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(0, 1)-MATRICES AND DISCREPANCY∗

LEROY B. BEASLEY†

Abstract. Let m and n be positive integers, and let R = (r1, . . . , rm) and S = (s1, . . . , sn) be nonnegative integral vectors.

Let A(R,S) be the set of all m×n (0, 1)-matrices with row sum vector R and column vector S. Let R and S be nonincreasing,

and let F (R) be the m× n (0, 1)-matrix where for each i, the ith row of F (R,S) consists of ri 1’s followed by n− ri 0’s. Let

A ∈ A(R,S). The discrepancy of A, disc(A), is the number of positions in which F (R) has a 1 and A has a 0. In this paper,

we investigate the possible discrepancy of At versus the discrepancy of A. We show that if the discrepancy of A is `, then the

discrepancy of the transpose of A is at least `
2
and at most 2`. These bounds are tight.
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The theory of (0, 1)-matrices plays an important role in the analysis of biological networks. Some

obvious ones are the prey–predator models, the climate–growth models, the pollinator–plant models, etc. In

the study of plant species versus biological pollinators, a bipartite graph is an obvious tool for analysis. To

study the bipartite graph, we often use the reduced adjacency matrix (a (0, 1)-matrix) which is also called

the biadjacency matrix [1, 2].

A nested bipartite network has a reduced adjacency matrix that is equivalent to a Ferrers matrix. See

[3]. A measure of the ‘closeness’ of a bipartite network to a nested one is the discrepancy, defined as the

number of 1’s in the reduced adjacency matrix that must be interchanged with a 0 in the same row to yield

a Ferrers matrix. See [4]

In this article, we will consider the discrepancy of a matrix versus the discrepancy of its transpose.

1. Preliminaries.

Definition 1.1. Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be sequences of length m and n of

nonnegative integers from {0, 1, 2, . . . , n} and {0, 1, 2, . . . ,m}, respectively. Let A(R,S) denote the set of all

m× n (0, 1)-matrices with ri 1’s in row i and sj 1’s in row j.

Note that A(R,S) is empty if r1 + r2 + . . .+ rm 6= s1 + s2 + . . .+ sn. Thus, throughout this article, we shall

assume that r1 + r2 + . . . + rm = s1 + s2 + . . . + sn.

Definition 1.2. Let R and S be monotone decreasing sequences of length m and n of nonnegative

integers from {0, 1, 2, . . . , n} and {0, 1, 2, . . . ,m}, respectively. Let FR,n denote the unique matrix in A(R,S)

whose ith row consists of ri 1’s followed by n−ri 0’s. The matrix FR,n is called a Ferrers matrix. [Note that

the Ferrers matrix only relies on the sequence R and the number of columns because, given R, S is fixed.

Necessarily, the jth column of FR,n consists of sj 1’s followed by m − sj 0’s. Thus, it is easily seen that

(FR,n)
t
, the transpose of FR,n, is the Ferrers matrix FS,m ∈ A(S,R).
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Note that every 1× n and m× 1 matrix of 0’s and 1’s which has nonincreasing row and column sums is

a Ferrers matrix, and the transpose of a Ferrers matrix is a Ferrers matrix. So, henceforth, we assume that

2 ≤ min{m,n}.

Given an m×n matrix A of 0’s and 1’s which has nonincreasing row and column sums, the discrepancy

disc(A) or BR(A) is a measure of how near that matrix is to a Ferrers matrix.

Definition 1.3. Let A ∈ A(R,S) with R and S monotone decreasing sequences. The discrepancy of

A, disc(A), is the minimum number of 1’s exchanged with 0’s in the same row of A that yields a Ferrers

matrix, or equivalently, the discrepancy of A is the number of entries in A that are equal 0 and such that the

corresponding entry of FR,n is 1.

That is, disc(A) is the number of 1’s in A that are outside the support of FR,n.

As seen in the following example, the discrepancy of a (0, 1)-matrix is not independent of permutation

of columns which maintains the nonincreasing nature of the columns.

Example 1.4. Consider the two matrices:

A =



1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 0

1 0 1 0


and A′ =



1 0 1 1

1 0 1 1

1 1 1 0

1 1 0 0

1 1 0 0

1 0 0 1


.

Both are in A((3, 3, 3, 2, 2, 2), (6, 3, 3, 3)) and both can be reduced to the Ferrers matrix F =



1 1 1 0

1 1 1 0

1 1 1 0

1 1 0 0

1 1 0 0

1 1 0 0


by exchanging the bold 1’s and 0’s in each row. The discrepancy of A is 4, while the discrepancy of A′ is 3.

