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A NOTE ON MAJORIZATION PROPERTIES OF THE LIEB FUNCTION∗

MAREK NIEZGODA†

Abstract. In this note, the Lieb function (A,B) → Φ(A,B) = tr exp(A+ logB) for an Hermitian matrix A and a positive

definite matrix B is studied. It is shown that Φ satisfies a majorization property of Sherman type induced by a doubly stochastic

operator. The variant for commuting matrices is also considered. An interpretation is given for the case of the orthoprojection

operator onto the space of block diagonal matrices.
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1. Preliminaries. In this expository section, we collect some basic notation, definitions and facts.

We say that a real n-tuple x = (x1, . . . , xn)T weakly majorizes a real n-tuple y = (y1, . . . , yn)T , and

write y ≺w x, if

(1.1)

l∑
i=1

y[i] ≤
l∑
i=1

x[i] for l = 1, . . . , n,

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] represent the entries of x and y, respectively, stated in decreasing

order [13, p. 12]. If in addition equality holds in (1.1) for l = n, then we say that x majorizes y, and write

y ≺ x [13, p. 8].

It is known that

(1.2) y ≺ x if and only if y ∈ convPnx

for x,y ∈ Rn (see [13, p. 10]). Hereafter the symbol conv means ”the convex hull of”. By Pn is denoted the

group of all n× n permutation matrices.

We call an n×m real matrix S = (sij) column stochastic (resp., row stochastic) if sij ≥ 0 for i = 1, . . . , n,

j = 1, . . . ,m, and
n∑
i=1

sij = 1 for j = 1, . . . ,m (resp.,
m∑
j=1

sij = 1 for i = 1, . . . , n).

We call an n× n real matrix S doubly stochastic if S is both column stochastic and row stochastic [13,

pp. 29–30]. By Ωn we denote the set of all n × n doubly stochastic matrices. As Ωn = convPn (see [13,

Theorem A.2.]), it holds for x,y ∈ Rn that

y ≺ x if and only if y = Sx
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for some doubly stochastic n×n matrix S [13, p. 33]. Thus, each doubly stochastic matrix is closely connected

with the majorization preorder.

A function F : Jn → R with an interval J ⊂ R is said to be Schur-convex on Jn, if for x,y ∈ Jn,

y ≺ x implies F (y) ≤ F (x)

(see [13, p. 79–154]).

The following result shows a close relationship between usual convexity of an one-variable function and

Schur-convexity of some multivariable function.

Theorem A. (Schur [17], Hardy-Littlewood-Pólya [8], and Karamata [11]) If f : J → R is a continuous

convex function defined on an interval J ⊂ R, then for x = (x1, x2, . . . , xn)T ∈ Jn and y = (y1, y2, . . . , yn)T ∈
Jn,

y ≺ x implies

n∑
i=1

f(yi) ≤
n∑
i=1

f(xi).

Theorem B. (Tomić [19] and Weyl [21]) If f : J → R is a continuous nondecreasing convex function

defined on an interval J ⊂ R, then for x = (x1, x2, . . . , xn)T ∈ Jn and y = (y1, y2, . . . , yn)T ∈ Jn,

(1.3) y ≺w x implies

n∑
i=1

f(yi) ≤
n∑
i=1

f(xi).

For example, if f = exp on J = R, then (1.3) becomes

(1.4) y ≺w x implies

n∑
i=1

exp yi ≤
n∑
i=1

expxi.

Hence, by arbitrariness of n ∈ N, one obtains

y ≺w x implies (exp y1, . . . , exp yn)T ≺w (expx1, . . . , expxn)T .

Below we present a generalization of Theorem A.

Theorem C. (Sherman [18]) Let f : J → R be a continuous convex function defined on an interval J ⊂
R. If a = (a1, . . . , am)T ∈ Rm+ , b = (b1, . . . , bn)T ∈ Rn+, x = (x1, . . . , xm)T ∈ Jm and y = (y1, . . . , yn)T ∈
Jn are such that

(1.5) y = Sx and a = STb

for some n×m row stochastic matrix S = (sij), then

(1.6)

n∑
i=1

bif(yi) ≤
m∑
j=1

ajf(xj).

