(0,1)-MATRICES AND DISCREPANCY*

LEROY B. BEASLEY ${ }^{\dagger}$

Abstract

Let m and n be positive integers, and let $R=\left(r_{1}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, \ldots, s_{n}\right)$ be nonnegative integral vectors. Let $A(R, S)$ be the set of all $m \times n(0,1)$-matrices with row sum vector R and column vector S. Let R and S be nonincreasing, and let $F(R)$ be the $m \times n(0,1)$-matrix where for each i, the $i^{t h}$ row of $F(R, S)$ consists of r_{i} 1's followed by $n-r_{i} 0$'s. Let $A \in A(R, S)$. The discrepancy of $\mathrm{A}, \operatorname{disc}(A)$, is the number of positions in which $F(R)$ has a 1 and A has a 0 . In this paper, we investigate the possible discrepancy of A^{t} versus the discrepancy of A. We show that if the discrepancy of A is ℓ, then the discrepancy of the transpose of A is at least $\frac{\ell}{2}$ and at most 2ℓ. These bounds are tight.

Key words. Ferrers matrix, Row-dense matrix, Discrepancy, Linear preserver, Strong linear preserver.

AMS subject classifications. 15A04, 15A21, 15A86, 05B20, 05C50.

The theory of $(0,1)$-matrices plays an important role in the analysis of biological networks. Some obvious ones are the prey-predator models, the climate-growth models, the pollinator-plant models, etc. In the study of plant species versus biological pollinators, a bipartite graph is an obvious tool for analysis. To study the bipartite graph, we often use the reduced adjacency matrix (a (0,1)-matrix) which is also called the biadjacency matrix [1, 2].

A nested bipartite network has a reduced adjacency matrix that is equivalent to a Ferrers matrix. See [3]. A measure of the 'closeness' of a bipartite network to a nested one is the discrepancy, defined as the number of 1's in the reduced adjacency matrix that must be interchanged with a 0 in the same row to yield a Ferrers matrix. See [4]

In this article, we will consider the discrepancy of a matrix versus the discrepancy of its transpose.

1. Preliminaries.

Definition 1.1. Let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be sequences of length m and n of nonnegative integers from $\{0,1,2, \ldots, n\}$ and $\{0,1,2, \ldots, m\}$, respectively. Let $\mathcal{A}(R, S)$ denote the set of all $m \times n(0,1)$-matrices with $r_{i} 1$'s in row i and $s_{j} 1$'s in row j.

Note that $\mathcal{A}(R, S)$ is empty if $r_{1}+r_{2}+\ldots+r_{m} \neq s_{1}+s_{2}+\ldots+s_{n}$. Thus, throughout this article, we shall assume that $r_{1}+r_{2}+\ldots+r_{m}=s_{1}+s_{2}+\ldots+s_{n}$.

Definition 1.2. Let R and S be monotone decreasing sequences of length m and n of nonnegative integers from $\{0,1,2, \ldots, n\}$ and $\{0,1,2, \ldots, m\}$, respectively. Let $F_{R, n}$ denote the unique matrix in $\mathcal{A}(R, S)$ whose $i^{\text {th }}$ row consists of $r_{i} 1$'s followed by $n-r_{i} 0$'s. The matrix $F_{R, n}$ is called a Ferrers matrix. [Note that the Ferrers matrix only relies on the sequence R and the number of columns because, given R, S is fixed.

Necessarily, the $j^{t h}$ column of $F_{R, n}$ consists of $s_{j} 1$'s followed by $m-s_{j} 0$'s. Thus, it is easily seen that $\left(F_{R, n}\right)^{t}$, the transpose of $F_{R, n}$, is the Ferrers matrix $F_{S, m} \in \mathcal{A}(S, R)$.

[^0]693 (0,1)-Matrices and Discrepancy

Note that every $1 \times n$ and $m \times 1$ matrix of 0's and 1's which has nonincreasing row and column sums is a Ferrers matrix, and the transpose of a Ferrers matrix is a Ferrers matrix. So, henceforth, we assume that $2 \leq \min \{m, n\}$.

