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Abstract. In this paper a necessary and sufficient condition is established for the existence of

the reflexive re-nonnegative definite solution to the quaternion matrix equation AXA∗ = B, where

∗ stands for conjugate transpose. The expression of such solution to the matrix equation is also

given. Furthermore, a necessary and sufficient condition is derived for the existence of the general

re-nonnegative definite solution to the quaternion matrix equation A1X1A∗
1 + A2X2A∗

2 = B. The

representation of such solution to the matrix equation is given.
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1. Introduction. Throughout this paper, we denote the real number field by
R, the complex number field by C, the real quaternion algebra by

H = {a0 + a1i+ a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R},

the set of allm×nmatrices over H by Hm×n, the set of allm×nmatrices in Hm×n with
rank r by Hm×n

r , the set of all n×n invertible matrices over H by GLn. R (A), N (A) ,
A∗, A†, dimR (A) , Ii and Re[b] stand for the column right space, the left row space,
the conjugate transpose, the Moore-Penrose inverse of A ∈ Hm×n, the dimension of
R (A) , an i × i identity matrix, and the real part of a quaternion b, respectively.
By [1], for a quaternion matrix A, dimR (A) = dim N (A) , which is called the rank
of A and denoted by r(A). Moreover, A−∗ denote the inverse matrix of A∗ if A is
invertible. Obviously, A−∗ = (A−1)∗ = (A∗)−1. Hn = {A ∈ Hn×n|A∗ = A} . Because
H is not commutative, one cannot directly extend various results on C to H. General
properties of matrices over H can be found in [2].
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We consider the classical matrix equation

AXA∗ = B. (1.1)

The general Hermitian positive semidefinite solutions of (1.1) have been studied ex-
tensively for years. For instance, Khatri and Mitra [3], Baksalary [4], Groβ [5], Zhang
and Cheng [6] derived the general Hermitian positive semidefinite solution to ma-
trix equation (1.1), respectively. Moreover, Dai and Lancaster [7] studied the similar
problem and emphasized the importance of (1.1) within the real setting. Liao and
Bai [8] investigated the bisymmetric positive semidefinite solution to matrix equation
(1.1) by studying the symmetric positive semidefinite solution of the matrix equation

A1X1A
∗
1 +A2X2A

∗
2 = B, (1.2)

which was also investigated by Deng and Hu [9] over the real number field.

The definition of reflexive matrix can be found in [10]: A complex square matrix
A is reflexive if A = PAP, where P is a Hermitian involution, i.e., P ∗ = P , P 2 = I.
Obviously, a reflexive matrix is a generalization of a centrosymmetric matrix. The
reflexive matrices with respect to a Hermitian involution matrix P have been widely
used in engineering and scientific computations (see, for instance, [10]). In 1996, Wu
and Cain [11] defined the re-nonnegative definite matrix: A ∈ Cn×n is re-nonnegative
definite if Re[x∗Ax] ≥ 0 for every nonzero vector x ∈ Cn×1. However, to our knowl-
edge, the reflexive re-nonnegative definite solution to (1.1) and the re-nonnegative
definite solution to (1.2) have not been investigated yet so far. Motivated by the
work mentioned above and keeping the interests and wide applications of quaternion
matrices in view (e.g. [12]−[27]), we in this paper consider the reflexive re-nonnegative
definite solution to (1.1) and re-nonnegative definite solution to (1.2) over H.

The paper is organized as follows. In Section 2, we first present a criterion that
a 3× 3 partitioned quaternion matrix is re-nonnegative definite. Then we establish a
criterion that a quaternion matrix is reflexive re-nonnegative definite. In Section 3,
we establish a necessary and sufficient condition for the existence of re-nonnegative
definite solution to (1.2) over H as well as an expression of the general solution.
In Section 4, based on the results obtained in Section 3, we present a necessary and
sufficient condition for the existence and the expression of the reflexive re-nonnegative
definite solution to (1.1) over H. In closing this paper, we in Section 5 give a conclusion
and a further research topic related to this paper.

2. Reflexive re-nonnegative definite quaternion matrix. In this section,
we first present a criterion that a 3×3 partitioned quaternion matrix is re-nonnegative
definite, then derive a criterion that a quaternion matrix is reflexive re-nonnegative
definite.
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Throughout, the set of all n × n reflexive quaternion matrices with a Hermitian
involution P ∈ Hn×n is denoted by RH

n×n (P ), i.e.,

RH
n×n (P ) =

{
A ∈ H

n×n | A = PAP
}
.

