SYMMETRY OF CYCLIC WEIGHTED SHIFT MATRICES WITH PIVOT-REVERSIBLE WEIGHTS*

MAO-TING CHIEN ${ }^{\dagger}$ AND HIROSHI NAKAZATO ${ }^{\ddagger}$

Abstract

It is proved that every cyclic weighted shift matrix with pivot-reversible weights is unitarily similar to a complex symmetric matrix.

Key words. Cyclic weighted shift, Pivot-reversible weights, Symmetric matrices, Numerical range.

AMS subject classifications. 15A60, 15B99, 47 B 37 .

1. Introduction. Let A be an $n \times n$ complex matrix. The numerical range of A is defined and denoted by

$$
W(A)=\left\{\xi^{*} A \xi: \xi \in \mathbb{C}^{n}, \xi^{*} \xi=1\right\}
$$

Toeplitz [16] and Hausdorff [9] firstly introduced this set, and proved the fundamental convex theorem of the numerical range (cf. [14]). The numerical range and its related subjects have been extensively studied. From the viewpoint of algebraic curve theory, Kippenhahn [12] characterized that $W(A)$ is the convex hull of the real affine part of the dual curve of the curve $F_{A}(x, y, z)=0$, where $F_{A}(x, y, z)$ is the homogeneous polynomial associated with A defined by

$$
F_{A}(x, y, z)=\operatorname{det}\left(z I_{n}+x \Re(A)+y \Im(A)\right),
$$

where $\Re(A)=\left(A+A^{*}\right) / 2$ and $\Im(A)=\left(A-A^{*}\right) / 2 i$. Fiedler [6] conjectured the inverse problem that there exists a pair of $n \times n$ Hermitian matrices H, K satisfying

$$
F(x, y, z)=\operatorname{det}\left(z I_{n}+x H+y K\right)
$$

whenever $F(x, y, z)$ is a homogeneous polynomial of degree n for which the equation $F(-\cos \theta,-\sin \theta, z)=0$ in z has n real roots for any angle $0 \leq \theta \leq 2 \pi$. Helton and Vinnikov[10] proved that this conjecture is true and such pair H, K can be obtained by real symmetric matrices. In other words, $F(x, y, z)=F_{H+i K}(x, y, z)$, where the representation matrix $H+i K$ is a complex symmetric matrix. The result provides an intensive interest on symmetric matrices in this direction. Garcia et al. [7] and references therein investigated conditions for matrices unitarily similar to complex symmetric matrices. Some classes of matrices are known being unitarily similar to complex symmetric matrices, such as Toeplitz matrices [1], unitary boarding matrices [4], and cyclic weighted matrices with reversible positive weights $b_{1}, b_{2}, \ldots, b_{2}, b_{1}$ [11]. As a nonnormal analogue of unitary matrices, cyclic weighted shift matrices and their numerical ranges have been studied by a number of authors in the past few years (cf. [2, 3, 5, 8, 13, 17]). A cyclic weighted shift matrix

[^0]with weights $a_{1}, a_{2}, \ldots, a_{n}$ is an $n \times n$ matrix of the following form
\[

\left($$
\begin{array}{cccccc}
0 & a_{1} & 0 & 0 & \cdots & 0 \\
0 & 0 & a_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & & \ddots & \ddots & 0 \\
0 & 0 & \cdots & \cdots & \ddots & a_{n-1} \\
a_{n} & 0 & \cdots & \cdots & \cdots & 0
\end{array}
$$\right)
\]