Given an $m \times n$ matrix A of 0 's and 1's which has nonincreasing row and column sums, the discrepancy $\operatorname{disc}(A)$ or $\mathrm{BR}(A)$ is a measure of how near that matrix is to a Ferrers matrix.

Definition 1.3. Let $A \in \mathcal{A}(R, S)$ with R and S monotone decreasing sequences. The discrepancy of A, $\operatorname{disc}(A)$, is the minimum number of 1's exchanged with 0 's in the same row of A that yields a Ferrers matrix, or equivalently, the discrepancy of A is the number of entries in A that are equal 0 and such that the corresponding entry of $F_{R, n}$ is 1 .

That is, $\operatorname{disc}(A)$ is the number of 1's in A that are outside the support of $F_{R, n}$.
As seen in the following example, the discrepancy of a $(0,1)$-matrix is not independent of permutation of columns which maintains the nonincreasing nature of the columns.

Example 1.4. Consider the two matrices:

$$
A=\left[\begin{array}{llll}
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & 1 & \mathbf{0} & \mathbf{1} \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & \mathbf{0} & \mathbf{1} & 0
\end{array}\right] \quad \text { and } \quad A^{\prime}=\left[\begin{array}{cccc}
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & \mathbf{0} & 0 & \mathbf{1}
\end{array}\right]
$$

Both are in $A((3,3,3,2,2,2),(6,3,3,3))$ and both can be reduced to the Ferrers matrix $F=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right]$ by exchanging the bold 1's and 0 's in each row. The discrepancy of A is 4 , while the discrepancy of A^{\prime} is 3 . Note that A^{\prime} is achieved from A by permuting the last two columns.

Note that the discrepancy of A^{t} and the discrepancy of $A^{\prime t}$ are both three. So the discrepancy of the transpose of A is not necessarily the same as the discrepancy of A. A natural question is: given that the discrepancy of A is k, how large or small can the discrepancy of A^{t} be? In this article, we shall answer that question.

If the discrepancy of A is $0, A$ is a Ferrers matrix and so is the transpose so that whenever the discrepancy of a matrix is 0 , the discrepancy of its transpose is also 0 . If the discrepancy is 1 , that is no longer the case, as seen in the following example.

Example 1.5. Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ so that $A^{t}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$. Both A and A^{t} are in $\mathcal{A}(2,2,1 \mid 2,2,1)$, and $\operatorname{disc}(A)=1$ while $\operatorname{disc}\left(A^{t}\right)=2$. Thus, transpose does not preserve discrepancy 1 for $\min \{m, n\} \geq 3$.

Note that if the sequences R and S are monotone decreasing, and if $\min \{m, n\} \leq 2$, then the discrepancy of any matrix and the discrepancy of its transpose are the same.

Definition 1.6. Let $A \in \mathcal{A}(R, S)$. A row-exchangeable pair, denoted $(i \mid j, k)$, refers to a pair of indices in the same row of A (the $i^{\text {th }}$) such that $j<k, a_{i, j}=0$ and $a_{i, k}=1$. A proper set of row-exchangeable pairs is a set of row-exchangeable pairs such that the replacement of each first indexed entry with a 1 and the second indexed entry with 0 (exchanging the values of the entries) yields a matrix whose discrepancy is one less and this replacement for all row-exchangeable pairs in a proper row-exchangeable set yields a Ferrers matrix.
A column-exchangeable pair, denoted $(p, q \mid j)$, refers to a pair of indices in the same column of A such that $p<q, a_{p, j}=0$ and $a_{q, j}=1$. A proper set of column-exchangeable pairs is a set of columnexchangeable pairs such that the replacement of each first indexed entry with a 1 and the second indexed entry with 0 (exchanging the values of the entries) yields a matrix whose transpose has discrepancy one less and this replacement for all column-exchangeable pairs in a proper column-exchangeable set yields a Ferrers matrix.

It is easily seen that the cardinality of a proper row-exchangeable set for A is the discrepancy of A. The cardinality of a proper column-exchangeable set for A is the discrepancy of A^{t}.