Definition 2.1. Let A ∈ Hn×n. Then
(1) A ∈ Hn is said to be nonnegative definite, abbreviated nnd, if x∗Ax ≥ 0 for any
nonzero vector x ∈ Hn×1. The set of all n× n nnd matrices is denoted by SPn.

(2) A is re-nonnegative definite, abbreviated rennd, if Re[x∗Ax] ≥ 0 for every nonzero
vector x ∈ Hn×1. The set of all rennd matrices in Hn×n is denoted by SP

∗
n.

(3) A is called reflexive re-nonnegative definite matrix if A ∈ RH
n×n (P ) ∩ SP

∗
n. The

set of all n× n reflexive re-nonnegative definite matrices is denoted by RSP
∗
n(P ).

For any quaternion matrix A, it can be uniquely expressed as

A =
1
2
(A+A∗) +

1
2
(A−A∗) def= H(A) + S(A).

It is easy to prove the following.

Lemma 2.2. Let Q ∈ GLn, A ∈ Hn×n. Then
(1) A ∈ SP

∗
n if and only if H(A) ∈ SPn.

(2) A ∈ SPn ⇐⇒ Q∗AQ ∈ SPn.

(3) A ∈ SP
∗
n ⇐⇒ Q∗AQ ∈ SP

∗
n.

(4) A ∈ RSP
∗
n(P ) ⇐⇒ Q∗AQ ∈ RSP

∗
n(P ).

The following lemma is due to Albert [28] which can be generalized to H.

Lemma 2.3. Let A ∈ Hn×n be partitioned as

A =
(
A11 A12

A∗
12 A22

)
∈ Hn

where Aii ∈ Hni (n1 + n2 = n) . Then the following statements are equivalent:
(1) A ∈ SPn.

(2) r (A11) = r (A11, A12) , A11 and A22 −A∗
12A

†
11A12 are nnd.

(3) r (A22) = r (A∗
12, A22) , A22 and A11 −A12A

†
22A

∗
12 are nnd.

The following lemma follows from Lemma 2.2 and Lemma 2.3.

Lemma 2.4. Let A ∈ Hn×n be partitioned as

A =
(
A11 A12

A21 A22

)

where Aii ∈ Hni×ni (n1 + n2 = n) . Then the following statements are equivalent:
(1) A ∈ SP

∗
n.
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(2) r (A∗
11 +A11) = r (A∗

11 +A11, A12 +A∗
21), A11 and A22 − 1

2 (A
∗
12 + A21)(A11 +

A∗
11)

†(A12 +A∗
21) are rennd.

(3) r (A22 +A∗
22) = r (A∗

12 +A21, A22 +A∗
22), A22 and A11 − 1

2 (A12 + A∗
21)(A22 +

A∗
22)

†(A∗
12 +A21) are rennd.

The case of complex matrices of Lemma 2.4 can also be found in [11].

Now we present a criterion that a 3× 3 partitioned Hermitian quaternion matrix
is nnd.

Lemma 2.5. Let

A =


 A11 A12 A13

A∗
12 A22 X23

A∗
13 X∗

23 A33


 ∈ Hn

where A11 ∈ Hr1 , A22 ∈ Hr2 , A33 ∈ Hn−r1−r2 . Then there exists X23 ∈ Hr2×(n−r1−r2)

such that A ∈ SPn if and only if the following
(
A11 A12

A∗
12 A22

)
def= A1,

(
A11 A13

A∗
13 A33

)
def= A2

are all nnd.

Proof. If there exists a quaternion matrix X23 such that A ∈ SPn, then by Lemma
2.3, A1 is nnd. Clearly, A2 ∈ Hn−r2 by A ∈ Hn. For an arbitrary nonzero column

vector α =
(
α1

α2

)
, it follows from A ∈ SPn that

α∗A2α =
(
α∗1 0∗ α∗2

)
 A11 A12 A13

A∗
12 A22 X23

A∗
13 X∗

23 A33





 α1

0
α2


 ≥ 0.

Therefore, A2 is also nnd.