which is denoted by $S=S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
In this paper, we obtain a new class of matrices which are unitarily similar to symmetric matrices, namely, the class of cyclic weighted shift matrices with pivot-reversible positive weights. The definition of pivot-reversible weights is defined in Section 2.
2. Reversible weights with pivots. Let $S=S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a cyclic weighted shift matrix. It is easy to see that $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is unitarily similar to $e^{i \phi} S\left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right)$ via a unitary diagonal matrix for some angle $\phi \in[0,2 \pi)$. Moreover, the cyclic weighted shift $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is unitarily similar to $S\left(a_{n}, a_{1}, a_{2}, \ldots, a_{n-1}\right)$ which is clockwise rotating its weights (cf.[8]). If $a_{k}=0$ for some $1 \leq k \leq n$, then by clockwise rotating its weights, $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is unitarily similar to the upper triangular weighted shift matrix $S\left(a_{k+1}, \ldots, a_{n}, a_{1}, \ldots, a_{k-1}, 0\right)$. In this case, the numerical range of S is a circular disc (cf.[2, 17]). Hence, in the following of this paper, we may assume that the weights of a cyclic weighted shift matrix are positive. A cyclic weighted shift $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called reversible if its weights are ordered by $a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}, a_{1}$ when $n=2 m+1$ is odd, and $a_{1}, a_{2}, \ldots, a_{m}, a_{m}, \ldots, a_{2}, a_{1}$ if $n=2 m$ is even. Symmetry of cyclic weighted shift matrices with reversible weights is obtained in [11], and the determinantal representation of their ternary forms is studied in [5].

We introduce a new type of cyclic weighted shifts, namely, the class of cyclic weighted shift matrices with pivot-reversible positive weights. A matrix of even size $n=2 m$ is a cyclic weighted shift matrix with two-pivot-reversible weights if its weights are ordered as $a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, a_{m-1}, \ldots, a_{2}$, the two pivots are a_{1} and a_{m+1}. A matrix of odd size $n=2 m-1$ is a cyclic weighted shift matrix with one-pivot-reversible weights if its weights are ordered as $a_{1}, a_{2}, \ldots, a_{m}, a_{m}, a_{m-1}, \ldots, a_{2}$, the one pivot is a_{1}. Figure 1 displays the graph of a reversible cyclic weighted shift with two pivots a_{1} and a_{6} for even size $n=10$. Figure 2 shows the odd size $n=9$ with one pivot a_{1}.

Figure 1. Reversible weights with two pivots a_{1} and a_{6}.

Figure 2. Reversible weights with one pivot a_{1}.

Assume that A is a 2×2 complex matrix. Then there is a unitary matrix U and and an angle θ such that

$$
U \Re(A) U^{*}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \quad \text { and } \quad U \Im(A) U^{*}=\left(\begin{array}{cc}
\mu_{1} & \nu e^{i \theta} \\
\nu e^{-i \theta} & \mu_{2}
\end{array}\right)
$$

for some real numbers $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}, \nu$, and thus,

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right)\left(U A U^{*}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-i \theta}
\end{array}\right)=\left(\begin{array}{cc}
\lambda_{1}+i \mu_{1} & i \nu \\
i \nu & \lambda_{2}+i \mu_{2}
\end{array}\right)
$$

is a complex symmetric matrix. Hence, in the following of this paper we assume the size of a matrix $n \geq 3$.
ThEOREM 2.1. Every cyclic weighted shift matrix with pivot-reversible positive weights is unitarily similar to a complex symmetric matrix.

Proof. Let S be an $n \times n$ cyclic weighted shift matrices with pivot-reversible positive weights. Suppose $n=2 m-1$ is odd. Then $S=S\left(a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}, a_{m}, a_{m-1}, \ldots, a_{2}\right)$. By the cycling property [8], $S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m}, a_{m-1}, \ldots, a_{2}\right)$ is unitarily similar to $S\left(a_{m}, \ldots, a_{2}, a_{1}, a_{2}, \ldots, a_{m}\right)$. According to the result in [11], the type of reversible matrix $S\left(a_{m}, \ldots, a_{2}, a_{1}, a_{2}, \ldots, a_{m}\right)$ is unitarily similar to a complex symmetric matrix.

