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SYMMETRY OF CYCLIC WEIGHTED SHIFT MATRICES

WITH PIVOT-REVERSIBLE WEIGHTS∗

MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. It is proved that every cyclic weighted shift matrix with pivot-reversible weights is unitarily similar to a complex 
symmetric matrix.
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1. Introduction. Let A be an n×n complex matrix. The numerical range of A is defined and denoted

by

W (A) = {ξ∗Aξ : ξ ∈ Cn, ξ∗ξ = 1}.

Toeplitz [16] and Hausdorff [9] firstly introduced this set, and proved the fundamental convex theorem of

the numerical range (cf. [14]). The numerical range and its related subjects have been extensively studied.

From the viewpoint of algebraic curve theory, Kippenhahn [12] characterized that W (A) is the convex hull

of the real affine part of the dual curve of the curve FA(x, y, z) = 0, where FA(x, y, z) is the homogeneous

polynomial associated with A defined by

FA(x, y, z) = det(zIn + x<(A) + y=(A)),

where <(A) = (A+ A∗)/2 and =(A) = (A− A∗)/2i. Fiedler [6] conjectured the inverse problem that there

exists a pair of n× n Hermitian matrices H,K satisfying

F (x, y, z) = det(zIn + xH + yK),

whenever F (x, y, z) is a homogeneous polynomial of degree n for which the equation F (− cos θ,− sin θ, z) = 0

in z has n real roots for any angle 0 ≤ θ ≤ 2π. Helton and Vinnikov[10] proved that this conjecture is true

and such pair H,K can be obtained by real symmetric matrices. In other words, F (x, y, z) = FH+iK(x, y, z),

where the representation matrix H + iK is a complex symmetric matrix. The result provides an intensive

interest on symmetric matrices in this direction. Garcia et al. [7] and references therein investigated

conditions for matrices unitarily similar to complex symmetric matrices. Some classes of matrices are known

being unitarily similar to complex symmetric matrices, such as Toeplitz matrices [1], unitary boarding

matrices [4], and cyclic weighted matrices with reversible positive weights b1, b2, . . . , b2, b1 [11]. As a non-

normal analogue of unitary matrices, cyclic weighted shift matrices and their numerical ranges have been

studied by a number of authors in the past few years (cf. [2, 3, 5, 8, 13, 17]). A cyclic weighted shift matrix
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with weights a1, a2, . . . , an is an n× n matrix of the following form

0 a1 0 0 · · · 0

0 0 a2 0 · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . 0

0 0 · · · · · ·
. . . an−1

an 0 · · · · · · · · · 0


,

which is denoted by S = S(a1, a2, . . . , an).

In this paper, we obtain a new class of matrices which are unitarily similar to symmetric matrices,

namely, the class of cyclic weighted shift matrices with pivot-reversible positive weights. The definition of

pivot-reversible weights is defined in Section 2.

2. Reversible weights with pivots. Let S = S(a1, a2, . . . , an) be a cyclic weighted shift matrix. It

is easy to see that S(a1, a2, . . . , an) is unitarily similar to eiφS(|a1|, |a2|, . . . , |an|) via a unitary diagonal

matrix for some angle φ ∈ [0, 2π). Moreover, the cyclic weighted shift S(a1, a2, . . . , an) is unitarily similar

to S(an, a1, a2, . . . , an−1) which is clockwise rotating its weights (cf.[8]). If ak = 0 for some 1 ≤ k ≤ n,

then by clockwise rotating its weights, S(a1, a2, . . . , an) is unitarily similar to the upper triangular weighted

shift matrix S(ak+1, . . . , an, a1, . . . , ak−1, 0). In this case, the numerical range of S is a circular disc (cf.[2,

17]). Hence, in the following of this paper, we may assume that the weights of a cyclic weighted shift

matrix are positive. A cyclic weighted shift S(a1, a2, . . . , an) is called reversible if its weights are ordered

by a1, a2, . . . , am, am+1, am, . . . , a2, a1 when n = 2m+ 1 is odd, and a1, a2, . . . , am, am, . . . , a2, a1 if n = 2m

is even. Symmetry of cyclic weighted shift matrices with reversible weights is obtained in [11], and the

determinantal representation of their ternary forms is studied in [5].

