(z̄) for f ∈ H2. Let ϕ ∈ L∞
and ϕ = ϕ−+ ϕ̂(0) +ϕ+. Then, the Toeplitz operator Tϕ is C0–normal if and only if there is η, |η| = 1 such

that

(1) ϕ− = ηC0ϕ+, and

(2) (η − η̄)ϕ+ C0ϕ+ + ϕ̂(0)(η − 1)ϕ+ − ϕ̂(0)(η̄ − 1)C0ϕ+ = 0.

Example 6.10. Let s ∈ (−1; 1) and let ϕ(z) = −sz̄
1−isz̄ + ( 1

2 + 1
2 i) + isz

1−isz . Conditions (1) and (2) of

Corollary are fulfilled for η = i. Thus, Tϕ is C0–normal but neither C0–symmetric nor C0–skew–symmetric

by Lemma 6.3.

7. Composition operators. Let (X,Σ, µ) be a measure space with a non–negative σ-finite measure

µ and consider a space L2(X,Σ, µ). Then a measurable function T : X → X induces a composition operator

CT f = f ◦T . It is known [18] that if CT is bounded then µ◦T−1 is absoluty continuous with respect to µ and

the Radon-Nikodym derivative h = dµ◦T−1

dµ is essentially bounded. Conversely, if T satisfies this conditions,

function T induce bounded linear operator CT on L2(X,Σ, µ). It is clear that h is always nonnegative. Note

also the basic formula

(7.19)

∫
CT f dµ =

∫
f ◦ T dµ =

∫
fh dµ.

Proposition 7.1. Take the conjugation C in L2(X,Σ, µ) given by C(f)(x) = f(x). Assume that CT is

a bounded composition operator given by a measurable function T : X → X. Then following are equivalent:

(1) CT is C–normal,

(2) CT is normal.

Proof. To show equivalence of (1) to (2), we will show that CC∗TCTC = C∗TCT . Let f, g ∈ L2(X,Σ, µ)

then

〈CC∗TCTCf, g〉 = 〈Cg,C∗TCTCf〉 = 〈CTCg,CTCf〉 =

∫
(Cg ◦ T ) · Cf ◦ T dµ

=

∫
(ḡ ◦ T ) (f ◦ T ) dµ =

∫
ḡf h dµ = 〈CT f, CT g〉 = 〈C∗TCT f, g〉.
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Let us note that (Cf)x = f(−x) gives us a conjugation in L2(R,m), (m Lebesgue measure). On the

other hand, (Cf)x = f(1− x) defines a conjugation on the space L2([0, 1],m). Consider the general space

L2(X,µ), where (X,µ) is a measure space with non-negative measure µ. The above two situations lead to

the following:

Proposition 7.2. Let (X,Σ, µ) be a measure space with a non–negative measure µ and the antilinear

operator C : L2(X,Σ, µ)→ L2(X,Σ, µ) given by (Cf)(x) = f(α(x)), where α : X → X is measurable. Then,

C is conjugation if and only if

(1) α2 = IX ,

(2) µ = µ ◦ α.

Proof. For f ∈ L2(X,Σ, µ) and x ∈ X, we have

(C2f)(x) = C(Cf)(x) = Cf(α(x)) = f(α2(x)).

Hence, C2 = I is equivalent to α2 = IX . For the second condition, for any f, g ∈ L2(X,Σ, µ), let us calculate

〈Cf,Cg〉 =

∫
(Cf)(x)(Cg)(x)dµ(x) =

∫
f(α(x)) · g(α(x))dµ(x)

and

〈g, f〉 =

∫
g(x)f(x)dµ(x).

Hence, the equality of two above for all f, g gives µ = µ ◦ α−1 = µ ◦ α.

Theorem 7.3. Let L2(X,Σ, µ) with conjugation C given by (Cf)(x) = f(α(x)), i.e., α : X → X be

measurable function with α2 = IX and µ = µ ◦ α. Assume that CT is a bounded composition operator given

by a measurable function T : X → X. Then, the operator CT is C–normal if and only if

(1) T−1(Σ) is essentially all Σ, i.e., for a given ω ∈ Σ, there is ω̃ ∈ Σ such that m
(
(T−1(ω̃) \ ω) ∪ (ω \

T−1(ω̃))
)

= 0, and

(2) h ◦ T = h ◦ α µ a.e., where h = dµ◦T−1

dµ .

Proof. For f, g ∈ L2(X,µ), we have

〈CC∗TCTCf, g〉 = 〈CTCg,CTCf〉 =

∫
(Cg ◦ T ) (Cf ◦ T ) dµ

=

∫
(ḡ ◦ α ◦ T ) (f ◦ α ◦ T ) dµ

=

∫
(ḡ ◦ α) (f ◦ α) h dµ =

∫
f ḡ (h ◦ α−1) dµ ◦ α−1.

Then, since α = α−1,

CC∗TCTCf = (h ◦ α−1) · f.

If f belongs to range of CT , then f = CT f0 and

CTC
∗
T f = CTC

∗
TCT f0 = CTCCC

∗
TCTCCf0

= CTC (CC∗TCTC) (Cf0) = CTC((h ◦ α) · (Cf0))

= CT ((h̄ ◦ α ◦ α) · C(Cf0)) = CT (h · f0)

= (h ◦ T ) · (CT f0) = (h ◦ T ) · f.
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If CT is C–normal, then

(h ◦ α)f = (h ◦ T )f

for all f in range of CT . The rest of the proof is analogous as the proof of [18, Lemma 2].

Example 7.4. Let us consider L2(R,m) with the conjugation (Cf)x = f(−x), α(x) = −x. Let T (x) =

−x for x > 0 and T (x) = −2x for x < 0. Then the Radon–Nikodym derivative h = dm◦T−1

dm is given by

h(x) = 1
2 for x > 0 and h(x) = 1 for x < 0. It is clear that h ◦ α = h ◦ T , and thus, CT is C–normal.

Furthermore, h 6= h ◦ T , and thus, CT is not normal (see [18, Lemma 2]) and direct calculation shows that

it is also always neither C–symmetric nor C–skew–symmetric.
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