Suppose $n=2 m$ is even. Then $S=S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}\right)$. Denote two Hermitian matrices

$$
H=2 \Re\left(S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}\right)\right)
$$

and

$$
K=2 \Im\left(S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}\right)\right)
$$

Then

$$
S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}\right)=\frac{H}{2}+i \frac{K}{2}
$$

Let

$$
\begin{gathered}
f_{1}=\frac{1}{\sqrt{2}}(1,1, \underbrace{0, \ldots, 0}_{n-2})^{T}, \\
f_{k}=\frac{1}{\sqrt{2}}(\underbrace{0, \ldots, 0}_{k}, 1, \underbrace{0, \ldots, 0}_{n-2 k}, 1, \underbrace{0, \ldots, 0}_{k-2})^{T}, \quad 2 \leq k \leq m,
\end{gathered}
$$

and

$$
g_{1}=\frac{1}{\sqrt{2}}(1,-1, \underbrace{0, \ldots, 0}_{n-2})^{T}
$$

$$
g_{k}=\frac{1}{\sqrt{2}}(\underbrace{0, \ldots, 0}_{k},(-1)^{k}, \underbrace{0, \ldots, 0}_{n-2 k},(-1)^{k+1}, \underbrace{0, \ldots, 0}_{k-2})^{T}, \quad 2 \leq k \leq m .
$$

Then, $\left\{f, \ldots, f_{m}, g_{1}, \ldots, g_{m}\right\}$ is an orthonormal basis for \mathbb{C}^{n}. After a direct computation, we have that

$$
\begin{aligned}
H f_{1} & =a_{1} f_{1}+a_{2} f_{2} \\
H f_{k} & =a_{k} f_{k-1}+a_{k+1} f_{k+1}, 2 \leq k \leq m-1 \\
H f_{m} & =a_{m} f_{m-1}+a_{m+1} f_{m} \\
H g_{1} & =-a_{1} g_{1}-a_{2} g_{2} \\
H g_{k} & =-a_{k} g_{k-1}-a_{k+1} g_{k+1}, 2 \leq k \leq m-1 \\
H g_{m} & =-a_{m} g_{m-1}-a_{m+1} g_{m}
\end{aligned}
$$

With respect to the orthonormal basis $\left\{f, \ldots, f_{m}, g_{1}, \ldots, g_{m}\right\}, H$ is expressed as a block matrix

$$
\left(\begin{array}{cc}
H_{0} & 0_{m} \\
0_{m} & -H_{0}
\end{array}\right),
$$

where

$$
H_{0}=\left(\begin{array}{ccccccc}
a_{1} & a_{2} & 0 & 0 & \cdots & 0 & 0 \\
a_{2} & 0 & a_{3} & 0 & \cdots & 0 & 0 \\
0 & a_{3} & 0 & a_{4} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & a_{m} \\
0 & 0 & 0 & 0 & \cdots & a_{m} & a_{m+1}
\end{array}\right)
$$

Similarly, we also have that

$$
\begin{aligned}
K f_{1} & =i\left(-a_{1} g_{1}+a_{2} g_{2}\right) \\
K f_{k} & =i\left((-1)^{k} a_{k} g_{k-1}+(-1)^{k+1} a_{k+1} g_{k+1}\right), 2 \leq k \leq m-1 \\
K f_{m} & =i\left((-1)^{m} a_{m} g_{m-1}+(-1)^{m+1} a_{m+1} g_{m}\right) \\
K g_{1} & =-i\left(-a_{1} f_{1}+a_{2} f_{2}\right) \\
K g_{k} & =-i\left((-1)^{k} a_{k} f_{k-1}+(-1)^{k+1} a_{k+1} f_{k+1}\right), 2 \leq k \leq m-1 \\
K g_{m} & =-i\left((-1)^{m} a_{m} f_{m-1}+(-1)^{m+1} a_{m+1} f_{m}\right)
\end{aligned}
$$