We introduce a new type of cyclic weighted shifts, namely, the class of cyclic weighted shift matrices with

pivot-reversible positive weights. A matrix of even size n = 2m is a cyclic weighted shift matrix with two-

pivot-reversible weights if its weights are ordered as a1, a2, . . . , am, am+1, am, am−1, . . . , a2, the two pivots

are a1 and am+1. A matrix of odd size n = 2m−1 is a cyclic weighted shift matrix with one-pivot-reversible

weights if its weights are ordered as a1, a2, . . . , am, am, am−1, . . . , a2, the one pivot is a1. Figure 1 displays

the graph of a reversible cyclic weighted shift with two pivots a1 and a6 for even size n = 10. Figure 2 shows

the odd size n = 9 with one pivot a1.

Figure 1. Reversible weights with two pivots a1 and a6.
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Figure 2. Reversible weights with one pivot a1.

Assume that A is a 2 × 2 complex matrix. Then there is a unitary matrix U and and an angle θ such

that

U<(A)U∗ =

(
λ1 0

0 λ2

)
and U=(A)U∗ =

(
µ1 νeiθ

νe−iθ µ2

)
for some real numbers λ1, λ2, µ1, µ2, ν, and thus,(

1 0

0 eiθ

)
(UAU∗)

(
1 0

0 e−iθ

)
=

(
λ1 + iµ1 iν

iν λ2 + iµ2

)
is a complex symmetric matrix. Hence, in the following of this paper we assume the size of a matrix n ≥ 3.

Theorem 2.1. Every cyclic weighted shift matrix with pivot-reversible positive weights is unitarily sim-

ilar to a complex symmetric matrix.

Proof. Let S be an n× n cyclic weighted shift matrices with pivot-reversible positive weights. Suppose

n = 2m− 1 is odd. Then S = S(a1, a2, . . . , am−1, am, am, am−1, . . . , a2). By the cycling property [8],

S(a1, a2, . . . , am, am, am−1, . . . , a2) is unitarily similar to S(am, . . . , a2, a1, a2, . . . , am). According to the

result in [11], the type of reversible matrix S(am, . . . , a2, a1, a2, . . . , am) is unitarily similar to a complex

symmetric matrix.

Suppose n = 2m is even. Then S = S(a1, a2, . . . , am, am+1, am, . . . , a2). Denote two Hermitian matrices

H = 2<(S(a1, a2, . . . , am, am+1, am, . . . , a2))

and

K = 2=(S(a1, a2, . . . , am, am+1, am, . . . , a2)).

Then

S(a1, a2, . . . , am, am+1, am, . . . , a2) =
H

2
+ i

K

2
.

Let

f1 =
1√
2

(1, 1, 0, . . . , 0︸ ︷︷ ︸
n−2

)T ,

fk =
1√
2

(0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
n−2k

, 1, 0, . . . , 0︸ ︷︷ ︸
k−2

)T , 2 ≤ k ≤ m,

and

g1 =
1√
2

(1,−1, 0, . . . , 0︸ ︷︷ ︸
n−2

)T ,
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gk =
1√
2

(0, . . . , 0︸ ︷︷ ︸
k

, (−1)k, 0, . . . , 0︸ ︷︷ ︸
n−2k

, (−1)k+1, 0, . . . , 0︸ ︷︷ ︸
k−2

)T , 2 ≤ k ≤ m.

Then, {f, . . . , fm, g1, . . . , gm} is an orthonormal basis for Cn. After a direct computation, we have that

Hf1 = a1f1 + a2f2,

Hfk = akfk−1 + ak+1fk+1, 2 ≤ k ≤ m− 1,

Hfm = amfm−1 + am+1fm,

Hg1 = −a1g1 − a2g2,
Hgk = −akgk−1 − ak+1gk+1, 2 ≤ k ≤ m− 1,

Hgm = −amgm−1 − am+1gm.

With respect to the orthonormal basis {f, . . . , fm, g1, . . . , gm}, H is expressed as a block matrix(
H0 0m
0m −H0

)
,

where

H0 =



a1 a2 0 0 · · · 0 0

a2 0 a3 0 · · · 0 0

0 a3 0 a4 · · · 0 0
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · 0 am
0 0 0 0 · · · am am+1


.