Definition 1.7. Let $A \in \mathcal{A}(R, S)$ and let $(i \mid j, k)$ be a row-exchangeable pair, and $(u, v \mid z)$ be a columnexchangeable pair. The notation $A \Leftarrow(i \mid j, k)$ (resp. $A \Leftarrow(u, v \mid z)$) will represent the matrix \bar{A} where $\bar{a}_{i, j}=$ $1, \bar{a}_{i_{k}}=0$ and $\bar{a}_{r, s}=a_{r, s}$ otherwise (resp. the matrix \bar{A} where $\bar{a}_{u, z}=1, \bar{a}_{v, z}=0$ and $\bar{a}_{r, s}=a_{r, s}$ otherwise).

If $\mathcal{X}=\left\{p r_{v} \mid v=1,2, \ldots, r\right\}$ is a labeled set of row- or column-exchangeable pairs for A, let $A \Leftarrow \mathcal{X}$ denote the matrix $A^{(r)}$ where $A^{(1)}=A \Leftarrow p r_{1}, A^{(2)}=A^{(1)} \Leftarrow p r_{2}, \ldots, A^{(r)}=A^{(r-1)} \Leftarrow p r_{r}$.

Definition 1.8. Let $A \in \mathcal{A}(R, S)$ and let $\mathcal{X}=\left\{\left(i_{v} \mid j_{v}, k_{v}\right) \mid v=1,2, \ldots, r\right\}$ be a labeled set of row exchangeable pairs for A. Define $\mathcal{Y}(\mathcal{X})=\left\{\left(i_{v}, p_{v} \mid j_{v}\right) \mid v=1,2, \ldots, r\right\} \cup\left\{\left(i_{v}, q_{v} \mid k_{v}\right) \mid v=1,2, \ldots, r\right\}$ where p_{v} and q_{v} are defined as follows:

Beginning with $v=1$, let p_{1} be the index of the last row of A above row i_{1} containing a 1 in column j_{1}, if all the entries of A in column j_{1} above the row i_{1} are 0 , let $p_{1}=m+1$. let q_{1} be the index of the first row of A below i_{1} containing a 0 in column k_{1}, if all the entries of A in column k_{1} below the row i_{1} are 1 , let $q_{1}=0$. Let $A^{(1)}=A \Leftarrow\left(i_{1} \mid j_{1}, k_{1}\right)$. Let p_{2} be the index of the last row of $A^{(1)}$ above row 1_{2} containing a 1 in column j_{2}, if all the entries of $A^{(1)}$ in column j_{2} above the row i_{2} are 0 , let $p_{2}=m+1$. Let q_{2} be the index of the first row of $A^{(1)}$ below row i_{2} containing a 0 in column k_{2}, if all the entries of $A^{(1)}$ in column k_{2} below the row i_{2} are 1 , let $q_{2}=0$. Let $A^{(2)}=A^{(1)} \Leftarrow\left(i_{2} \mid j_{2}, k_{2}\right)$. Continue in this way to get p_{v} and $q_{v}, v=3, \ldots, r$.

Example 1.9. Let $A=\left[\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$. Then $\mathcal{X}=\{(1 \mid 4,6),(2 \mid 3,6)\}$. So $i_{1}=1, j_{1}=4$, and $k_{1}=6$. Therefore $p_{1}=3$ and $q_{1}=0$. From this, we get that the first row-exchangeable-pair gives the single column-exchangeable pair $(1,3 \mid 4)$. Now, $A^{(1)}=A \Leftarrow(1 \mid 4,6)=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$. From the second row-exchangeable pair, we have $i_{2}=2, j_{2}=3$, and $k_{2}=6$. Therefore, $p_{2}=3$ and $q_{2}=1$. We now have two column-exchangeable pairs corresponding to the second row-exchangeable-pair: $(2,3 \mid 3)$ and
$(2,1 \mid 6)$. However, since $2 \nless 1,(2,1 \mid 6)$ is not a column-exchangeable-pair. Now, $A^{(2)}=A^{(1)} \Leftarrow(2,3 \mid 6)=$ $\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$, Which is a Ferrers matrix.