With respect to the orthonormal basis $\left\{f, \ldots, f_{m}, g_{1}, \ldots, g_{m}\right\}, K$ is expressed as a block matrix

$$
\left(\begin{array}{cc}
0_{m} & -K_{0} \\
K_{0} & 0_{m}
\end{array}\right)
$$

where

$$
K_{0}=i\left(\begin{array}{ccccccc}
-a_{1} & a_{2} & 0 & 0 & \cdots & 0 & 0 \\
a_{2} & 0 & -a_{3} & 0 & \cdots & 0 & 0 \\
0 & -a_{3} & 0 & a_{4} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & (-1)^{m} a_{m} \\
0 & 0 & 0 & 0 & \cdots & (-1)^{m} a_{m} & (-1)^{m+1} a_{m+1}
\end{array}\right)
$$

Hence, the Hermitian matrices H and K are simultaneously unitarily similar to the respective block matrices

$$
\left(\begin{array}{cc}
H_{0} & 0_{m} \\
0_{m} & -H_{0}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0_{m} & -K_{0} \\
K_{0} & 0_{m}
\end{array}\right) .
$$

Choose the unitary matrix

$$
U=\left(\begin{array}{ll}
I_{m} & 0_{m} \\
0_{m} & i I_{m}
\end{array}\right)
$$

then we have that

$$
\begin{aligned}
& U\left(\begin{array}{cc}
H_{0} & 0_{m} \\
0_{m} & -H_{0}
\end{array}\right) U^{*}=\left(\begin{array}{cc}
H_{0} & 0_{m} \\
0_{m} & -H_{0}
\end{array}\right), \\
& U\left(\begin{array}{cc}
0_{m} & -K_{0} \\
K_{0} & 0_{m}
\end{array}\right) U^{*}=\left(\begin{array}{cc}
0_{m} & i K_{0} \\
i K_{0} & 0_{m}
\end{array}\right) .
\end{aligned}
$$

The two matrices on the right-hand sides are real symmetric. This proves the matrix $S\left(a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}\right)$ is unitarily similar to a complex symmetric matrix.

It is shown in [5] that when n is odd, for any $n \times n$ cyclic weighted shift matrix $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ there exists a reversible cyclic weighted shift matrix $S\left(b_{1}, b_{2}, \ldots, b_{2}, b_{1}\right)$ such that

$$
F_{S\left(a_{1}, a_{2}, \ldots, a_{n}\right)}(x, y, z)=F_{S\left(b_{1}, b_{2}, \ldots, b_{2}, b_{1}\right)}(x, y, z)
$$

It follows that the numerical ranges $W\left(S\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=W\left(S\left(b_{1}, b_{2}, \ldots, b_{2}, b_{1}\right)\right)$. When $n=2 m$ is even, we deal with the same problem that for an $n \times n$ cyclic weighted shift matrix $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, does there exist a 2-pivot reversible cyclic weighted shift matrix $S\left(b_{1}, b_{2}, \ldots, b_{m}, b_{m+1}, b_{m}, \ldots, b_{2}\right)$ satisfying

$$
F_{S\left(a_{1}, a_{2}, \ldots, a_{n}\right)}(x, y, z)=F_{S\left(b_{1}, b_{2}, \ldots, b_{m}, b_{m+1}, b_{m}, \ldots, b_{2}\right)}(x, y, z) ?
$$

This problem may relate to the Helton-Vinnikov theorem (cf. [15, Theorems 6,7$]$). So far, we are unable to solve this problem. In the following, we confirm only for the case $n=4$.

THEOREM 2.2. Let $S\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ be $a \times 4$ cyclic weighted shift matrix with positive weights. Then there exist two-pivot reversible positive weights $b_{1}, b_{2}, b_{3}, b_{2}$ such that

$$
F_{S\left(a_{1}, a_{2}, a_{3}, a_{4}\right)}(x, y, z)=F_{S\left(b_{1}, b_{2}, b_{3}, b_{2}\right)}(x, y, z)
$$