See [1, 2, 3, 7, 9, 10, 14, 15, 16] for some applications and generalizations of Sherman’s inequality (1.6).

Statement (1.5) is called Sherman’s condition.
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2. Matrix majorization and the Lieb function. By Hn we denote the linear space of n×nHermitian

matrices equipped with the inner product

(2.7) 〈A,B〉 = trAB for A,B ∈ Hn.

We consider the group action on Hn induced by the group G of all unitary similarities U(·)U∗, where U

runs over the group Un of all n× n unitary matrices. Clearly, if g = U(·)U∗ ∈ G then g−1 = U∗(·)U ∈ G.

This action generates the following preorder ≺G on Hn. For A,B ∈ Hn,

(2.8) A ≺G B if and only if A ∈ convGB

(cf. (1.2)). So, A ≺G B means that

(2.9) A =

m∑
i=1

tiUiBU
∗
i

for some m ∈ N, Ui ∈ Un, 0 ≤ ti ∈ R, i = 1, . . . ,m,
m∑
i=1

ti = 1.

The preorder ≺G is called the matrix majorization on Hn.

For a real n-tuple λ = (λ1, . . . , λn)T , the symbols diag λ and diag (λ1, . . . , λn) denote the n×n diagonal

matrix with the entries λ1, . . . , λn on the main diagonal.

For an n × n Hermitian matrix A, the symbol λ(A) = (λ1(A), . . . , λn(A))T stands for the n-vector of

the eigenvalues of A stated in any order.

It is known for A,B ∈ Hn that

A ≺G B if and only if λ(A) ≺ λ(B),

where ≺ is the standard majorization preorder on Rn (see [5, Theorem 7.1]).

By Ln we denote the set of all n×n positive semidefinite matrices. The Loewner order on Hn is defined

by

A ≤ B if and only if B −A ∈ Ln.

A map F : Hn → R is said to be convex (resp., concave), if

F

(
k∑
i=1

tiAi

)
≤ (≥)

(
k∑
i=1

tiF (Ai)

)

for all k ∈ N, Ai ∈ Hn, 0 ≤ ti ∈ R, i = 1, . . . , k,
k∑
i=1

ti = 1.

A map F : Hn → Hn is said to be G-equivariant if

F (gA) = gF (A) for A ∈ Hn and g ∈ G.

A map F defined on Hn is said to be G-invariant if

F (gA) = F (A) for A ∈ Hn and g ∈ G.
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For instance,

(2.10) tr (gA) = tr (A) for A ∈ Hn and g ∈ G.

If J ⊂ R is an interval, then the symbol Hn(J) stands for the set of all n × n Hermitian matrices with

spectra in J .

If f : J → R is a continuous function defined on an interval J ⊂ R, then the map Φf : Hn(J) → Hn is

defined by

Φf (A) = Udiag (f(λ1(A)), . . . , f(λn(A)))U∗,

where A = Udiag (λ1(A), . . . , λn(A))U∗ is Spectral Decomposition of an A ∈ Hn. As usual, for an A ∈ Hn(J)

we write f(A) instead of Φf (A).

It is not hard to check that the map Φf is G-equivariant, i.e.,

Φf (UAU∗) = UΦf (A)U∗ for all A ∈ Hn(J) and U ∈ Un.

In other words,

(2.11) f(gA) = gf(A) for all A ∈ Hn(J) and g ∈ G.

The Lieb function is defined by

(A,B)→ Φ(A,B) = tr exp(A+ logB)

for an n× n Hermitian matrix A and an n× n positive definite matrix B.

Theorem D. (Lieb [12, Theorem 6] and Tropp [20, p. 1759])

(i) For each n × n Hermitian matrix A, the one-variable map B → tr exp(A + logB) is concave on the

positive-definite cone.

(ii) For each n × n positive definite matrix B, the map A → tr exp(A + logB) is convex on the space of

Hermitians.