Note that A′ is achieved from A by permuting the last two columns.

Note that the discrepancy of At and the discrepancy of A′
t

are both three. So the discrepancy of the

transpose of A is not necessarily the same as the discrepancy of A. A natural question is: given that the

discrepancy of A is k, how large or small can the discrepancy of At be? In this article, we shall answer that

question.

If the discrepancy of A is 0, A is a Ferrers matrix and so is the transpose so that whenever the discrepancy

of a matrix is 0, the discrepancy of its transpose is also 0. If the discrepancy is 1, that is no longer the case,

as seen in the following example.

Example 1.5. Let A =

 1 1 0

0 1 1

1 0 0

 so that At =

 1 0 1

1 1 0

0 1 0

. Both A and At are in A(2, 2, 1|2, 2, 1),

and disc(A) = 1 while disc(At) = 2. Thus, transpose does not preserve discrepancy 1 for min{m,n} ≥ 3.
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Note that if the sequences R and S are monotone decreasing, and if min{m,n} ≤ 2, then the discrepancy

of any matrix and the discrepancy of its transpose are the same.

Definition 1.6. Let A ∈ A(R,S). A row-exchangeable pair, denoted (i|j, k), refers to a pair of indices

in the same row of A (the ith) such that j < k, ai,j = 0 and ai,k = 1. A proper set of row-exchangeable

pairs is a set of row-exchangeable pairs such that the replacement of each first indexed entry with a 1 and

the second indexed entry with 0 (exchanging the values of the entries) yields a matrix whose discrepancy is

one less and this replacement for all row-exchangeable pairs in a proper row-exchangeable set yields a Ferrers

matrix.

A column-exchangeable pair, denoted (p, q|j), refers to a pair of indices in the same column of A

such that p < q, ap,j = 0 and aq,j = 1. A proper set of column-exchangeable pairs is a set of column-

exchangeable pairs such that the replacement of each first indexed entry with a 1 and the second indexed

entry with 0 (exchanging the values of the entries) yields a matrix whose transpose has discrepancy one less

and this replacement for all column-exchangeable pairs in a proper column-exchangeable set yields a Ferrers

matrix.

It is easily seen that the cardinality of a proper row-exchangeable set for A is the discrepancy of A. The

cardinality of a proper column-exchangeable set for A is the discrepancy of At.

Definition 1.7. Let A ∈ A(R,S) and let (i|j, k) be a row-exchangeable pair, and (u, v|z) be a column-

exchangeable pair. The notation A⇐(i|j, k) (resp. A⇐(u, v|z)) will represent the matrix A where ai,j =

1, aik = 0 and ar,s = ar,s otherwise (resp. the matrix A where au,z = 1, av,z = 0 and ar,s = ar,s otherwise).

If X = {prv | v = 1, 2, . . . , r} is a labeled set of row- or column-exchangeable pairs for A, let A⇐X
denote the matrix A(r) where A(1) = A⇐pr1, A

(2) = A(1)⇐pr2, . . . , A
(r) = A(r−1)⇐prr.

Definition 1.8. Let A ∈ A(R,S) and let X = {(iv|jv, kv) | v = 1, 2, . . . , r} be a labeled set of row

exchangeable pairs for A. Define Y(X ) = {(iv, pv|jv) | v = 1, 2, . . . , r} ∪ {(iv, qv|kv) | v = 1, 2, . . . , r} where

pv and qv are defined as follows:

Beginning with v = 1, let p1 be the index of the last row of A above row i1 containing a 1

in column j1, if all the entries of A in column j1 above the row i1 are 0, let p1 = m+ 1. let

q1 be the index of the first row of A below i1 containing a 0 in column k1, if all the entries

of A in column k1 below the row i1 are 1, let q1 = 0. Let A(1) = A⇐(i1|j1, k1). Let p2 be

the index of the last row of A(1) above row 12 containing a 1 in column j2, if all the entries

of A(1) in column j2 above the row i2 are 0, let p2 = m + 1. Let q2 be the index of the first

row of A(1) below row i2 containing a 0 in column k2, if all the entries of A(1) in column k2
below the row i2 are 1, let q2 = 0. Let A(2) = A(1)⇐(i2|j2, k2). Continue in this way to get

pv and qv, v = 3, . . . , r.