Proof. According to a formula in [8], the ternary form $F_{S\left(a_{1}, a_{2}, a_{3}, a_{4}\right)}(x, y, z)$ is given by

$$
\begin{aligned}
& 16 F_{S\left(a_{1}, a_{2}, a_{3}, a_{4}\right)}(z,-\cos \theta,-\sin \theta) \\
& =16 z^{4}-4\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{3}+a_{4}^{2}\right) z^{2}+a_{1}^{2} a_{3}^{2}+a_{2}^{2} a_{4}^{2}-2 a_{1} a_{2} a_{3} a_{4} \cos (4 \theta)
\end{aligned}
$$

Hence, to prove the existence of 2-pivot reversible positive weights $b_{1}, b_{2}, b_{3}, b_{2}$, it suffices to find positive numbers b_{1}, b_{2}, b_{3} satisfying the following three conditions

$$
\begin{aligned}
b_{1} b_{2}^{2} b_{3} & =a_{1} a_{2} a_{3} a_{4} \\
b_{1}^{2} b_{3}^{2}+b_{2}^{4} & =a_{1}^{2} a_{3}^{2}+a_{2}^{2} a_{4}^{2}, \\
b_{1}^{2}+2 b_{2}^{2}+b_{3}^{2} & =a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} .
\end{aligned}
$$

We change the variables: $A_{j}=a_{j}^{2}$ and $B_{j}=b_{j}^{2}, j=1,2,3,4$. Then the above three conditions are rewritten as

$$
\begin{aligned}
B_{1} B_{3} B_{2}^{2} & =A_{1} A_{2} A_{3} A_{4} \\
B_{1} B_{3}+B_{2}^{2} & =A_{1} A_{3}+A_{2} A_{4} \\
B_{1}+B_{3}+2 B_{2} & =A_{1}+A_{2}+A_{3}+A_{4}
\end{aligned}
$$

Firstly, we choose $B_{2}=\sqrt{A_{2} A_{4}}=a_{2} a_{4}$. Then, the three conditions imply that

$$
B_{1} B_{3}=A_{1} A_{3} \quad \text { and } \quad B_{1}+B_{3}=A_{1}+A_{3}+\left(\sqrt{A_{2}}-\sqrt{A_{4}}\right)^{2}
$$

Consider the quadratic equation

$$
t^{2}-\left(A_{1}+A_{3}+\left(\sqrt{A_{2}}-\sqrt{A_{4}}\right)^{2}\right) t+A_{1} A_{3}=0
$$

If the two roots of this equation are positive which can be chosen for B_{1} and B_{3}, then the proof is completed. In fact, the discriminant of the quadratic equation is given by

$$
\begin{aligned}
D & =\left(A_{1}+A_{2}+A_{3}+A_{4}-2 \sqrt{A_{2} A_{4}}\right)^{2}-4 A_{1} A_{3} \\
& =\left(\left(a_{1}+a_{3}\right)^{2}+\left(a_{2}-a_{4}\right)^{2}\right)\left(\left(a_{1}-a_{3}\right)^{2}+\left(a_{2}-a_{4}\right)^{2}\right) .
\end{aligned}
$$

Hence, the discriminant D is positive except $a_{1}=a_{3}$ and $a_{2}=a_{4}$. In this exceptional case, by letting $b_{1}=b_{3}=a_{1}=a_{3}, b_{2}=a_{2}=a_{4}$, all the required conditions on b_{1}, b_{2}, b_{3} are satisfied.
3. Fourier transform method. In this section, we provide an alternative proof of Theorem 2.1 through Fourier transform method which is used in [11] to prove the symmetry of reversible cyclic weighted shift matrices. Define an $n \times n$ unitary transformation matrix $U=\left(u_{k \ell}\right)$:

$$
u_{k \ell}=\frac{1}{\sqrt{n}} \omega^{(k-1)(\ell-1)},
$$

where $\omega=e^{2 \pi i / n}$. Let $A=\left(a_{p q}\right)$ be an $n \times n$ matrix. The Fourier transform $B=\left(b_{k \ell}\right)=U^{*} A U$ of A is given by

$$
b_{k \ell}=\frac{1}{n} \sum_{p, q=1}^{n} \omega^{-(k-1)(p-1)} \omega^{(\ell-1)(q-1)} a_{p q}
$$