From the above, $\mathcal{Y}(\mathcal{X})=\{(1,3 \mid 4),(2,3 \mid 3)\}$. Applying the column-exchangeable pairs to A, we get

$$
\begin{aligned}
& A \Leftarrow(1,3 \mid 4)=A_{(1)}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \text {, and } \\
& A_{(1)} \Leftarrow(2,3 \mid 3)=A_{(2)}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \text {, also a Ferrers matrix, but not the one above. }
\end{aligned}
$$

2. $\operatorname{disc}(A)$ vs. $\operatorname{disc}\left(A^{t}\right)$.

Theorem 2.1. Let $A \in \mathcal{A}(R, S)$ for R and S monotone decreasing sequences of length m and n, respectively. If \mathcal{X} is a proper set of row-exchangeable pairs, then $\mathcal{Y}(\mathcal{X})$ contains a proper set of column-exchangeable pairs for A.

Proof. We proceed by induction on the cardinality of a proper set of row-exchangeable pairs, or equivalently on the discrepancy of A.

Suppose that $A \in \mathcal{A}(R, S)$ and the discrepancy of A is 1 and let $\{(i \mid j . k)\}$ be a proper set of rowexchangeable pairs. That is the exchangeable 0 is entry (i, j) and the exchanged 1 is the (i, k) entry, then the only rows of A^{t} that might not be a sequence of 1 's followed by 0 's are the $j^{t h}$ and $k^{t h}$ rows. Thus, only the $j^{t h}$ and $k^{t h}$ rows can contain exchangeable 1's, and then each of them can contain at most one exchangeable 1. Thus, a proper set of column-exchangeable pairs has cardinality at most 2 , and the discrepancy of A^{t} is at most 2 .

Now assume that any matrix in $\mathcal{A}(R, S)$ of discrepancy $\ell-1$ contains a proper set of column-exchangeable pairs of cardinality at most $2 \ell-2$.

Let \mathcal{X} be a proper set of row-exchangeable pairs for A and enumerate \mathcal{X} so that $\mathcal{X}=\left\{\left(i_{v} \mid j_{v}, k_{v}\right) \mid v=\right.$ $1, \ldots, \ell\}$. Let $\bar{A}=A \Leftarrow\left(i_{\ell} \mid j_{\ell}, k_{\ell}\right)$, so that \bar{A} has discrepancy $\ell-1$ and a proper set of row-exchangeable pairs, $\overline{\mathcal{X}}=\left\{\left(i_{v} \mid j_{v}, k_{v}\right) \mid v=1, \ldots, \ell-1\right\}$. By induction, $\overline{\mathcal{Y}}=\mathcal{Y}(\overline{\mathcal{X}})$ has a proper set of column-exchangeable pairs, call it \mathcal{Z}, so that $\bar{A} \Leftarrow \mathcal{Z}$ is a Ferrers matrix.

Consider $A \Leftarrow \mathcal{Z}$. If $B=A \Leftarrow \mathcal{Z}$ is not a Ferrers matrix, the only columns of B that are not a column of 1's followed by a column of 0 's might be the columns j_{ℓ} and k_{ℓ}, and then the only exception would in each case be in the i_{ℓ} row. In this case, there would be at most one column-exchangeable pair in the j_{ℓ} column and one in the k_{ℓ} column. Thus, these column-exchangeable pairs together with \mathcal{Z} would contain a proper set of column-exchangeable pairs for A of cardinality at most 2ℓ.

Corollary 2.2. Let $A \in \mathcal{A}(R, S)$ for R and S monotone decreasing sequences of length m and n respectively. If $\operatorname{disc}(A)=\ell$, then $\left\lceil\frac{\ell}{2}\right\rceil \leq \operatorname{disc}\left(A^{t}\right) \leq 2 \ell$.

Proof. Suppose that the discrepancy of A is ℓ. The above theorem shows that the discrepancy of A^{t} is at most 2ℓ. Now, if the discrepancy of A^{t} is k, then the discrepancy of $A^{t^{t}}=A$ is at most $2 k$. Since the discrepancy is an integer, we have $\left\lceil\frac{\ell}{2}\right\rceil \leq \operatorname{disc}\left(A^{t}\right) \leq 2 \ell$.

The following example shows that the above bounds are always achievable for $(0,1)$-matrices of order $(\ell+1) \times 2 \ell$ or larger.