Similarly, we also have that

Kf1 = i(−a1g1 + a2g2),

Kfk = i((−1)kakgk−1 + (−1)k+1ak+1gk+1), 2 ≤ k ≤ m− 1,

Kfm = i((−1)mamgm−1 + (−1)m+1am+1gm),

Kg1 = −i(−a1f1 + a2f2),

Kgk = −i((−1)kakfk−1 + (−1)k+1ak+1fk+1), 2 ≤ k ≤ m− 1,

Kgm = −i((−1)mamfm−1 + (−1)m+1am+1fm).

With respect to the orthonormal basis {f, . . . , fm, g1, . . . , gm}, K is expressed as a block matrix(
0m −K0

K0 0m

)
,

where

K0 = i



−a1 a2 0 0 · · · 0 0

a2 0 −a3 0 · · · 0 0

0 −a3 0 a4 · · · 0 0
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · 0 (−1)mam
0 0 0 0 · · · (−1)mam (−1)m+1am+1


.
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Hence, the Hermitian matrices H and K are simultaneously unitarily similar to the respective block matrices(
H0 0m
0m −H0

)
and

(
0m −K0

K0 0m

)
.

Choose the unitary matrix

U =

(
Im 0m
0m iIm

)
,

then we have that

U

(
H0 0m
0m −H0

)
U∗ =

(
H0 0m
0m −H0

)
,

U

(
0m −K0

K0 0m

)
U∗ =

(
0m iK0

iK0 0m

)
.

The two matrices on the right-hand sides are real symmetric. This proves the matrix

S(a1, a2, . . . , am, am+1, am, . . . , a2) is unitarily similar to a complex symmetric matrix.

It is shown in [5] that when n is odd, for any n× n cyclic weighted shift matrix S(a1, a2, . . . , an) there

exists a reversible cyclic weighted shift matrix S(b1, b2, . . . , b2, b1) such that

FS(a1,a2,...,an)(x, y, z) = FS(b1,b2,...,b2,b1)(x, y, z).

It follows that the numerical ranges W (S(a1, a2, . . . , an)) = W (S(b1, b2, . . . , b2, b1)). When n = 2m is even,

we deal with the same problem that for an n × n cyclic weighted shift matrix S(a1, a2, . . . , an), does there

exist a 2-pivot reversible cyclic weighted shift matrix S(b1, b2, . . . , bm, bm+1, bm, . . . , b2) satisfying

FS(a1,a2,...,an)(x, y, z) = FS(b1,b2,...,bm,bm+1,bm,...,b2)(x, y, z)?

This problem may relate to the Helton-Vinnikov theorem (cf. [15, Theorems 6,7]). So far, we are unable to

solve this problem. In the following, we confirm only for the case n = 4.

Theorem 2.2. Let S(a1, a2, a3, a4) be a 4 × 4 cyclic weighted shift matrix with positive weights. Then

there exist two-pivot reversible positive weights b1, b2, b3, b2 such that

FS(a1,a2,a3,a4)(x, y, z) = FS(b1,b2,b3,b2)(x, y, z).

Proof. According to a formula in [8], the ternary form FS(a1,a2,a3,a4)(x, y, z) is given by

16FS(a1,a2,a3,a4)(z,− cos θ,− sin θ)

= 16z4 − 4(a21 + a22 + a33 + a24)z2 + a21a
2
3 + a22a

2
4 − 2a1a2a3a4 cos(4θ).

Hence, to prove the existence of 2-pivot reversible positive weights b1, b2, b3, b2, it suffices to find positive

numbers b1, b2, b3 satisfying the following three conditions

b1b
2
2b3 = a1a2a3a4,

b21b
2
3 + b42 = a21a

2
3 + a22a

2
4,

b21 + 2b22 + b23 = a21 + a22 + a23 + a24.
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We change the variables: Aj = a2j and Bj = b2j , j = 1, 2, 3, 4. Then the above three conditions are rewritten

as

B1B3B
2
2 = A1A2A3A4,

B1B3 +B2
2 = A1A3 +A2A4,

B1 +B3 + 2B2 = A1 +A2 +A3 +A4.