It is not hard to verify that if S : Hn → Hn is a linear operator such that S ∈ convG, that is, S admits

a representation of the form

(2.12) S =

k∑
i=1

tiUi(·)U∗
i

for some k ∈ N, gi = Ui(·)U∗
i ∈ G, Ui ∈ Un, ti ≥ 0, i = 1, . . . , k,

k∑
i=1

ti = 1, then the adjoint operator of S

(w.r.t. the inner product (2.7)) is given by

(2.13) S∗ =

k∑
i=1

tiU
∗
i (·)Ui.
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It is easily seen that both S and S∗ are positive linear maps sending the identity matrix In onto itself.

For this reason, S and S∗ are doubly stochastic operators acting on Hn. So, in light of (2.8)–(2.9), the

forthcoming statement (2.14) implies, among other things, that C ≺G A and D ≺G B for the matrix

majorization ≺G on Hn.

We now establish a Sherman type majorization result for the Lieb function (cf. [16]).

Theorem 1. Let A,B,C,D ∈ Hn with B > 0 and D > 0. If

(2.14) C = S A and D = S∗B

for some linear operator S : Hn → Hn such that S ∈ convG, then

(2.15) tr exp(C + logB) ≤ tr exp(A+ logD),

(2.16) tr exp(C + logB) ≤ trD expA.

Proof. We denote

Φ(X,Y ) = tr exp(X + log Y ) for X,Y ∈ Hn with Y > 0.

It follows that

(2.17) Φ(gX, Y ) = Φ(X, g−1Y ) for X,Y ∈ Hn, Y > 0 and g ∈ G.

Indeed, in light of (2.10) and (2.11), we have

Φ(gX, Y ) = tr exp(gX + log Y ) = tr g−1 exp(gX + log Y ) = tr exp(g−1(gX + log Y ))

= tr exp(X + g−1 log Y ) = tr exp(X + log g−1Y ) = Φ(X, g−1Y ).

Since S : Hn → Hn is a linear operator such that S ∈ convG, on account of (2.12) and (2.14) we find

that

C =

k∑
i=1

tigiA and D =

k∑
i=1

tig
−1
i B

for some k ∈ N, Ui ∈ Un, gi = Ui(·)U∗
i ∈ G, g−1

i = U∗
i (·)Ui ∈ G, ti ≥ 0, i = 1, . . . , k,

k∑
i=1

ti = 1.

So, using Theorem D, item (ii) leads to

(2.18) Φ(C,B) = Φ

(
k∑
i=1

tigiA,B

)
≤

k∑
i=1

tiΦ(giA,B).

On the other hand, (2.17) gives

(2.19)

k∑
i=1

tiΦ(giA,B) =

k∑
i=1

tiΦ(A, g−1
i B).
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Utilizing Theorem D, item (i) yields

(2.20)

k∑
i=1

tiΦ(A, g−1
i B) ≤ Φ(A,

k∑
i=1

tig
−1
i B) = Φ(A,D).

By combining (2.18), (2.19) and (2.20), we conclude that inequality (2.15) is valid, as claimed.

Finally, inequality (2.16) is a direct consequence of (2.15) and the Golden-Thompson inequality:

tr exp(A+ logD) ≤ tr expA exp logD = tr (expA)D = trD(expA).

Remark 2. The case B = D = In of Theorem 1 leads to the following HLPK type result (cf. Theo-

rem A). If C ≺G A, i.e., λ(C) ≺ λ(A), then

(2.21) tr expC ≤ tr expA.

In fact, (2.21) is closely related to (1.4) used for the eigenvalues of the involved matrices.

The version of Theorem 1 for commuting matrices is as follows.

Corollary 3. Let A,B,C,D ∈ Hn with B > 0, D > 0, and

C = S A and D = S∗B

for some linear operator S : Hn → Hn such that S ∈ convG. If C commutes with B, and A commutes with

D, then

(2.22) trB expC ≤ trD expA.

In particular,

(2.23)

n∑
i=1

λi(B) expλi(C) ≤
n∑
i=1

λi(D) expλi(A).

Proof. It follows that C commutes with logB. Hence,

(2.24) tr exp(C + logB) = tr expC exp logB = tr (expC)B = trB(expC).

Likewise, we find that

(2.25) tr exp(A+ logD) = trD(expA).