Denote $\tilde{B}=n B$.
THEOREM 3.1. Let $n=2 m$ and $A=\left(a_{p q}\right)$ be an $n \times n$ two-pivot-reversible cyclic weighted shift matrix with weights $a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}$. Then $V^{*} \tilde{B} V$ is a complex symmetric matrix, where

$$
V=\operatorname{diag}\left(\omega^{-1 / 2}, \omega^{-1}, \omega^{-3 / 2}, \ldots, \omega^{-(n-1) / 2}\right)
$$

Proof. If $A=\left(a_{p q}\right)$ is a weighted shift matrix with weights $a_{1}, a_{2}, \ldots, a_{n}$, the matrix $\tilde{B}=n B=\left(\tilde{b}_{p q}\right)$ is given by

$$
\begin{aligned}
\tilde{b}_{p p}=\omega^{p-1} & \sum_{j=1}^{p} a_{j}=\omega^{p-1}\left(a_{1}+a_{2}+\cdots+a_{n}\right), \quad p=1,2, \ldots, n, \\
\tilde{b}_{p, p+k} & =\sum_{j=1}^{n} a_{j} \omega^{p+k-1+(j-1) k}=\sum_{j=1}^{n} a_{j} \omega^{p+j k-1} \\
& =\omega^{p+k-1}\left(a_{1}+a_{2} \omega^{k}+a_{3} \omega^{2 k}+\cdots+a_{n} \omega^{(n-1) k}\right),
\end{aligned}
$$

for $1 \leq p \leq n-1,1 \leq k \leq n-p$, and

$$
\begin{aligned}
\tilde{b}_{p+k, p} & =\sum_{j=1}^{n} a_{j} \omega^{p-1-(j-1) k} \\
& =\omega^{p-1}\left(a_{1}+a_{2} \omega^{-k}+a_{3} \omega^{-2 k}+\cdots+a_{n} \omega^{-(n-1) k}\right)
\end{aligned}
$$

for $1 \leq p \leq n-1,1 \leq k \leq n-p$.
In the case that $n=2 m$ and the weights are 2-pivot reversible $a_{1}, a_{2}, \ldots, a_{m}, a_{m+1}, a_{m}, \ldots, a_{2}$, we have that

$$
\begin{gathered}
\tilde{b}_{p p}=\omega^{p-1}\left(a_{1}+a_{m+1}+2 a_{2}+\cdots+2 a_{m}\right), \quad p=1,2, \ldots, n \\
\tilde{b}_{p, p+k}=\omega^{p+k-1}\left(a_{1}+(-1)^{k} a_{m+1}+2 a_{2} \cos (k \pi / m)+2 a_{3} \cos (2 k \pi / m)+\cdots+2 a_{m} \cos ((m-1) k \pi / m)\right), \\
\tilde{b}_{p+k, p}=\omega^{p-1}\left(a_{1}+(-1)^{k} a_{m+1}+2 a_{2} \cos (k \pi / m)+2 a_{3} \cos (2 k \pi / m)+\cdots+2 a_{m} \cos ((m-1) k \pi / m)\right)
\end{gathered}
$$

for $p=1,2, \ldots, n-1, k=1,2, \ldots, n-p$. Define a diagonal unitary matrix

$$
V=\operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)
$$

where $\beta_{j}=e^{-j \pi i / n}, j=1,2, \ldots, n$. Then the $(p, p+k)$ and $(p+k, p)$ entries of the matrix $V^{*} \tilde{B} V$ are respectively equal to $\beta_{p}^{-1} \beta_{p+k} \omega^{p+k-1} \gamma$ and $\beta_{p+k}^{-1} \beta_{p} \omega^{p-1} \gamma$, where

$$
\gamma=a_{1}+(-1)^{k} a_{m+1}+2 a_{2} \cos (k \pi / m)+2 a_{3} \cos (2 k \pi / m)+\cdots+2 a_{m} \cos ((m-1) k \pi / m)
$$

Clearly, these two entries are the same since $\beta_{p+k}^{2} \omega^{p+k}=\beta_{p}^{2} \omega^{p}=1$, and thus, $V^{*} \tilde{B} V$ is symmetric.