Firstly, we choose B2 =
√
A2A4 = a2a4. Then, the three conditions imply that

B1B3 = A1A3 and B1 +B3 = A1 +A3 + (
√
A2 −

√
A4)2.

Consider the quadratic equation

t2 − (A1 +A3 + (
√
A2 −

√
A4)2)t+A1A3 = 0.

If the two roots of this equation are positive which can be chosen for B1 and B3, then the proof is completed.

In fact, the discriminant of the quadratic equation is given by

D = (A1 +A2 +A3 +A4 − 2
√
A2A4)2 − 4A1A3

=
(
(a1 + a3)2 + (a2 − a4)2

) (
(a1 − a3)2 + (a2 − a4)2

)
.

Hence, the discriminant D is positive except a1 = a3 and a2 = a4. In this exceptional case, by letting

b1 = b3 = a1 = a3, b2 = a2 = a4, all the required conditions on b1, b2, b3 are satisfied.

3. Fourier transform method. In this section, we provide an alternative proof of Theorem 2.1

through Fourier transform method which is used in [11] to prove the symmetry of reversible cyclic weighted

shift matrices. Define an n× n unitary transformation matrix U = (uk`):

uk` =
1√
n
ω(k−1)(`−1),

where ω = e2πi/n. Let A = (apq) be an n × n matrix. The Fourier transform B = (bk`) = U∗AU of A is

given by

bk` =
1

n

n∑
p,q=1

ω−(k−1)(p−1)ω(`−1)(q−1)apq.

Denote B̃ = nB.

Theorem 3.1. Let n = 2m and A = (apq) be an n× n two-pivot-reversible cyclic weighted shift matrix

with weights a1, a2, . . . , am, am+1, am, . . . , a2. Then V ∗B̃V is a complex symmetric matrix, where

V = diag(ω−1/2, ω−1, ω−3/2, . . . , ω−(n−1)/2).

Proof. If A = (apq) is a weighted shift matrix with weights a1, a2, . . . , an, the matrix B̃ = nB = (b̃pq) is

given by

b̃pp = ωp−1

p∑
j=1

aj = ωp−1(a1 + a2 + · · ·+ an), p = 1, 2, . . . , n,

b̃p,p+k =

n∑
j=1

ajω
p+k−1+(j−1)k =

n∑
j=1

ajω
p+jk−1

= ωp+k−1(a1 + a2ω
k + a3ω

2k + · · ·+ anω
(n−1)k),
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for 1 ≤ p ≤ n− 1, 1 ≤ k ≤ n− p, and

b̃p+k,p =

n∑
j=1

ajω
p−1−(j−1)k

= ωp−1(a1 + a2ω
−k + a3ω

−2k + · · ·+ anω
−(n−1)k)

for 1 ≤ p ≤ n− 1, 1 ≤ k ≤ n− p.

In the case that n = 2m and the weights are 2-pivot reversible a1, a2, . . . , am, am+1, am, . . . , a2, we have

that

b̃pp = ωp−1(a1 + am+1 + 2a2 + · · ·+ 2am), p = 1, 2, . . . , n,

b̃p,p+k = ωp+k−1
(
a1 + (−1)kam+1 + 2a2 cos(kπ/m) + 2a3 cos(2kπ/m) + · · ·+ 2am cos((m− 1)kπ/m)

)
,

b̃p+k,p = ωp−1
(
a1 + (−1)kam+1 + 2a2 cos(kπ/m) + 2a3 cos(2kπ/m) + · · ·+ 2am cos((m− 1)kπ/m)

)
for p = 1, 2, . . . , n− 1, k = 1, 2, . . . , n− p. Define a diagonal unitary matrix

V = diag(β1, β2, . . . , βn),

where βj = e−jπi/n, j = 1, 2, . . . , n. Then the (p, p + k) and (p + k, p) entries of the matrix V ∗B̃V are

respectively equal to β−1
p βp+kω

p+k−1γ and β−1
p+kβpω

p−1γ, where

γ = a1 + (−1)kam+1 + 2a2 cos(kπ/m) + 2a3 cos(2kπ/m) + · · ·+ 2am cos((m− 1)kπ/m).

Clearly, these two entries are the same since β2
p+kω

p+k = β2
pω

p = 1, and thus, V ∗B̃V is symmetric.
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