Invoking to (2.24)–(2.25) and inequality (2.15) in Theorem 1 leads to (2.22), as wanted.

To see (2.23), observe that the assumed commutativity guarantees the existence of some unitaries U and

V in Un satisfying

B = Udiag (λ1(B), . . . , λn(B))U∗, C = Udiag (λ1(C), . . . , λn(C))U∗,

A = V diag (λ1(A), . . . , λn(A))V ∗, D = V diag (λ1(D), . . . , λn(D))V ∗.
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Hence,

expC = Udiag (expλ1(C), . . . , expλn(C))U∗,

expA = V diag (expλ1(A), . . . , expλn(A))V ∗.

Therefore,

trB(expC) =

n∑
i=1

λi(B) expλi(C)

and

trD(expA) =

n∑
i=1

λi(D) expλi(A).

Now, using (2.22) gives (2.23), completing the proof.

Remark 4. Let a = (a1, . . . , an)T , b = (b1, . . . , bn)T , c = (c1, . . . , cn)T , d = (d1, . . . , dn)T with

ai, bi, ci, di ∈ R and bi > 0, di > 0 for i = 1, . . . , n. If

c = Sa and d = STb

for some n× n doubly stochastic matrix S, then

n∑
i=1

bi exp ci ≤
n∑
i=1

di exp ai.

To see this, it is enough to use Corollary 3 for the diagonal matrices

A = diag a , B = diagb , C = diag c , D = diagd,

and for the linear operator

S =

k∑
i=1

tiPi(·)PTi ∈ convG

for some k ∈ N, Pi ∈ Pn, ti ≥ 0, i = 1, . . . , k,
k∑
i=1

ti = 1 such that S =
k∑
i=1

tiPi.

So, Theorem 1 applied to diagonal matrices reduces to Sherman’s Theorem C for the function f = exp.

Corollary 5. Let S : Hn → Hn be a linear operator such that S ∈ convG. Let A0 ∈ Hn and

0 < B0 ∈ Hn, and

(2.26) Ai+1 = S Ai and Bi+1 = S∗Bi for i = 0, 1, . . . , n− 1.

Then

tr exp(An + logB0) ≤ tr exp(An−1 + logB1) ≤ tr exp(An−2 + logB2) ≤ · · ·

(2.27) ≤ tr exp(A2 + logBn−2) ≤ tr exp(A1 + logBn−1) ≤ tr exp(A0 + logBn).

Proof. From (2.15) via (2.26), we get

tr exp(Ai+1 + logBn−i−1) ≤ tr exp(Ai + logBn−i) for i = 0, 1, . . . , n− 1,

which implies (2.27).
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Let q, n1, . . . , nq with n =
q∑
i=1

ni be positive integers. Consider all block-diagonal matrices of the form

Dα = diag (±In1
, . . . ,±Inq

) for α = 1, . . . , 2q with all possible choices signs ±. Then for an X = (Xij) ∈ Hn,

it holds that

(2.28) SX = diag (X11, . . . , Xqq) =
1

2q

2q∑
α=1

DαXDα

is the orthogonal projection from Hn onto the space of all block-diagonal Hermitian matrices [4, p. 96–97].

Additionally, S∗ = S (see (2.12)–(2.13)).

Corollary 6. Let A = (Aij) ∈ Hn and B = (Bij) ∈ Hn with B > 0. Then

(2.29) tr exp(diag (A11, . . . , Aqq) + logB) ≤ tr exp(A+ log diag (B11, . . . , Bqq)).

Proof. We introduce the matrices

C = diag (A11, . . . , Aqq) and D = diag (B11, . . . , Bqq).

Since B > 0, we get D > 0.

It is clear that

C = S A and D = S∗B,

where S : Hn → Hn is the linear operator given by (2.28). Evidently, S ∈ convG.

Now, the required assertion follows from inequality (2.15) in Theorem 1.

We finish our discussion with the case q = n and n1 = · · · = nq = 1. Then for A = (aij) and

B = (bij) > 0 we deduce from (2.29) that

tr exp(diag (a11, . . . , ann) + logB) ≤ tr exp(A+ log diag (b11, . . . , bnn)).
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