Example 2.3. Let $\ell \geq 2, A=\left[\begin{array}{cc}K_{\ell} & I_{\ell} \\ \mathbf{j}_{\ell}^{t} & \mathbf{0}_{\ell}^{t}\end{array}\right]$, and let $B=A+E_{\ell+1, \ell+1}$ where $K_{\ell}=J_{\ell} \backslash I_{\ell}$ is the matrix af all 1's except for the diagonal entries, all of which are 0 's, \mathbf{j}_{ℓ} is the ℓ-vector of all 1 's, I_{ℓ} is the $\ell \times \ell$ identity matrix, $\mathbf{0}_{\ell}$ is the ℓ-vector of all 0 's, and $E_{r, s}$ is the matrix with a 1 in the (r, s) entry and 0 elsewhere. Then, both A and B have discrepancy ℓ, whereas A^{t} has discrepancy $2 \ell-1$ and B^{t} has discrepancy 2ℓ. If $C=A^{t}$ has discrepancy k, then C^{t} has discrepancy $\ell=\frac{k+1}{2}=\left\lceil\frac{k}{2}\right\rceil$, and if $D=B^{t}$ has discrepancy d then $D^{t}=B$ has discrepancy $\ell=\frac{d}{2}=\left\lceil\frac{d}{2}\right\rceil$.
3. A Generalization. In the previous sections, we required the $(0,1)$-matrices to be in $\mathcal{A}(R, S)$ with R and S nonincreasing. We now generalize to any $(0,1)$-matrix.

Let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a row vector with n entries, each a 0 or a $1 .\left(\vec{a} \in \mathbb{B}^{n}=\mathcal{M}_{1, n}(\mathbb{B})\right)$. The vector \vec{a} is said to be left justified with k 1's if $a_{1}=a_{2}=\ldots=a_{k}=1$ and $a_{k+1}=a_{k+2}=\ldots=a_{n}=0$ and label it \vec{f}^{k}. The discrepancy of a vector $\vec{a} \in \mathcal{M}_{1, n}(\mathbb{B})$ with $k 1$'s is the number of entries of \vec{a} that are 1 and the corresponding entry of \vec{f}^{k} is 0 . That is equivalent to the minimum number of pairs of entries that must be exchanged to yield a left justified vector. For example, if $\vec{a}=(10010110)$, then \vec{a} has discrepancy 2 since exchanging the entries 2 and 5 and the entries 3 and 6 , we get the left justified vector (11110000).

As above, let $\overrightarrow{\mathbf{0}}_{k}$ denote the vector of $k 0$'s, and let $\overrightarrow{\mathbf{j}}_{k}$ denote the vector of $k 1$'s.
Example 3.1 . Let k be any positive integer and $A=\left[\begin{array}{ccc}\overrightarrow{\mathbf{j}}_{k} & \overrightarrow{\mathbf{0}}_{k} & \overrightarrow{\mathbf{j}}_{k} \\ \overrightarrow{\mathbf{0}}_{k} & \overrightarrow{\mathbf{j}}_{k} & \overrightarrow{\mathbf{0}}_{k}\end{array}\right]$. Then, $\operatorname{disc}(A)=2 k$. Let $P_{2,3}$ be the permutation that interchanges rows 2 and 3 upon multiplication on the left of a conformal matrix, or that interchanges columns 2 and 3 upon multiplication on the right of a conformal matrix. Then, $A P_{2,3}=\left[\begin{array}{ccc}\vec{j}_{k} & \vec{j}_{k} & \overrightarrow{0}_{k} \\ \overrightarrow{0}_{k} & \overrightarrow{0}_{k} & \vec{j}_{k}\end{array}\right]$ which has discrepancy k.

DEFINITION 3.2. Let m and n be positive integers, $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be a sequence of nonnegative integers from $\{0,1,2, \ldots, m\}$, and let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be a sequence of nonnegative integers from $\{0,1,2, \ldots, n\}$. Let $\mathcal{P}_{n}(S)$ be the set of all permutations Q such that $A \in \mathcal{A}(R, S)$ if and only if $A Q \in$ $\mathcal{A}(R, S)$.