Acknowledgements. The authors would like to express their thanks to an anonymous referee for his/her valuable suggestions, and simplifying the proof of Theorem 2.1. The first author was partially supported by Ministry of Science and Technology of Taiwan under MOST 108-2115-M-031-001, and the J.T. Tai \& Co Foundation Visiting Research Program. The second author thanks the support from Mathematics Research Promotion Center of Taiwan for visiting Soochow University on this work.

REFERENCES

[1] M.T. Chien, J.Z. Liu, H. Nakazato, and T.Y. Tam. Toeplitz matrices are unitarily similar to symmetric matrices. Linear Multilinear Algebra, 65:2131-2144, 2017.
[2] M.T. Chien and H. Nakazato. Hyperbolic forms associated with cyclic weighted shift matrices. Linear Algebra Appl., 439:3541-3554, 2013.
[3] M.T. Chien and H. Nakazato. Determinantal representations of hyperbolic forms via weighted shift matrices. Appl. Math. Comput., 258:172-181, 2015.
[4] M.T. Chien and H. Nakazato. Matrices unitarily similar to symmetric matrices. Proceedings of the 20th International Conference of Applied Mathematics, Budapest, Hungary, 86-91, 2015.
[5] M.T. Chien and H. Nakazato. Hyperbolic forms admit reversible weighted shift determinantal reprentation. Applied Math. Comput., 362:124595, 2019.
[6] M. Fiedler. Geometry of the numerical range of matrices. Linear Algebra Appl., 37:81-96, 1981.
[7] S.R. Garcia, D.E. Poore, and J.E. Tener. Unitary equivalence to a complex symmetric matrix: Low dimensions. Linear Algebra Appl., 437:271-284, 2012.
[8] H.-L. Gau, M.C. Tsai, and H.C. Wang. Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges. Linear Algebra Appl., 438:498-513, 2013.
[9] F. Hausdorff. Das wertevorrat einer bilinearform. Math. Z., 3:314-316, 1919.
[10] J.W. Helton and V. Vinnikov. Linear matrix inequality representations of sets. Comm. Pure Appl. Math., 60:654-674, 2007.
[11] P.R. Huang and H. Nakazato. Cyclic weighted shift matrix with reversible weights. Ann. Funct. Anal., 10:72-80, 2019.
[12] R. Kippenhahn. Über den wertevorrat einer Matrix. Math. Nachr., 6:193-228, 1951.
[13] K. Lentzos, and L. Pasley. Determinantal representations of invariant hyperbolic plane curves. Linear Algebra Appl., 556:108-130, 2018.
[14] C.K. Li and T.Y. Tam (editors). Special Issue on The Numerical Range and Numerical Radius. Linear Multilinear Algebra, 57(5), 2009.
[15] D. Plaumann, B. Sturmfels, and C. Vinzant. Computing linear matrix representations of Helton-Vinnikov curves. In: H. Dym et al. (editors), Mathematical Methods in Systems, Optimizations, and Control, Festschrift in honor of J. William Helton, Oper. Theory Adv. Appl., Birkhäuser, Basel, 222:259-277, 2012.
[16] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fejér. Math. Z., 2:187-197, 1918.
[17] M.C. Tsai and P.Y. Wu. Numerical range of weighted shift matrices. Linear Algebra Appl., 435:243-254, 2011.

[^0]: *Received by the editors on September 3, 2019. Accepted for publication on December 26. Handling Editor: Zejun Huang. Corresponding Author: Mao-Ting Chien.
 ${ }^{\dagger}$ Department of Mathematics, Soochow University, Taipei 11102, Taiwan (mtchien@scu.edu.tw).
 ${ }^{\ddagger}$ Department of Mathematics and Physics, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan (nakahr@hirosaki-u.ac.jp).