Example 1.9. Let A =

 1 1 1 0 1 1

1 1 0 1 1 1

1 1 1 1 0 0

. Then X = {(1|4, 6), (2|3, 6)}. So i1 = 1, j1 = 4, and

k1 = 6. Therefore p1 = 3 and q1 = 0. From this, we get that the first row-exchangeable-pair gives the

single column-exchangeable pair (1, 3|4). Now, A(1) = A⇐(1|4, 6) =

 1 1 1 1 1 0

1 1 0 1 1 1

1 1 1 1 0 0

. From the

second row-exchangeable pair, we have i2 = 2, j2 = 3, and k2 = 6. Therefore, p2 = 3 and q2 = 1. We

now have two column-exchangeable pairs corresponding to the second row-exchangeable-pair: (2, 3|3) and
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(2, 1|6). However, since 2 6< 1, (2, 1|6) is not a column-exchangeable-pair. Now, A(2) = A(1)⇐(2, 3|6) = 1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 0 0

, Which is a Ferrers matrix.

From the above, Y(X ) = {(1, 3|4), (2, 3|3)}. Applying the column-exchangeable pairs to A, we get

A⇐(1, 3|4) = A(1) =

 1 1 1 1 1 1

1 1 0 1 1 1

1 1 1 0 0 0

, and

A(1)⇐(2, 3|3) = A(2) =

 1 1 1 1 1 1

1 1 1 1 1 1

1 1 0 0 0 0

, also a Ferrers matrix, but not the one above.

2. disc(A) vs. disc(At).

Theorem 2.1. Let A ∈ A(R,S) for R and S monotone decreasing sequences of length m and n, respec-

tively. If X is a proper set of row-exchangeable pairs, then Y(X ) contains a proper set of column-exchangeable

pairs for A.

Proof. We proceed by induction on the cardinality of a proper set of row-exchangeable pairs, or equiva-

lently on the discrepancy of A.

Suppose that A ∈ A(R,S) and the discrepancy of A is 1 and let {(i|j.k)} be a proper set of row-

exchangeable pairs. That is the exchangeable 0 is entry (i, j) and the exchanged 1 is the (i, k) entry, then

the only rows of At that might not be a sequence of 1’s followed by 0’s are the jth and kth rows. Thus, only the

jth and kth rows can contain exchangeable 1’s, and then each of them can contain at most one exchangeable

1. Thus, a proper set of column-exchangeable pairs has cardinality at most 2, and the discrepancy of At is

at most 2.

Now assume that any matrix in A(R,S) of discrepancy `−1 contains a proper set of column-exchangeable

pairs of cardinality at most 2`− 2.

Let X be a proper set of row-exchangeable pairs for A and enumerate X so that X = {(iv|jv, kv) | v =

1, . . . , `}. Let A = A⇐(i`|j`, k`), so that A has discrepancy `− 1 and a proper set of row-exchangeable pairs,

X = {(iv|jv, kv) | v = 1, . . . , `− 1}. By induction, Y = Y(X ) has a proper set of column-exchangeable pairs,

call it Z , so that A⇐Z is a Ferrers matrix.

Consider A⇐Z. If B = A⇐Z is not a Ferrers matrix, the only columns of B that are not a column of

1’s followed by a column of 0’s might be the columns j` and k`, and then the only exception would in each

case be in the i` row. In this case, there would be at most one column-exchangeable pair in the j` column

and one in the k` column. Thus, these column-exchangeable pairs together with Z would contain a proper

set of column-exchangeable pairs for A of cardinality at most 2`.

Corollary 2.2. Let A ∈ A(R,S) for R and S monotone decreasing sequences of length m and n

respectively. If disc(A) = `, then d `2e ≤ disc(At) ≤ 2`.
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Proof. Suppose that the discrepancy of A is `. The above theorem shows that the discrepancy of At is

at most 2`. Now, if the discrepancy of At is k, then the discrepancy of Att = A is at most 2k. Since the

discrepancy is an integer, we have d `2e ≤ disc(At) ≤ 2`.

The following example shows that the above bounds are always achievable for (0, 1)-matrices of order

(` + 1)× 2` or larger.

Example 2.3. Let ` ≥ 2, A =

[
K` I`
jt` 0t

`

]
, and let B = A + E`+1,`+1 where K` = J` \ I` is the matrix

af all 1’s except for the diagonal entries, all of which are 0’s, j` is the `-vector of all 1’s, I` is the `× ` identity

matrix, 0` is the `-vector of all 0’s, and Er,s is the matrix with a 1 in the (r, s) entry and 0 elsewhere. Then,

both A and B have discrepancy `, whereas At has discrepancy 2`− 1 and Bt has discrepancy 2`. If C = At

has discrepancy k, then Ct has discrepancy ` = k+1
2 = dk2 e, and if D = Bt has discrepancy d then Dt = B

has discrepancy ` = d
2 = dd2e.