That is, $\mathcal{P}_{n}(S)$ is the set of permutations that fix the column sums of any matrix in $\mathcal{A}(R, S)$ for any sequence R.

The following definition and label is from Berger and Schreck [2].
DEFINITION 3.3. Let m and n be positive integers, $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be a sequence of nonnegative integers from $\{0,1,2, \ldots, m\}$, and let $R=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ be a sequence of nonnegative integers from $\{0,1,2, \ldots, n\}$. If R and S are monotone decreasing and $A \in \mathcal{A}(R, S)$, the isomorphic discrepancy of $A, d_{I}(A)$, is $\min \left\{\operatorname{disc}(A Q) \mid Q \in \mathcal{P}_{n}(S)\right\}$.

Example 3.4. Recall the matrices in Example 1.4:

$$
A=\left[\begin{array}{llll}
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & 1 & \mathbf{0} & \mathbf{1} \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & \mathbf{0} & \mathbf{1} & 0
\end{array}\right] \quad \text { and } \quad A^{\prime}=\left[\begin{array}{cccc}
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & \mathbf{0} & 1 & \mathbf{1} \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & \mathbf{0} & 0 & \mathbf{1}
\end{array}\right]
$$

Note that the minimum discrepancy of $A Q$ is achieved from A by permuting the last two columns.
Lemma 3.5. l Let A be an $m \times n$ matrix of 0 's and 1 's. Then, $\operatorname{disc}(A)=\operatorname{disc}(P A)$ for all $P \in \mathcal{P}_{m}$.
Proof. The discrepancy of any matrix only involves exchanges in rows, the order of the rows does not change the discrepancy.

Theorem 3.6. Let A be an $m \times n$ matrix in $\mathcal{A}(R, S)$ with R and S nonincreasing. If $\operatorname{disc}(A)=k$, then $d_{I}(A) \geq \frac{1}{4} k$.

Proof. Suppose that $d_{I}(A)=\ell$ and $\operatorname{disc}(A)=k$. Then, there exists a $Q \in \mathcal{P}_{n}(S)$ such that $\operatorname{disc}(A Q)=\ell$. Now, by Corollary 2.2, $\ell=\operatorname{disc}(A Q) \geq \frac{1}{2} \operatorname{disc}\left((A Q)^{t}\right)=\frac{1}{2} \operatorname{disc}\left(Q^{t} A^{t}\right)=\frac{1}{2} \operatorname{disc} A^{t}$, the last equality follows from Lemma 3.5. Thus, $\ell \geq \frac{1}{2} \operatorname{disc}\left(A^{t}\right) \geq \frac{1}{2}\left(\frac{1}{2} \operatorname{disc}\left(\left(A^{t}\right)^{t}\right)\right)=\frac{1}{4} \operatorname{disc}(A)=\frac{1}{4} k$. That is, $d_{I}(A) \geq \frac{1}{4} \operatorname{disc}(A)$.

As only examples are known that show that there exist matrices whose isomorphic discrepancy of A is at least one half the discrepancy of A, the following problem is proposed:

Problem: Let R and S be nonincreasing. Find a matrix in $\mathcal{A}(R, S)$ whose discrepancy is greater than twice the isomorphic discrepancy,
OR
Show that for any $A \in \mathcal{A}(R, S) d_{I}(A) \geq \frac{1}{2} \operatorname{disc}(A)$.

REFERENCES

[1] A. Berger. The isomorphic version of Brualdi's and Sanderson's nestedness is in P. arXiv:1602.02536v2.
[2] A. Berger and B. Schreck. The isomorphic version of Brualdi's and Sanderson's nestedness. Algorithms (Basel), 10(3), Paper No. 74, 12:MR3708470, 2017.
[3] R.A. Brualdi and G.J. Sanderson. Nested species subsets, gaps and discrepancy. Oecologia, 119:256-264, 1999.
[4] R.A. Brualdi and J. Shen. Discrepancy of matrices of zeros and ones. Electron. J. Comb. 6:1-12, 1999. Zbl 0936.76029, MR1674136.

[^0]: *Received by the editors on February 2, 2019. Accepted for publication on March 15, 2021. Handling Editor: Bryan Shader.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900, USA