3. A Generalization. In the previous sections, we required the (0, 1)-matrices to be in A(R,S) with

R and S nonincreasing. We now generalize to any (0, 1)-matrix.

Let ~a = (a1, a2, . . . , an) be a row vector with n entries, each a 0 or a 1. (~a ∈ Bn =M1,n(B)). The vector

~a is said to be left justified with k 1’s if a1 = a2 = . . . = ak = 1 and ak+1 = ak+2 = . . . = an = 0 and label

it ~fk. The discrepancy of a vector ~a ∈ M1,n(B) with k 1’s is the number of entries of ~a that are 1 and the

corresponding entry of ~fk is 0. That is equivalent to the minimum number of pairs of entries that must be

exchanged to yield a left justified vector. For example, if ~a = (1 0 0 1 0 1 1 0), then ~a has discrepancy 2 since

exchanging the entries 2 and 5 and the entries 3 and 6, we get the left justified vector (1 1 1 1 0 0 0 0).

As above, let ~0k denote the vector of k 0’s, and let ~jk denote the vector of k 1’s.

Example 3.1. Let k be any positive integer and A =

[
~jk ~0k

~jk
~0k

~jk ~0k

]
. Then, disc(A) = 2k. Let

P2,3 be the permutation that interchanges rows 2 and 3 upon multiplication on the left of a conformal

matrix, or that interchanges columns 2 and 3 upon multiplication on the right of a conformal matrix. Then,

AP2,3 =

[
~jk ~jk ~0k
~0k ~0k ~jk

]
which has discrepancy k.

Definition 3.2. Let m and n be positive integers, S = (s1, s2, . . . , sn) be a sequence of nonnegative

integers from {0, 1, 2, . . . ,m}, and let R = (r1, r2, . . . , rm) be a sequence of nonnegative integers from

{0, 1, 2, . . . , n}. Let Pn(S) be the set of all permutations Q such that A ∈ A(R,S) if and only if AQ ∈
A(R,S).

That is, Pn(S) is the set of permutations that fix the column sums of any matrix in A(R,S) for any sequence

R.

The following definition and label is from Berger and Schreck [2].

Definition 3.3. Let m and n be positive integers, S = (s1, s2, . . . , sn) be a sequence of nonnegative

integers from {0, 1, 2, . . . ,m}, and let R = (r1, r2, . . . , rm) be a sequence of nonnegative integers from

{0, 1, 2, . . . , n}. If R and S are monotone decreasing and A ∈ A(R,S), the isomorphic discrepancy of

A, dI(A), is min{disc(AQ)|Q ∈ Pn(S)}.
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Example 3.4. Recall the matrices in Example 1.4:

A =



1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 0

1 1 0 0

1 0 1 0


and A′ =



1 0 1 1

1 0 1 1

1 1 1 0

1 1 0 0

1 1 0 0

1 0 0 1


.

Note that the minimum discrepancy of AQ is achieved from A by permuting the last two columns.

Lemma 3.5. l Let A be an m× n matrix of 0’s and 1’s. Then, disc(A) = disc(PA) for all P ∈ Pm.

Proof. The discrepancy of any matrix only involves exchanges in rows, the order of the rows does not

change the discrepancy.

Theorem 3.6. Let A be an m×n matrix in A(R,S) with R and S nonincreasing. If disc(A) = k, then

dI(A) ≥ 1
4k.

Proof. Suppose that dI(A) = ` and disc(A) = k. Then, there exists a Q ∈ Pn(S) such that disc(AQ) = `.

Now, by Corollary 2.2, ` = disc(AQ) ≥ 1
2disc((AQ)t) = 1

2disc(Q
tAt) = 1

2discA
t, the last equality follows

from Lemma 3.5. Thus, ` ≥ 1
2disc(A

t) ≥ 1
2 ( 1

2disc((A
t)t)) = 1

4disc(A) = 1
4k. That is, dI(A) ≥ 1

4disc(A).

As only examples are known that show that there exist matrices whose isomorphic discrepancy of A is

at least one half the discrepancy of A, the following problem is proposed:

Problem: Let R and S be nonincreasing. Find a matrix in A(R,S) whose discrepancy is greater than twice

the isomorphic discrepancy,

OR

Show that for any A ∈ A(R,S) dI(A) ≥ 1
2disc(A).
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