Conversely, if A1 and A2 are all nnd, then A11, A22−A∗
12A

†
11A12, A33−A∗

13A
†
11A13

are all nnd by Lemma 2.3. Taking X23 = A∗
12A

†
11A13 and

P =



Ir1 −A†

11A12 −A†
11A13

0 Ir2 0
0 0 In−r1−r2




yields that

P ∗AP = diag(A11, A22 −A∗
12A

†
11A12, A33 −A∗

13A
†
11A13).

Hence by Lemma 2.2 and Lemma 2.3, A is nnd.
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Based on the above lemma, we now present a criterion that a 3 × 3 partitioned
quaternion matrix is rennd. The result plays an important role in constructing a
rennd matrix.

Theorem 2.6. Assume that

A =


 A11 A12 A13

A21 A22 X23

A31 A32 A33


 ∈ H

n×n

where A11 ∈ Hr1×r1 , A22 ∈ Hr2×r2 , A33 ∈ H(n−r1−r2)×(n−r1−r2). Then there exists
X23 ∈ Hr2×(n−r1−r2) such that A ∈ SP

∗
n if and only if the following

(
A11 A12

A21 A22

)
def= A1,

(
A11 A13

A31 A33

)
def= A2

are all rennd.

Proof. Put B11 = A11 +A∗
11, B12 = A∗

21 +A12, B13 = A13 +A∗
31, B22 = A22 +A∗

22,

B23 = X23 +A∗
32, B33 = A33 +A∗

33. Then

2H(A1) =
(
B11 B12

B∗
12 B22

)
, 2H(A2) =

(
B11 B13

B∗
13 B33

)

2H(A) =


 B11 B12 B13

B∗
12 B22 B23

B∗
13 B∗

23 B33


 .

Hence the theorem follows immediately from Lemma 2.2 and Lemma 2.5.

Now we turn our attention to establish a criterion that a quaternion matrix is
reflexive rennd.

For A ∈ Hn×n, a quaternion λ is said to be a right (or left) eigenvalue of A if
Ax = xλ (or Ax = λx) for some nonzero vector x ∈ Hn×1. In this paper, we only
use the right eigenvalue (simply say eigenvalue). It can be verified easily that the
eigenvalues of an involution P ∈ Hn×n are 1 and −1.

In [29], a practical method to represent an involutory quaternion matrix was given
as follows.

Lemma 2.7. (Theorem 2.1 in [29]) Suppose that P ∈ Hn×n is a nontrivial invo-

lution and K =
(
In + P
In

)
, then we have the following:

(i) K can be reduced into
(
N 0
Φ M

)
, where N is a full column rank matrix of size
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n× r and r = r(In + P ), by applying a sequence of elementary column operations on
K.

(ii) Put T =
(
N, M

)
, then

P = T
(
Ir 0
0 −In−r

)
T−1. (2.1)

By Lemma 2.7, R (N) is the eigenspace corresponding to the eigenvalue 1 of P and
R (M) the eigenspace corresponding to the eigenvalue −1 of P. Since P is Hermitian,
it can be orthogonally diagonalized. To see this, we perform the Gram-Schmidt
process to the columns of N and M , respectively. Suppose that the corresponding
orthonormal column vectors are as follows:

V = {α1, · · · , αr} , W = {β1, · · · , βn−r}
It is clear that PV = V, PW = −W and U =

(
V, W

)
is unitary. Hence it follows

from P ∗ = P that

P = U
(
Ir 0
0 −In−r

)
U∗. (2.2)

Therefore, similar to Theorem 2.2 in [29], we get the following lemma.

Lemma 2.8. Let A ∈ Hn×n. Then A ∈ RH
n×n (P ) if and only if A can be

expressed as

A = U
(
A1 0
0 A2

)
U∗ (2.3)

where A1 ∈ Hr×r, A2 ∈ H(n−r)×(n−r), U is defined as (2.2).

At the end of the section, we present a criterion that a quaternion matrix is
reflexive rennd.

Theorem 2.9. Let A ∈ Hn×n. Then A ∈ RSP
∗
n(P ) if and only if

A = U
(
A1 0
0 A2

)
U∗ (2.4)

where A1 ∈ SP
∗
r , A2 ∈ SP

∗
n−r and U is defined as (2.2).

Proof. If A ∈ RSP
∗
n(P ), then A ∈ RH

n×n (P ) . Hence by Lemma 2.8, A can be
expressed as (2.4) where A1 ∈ Hr×r, A2 ∈ H(n−r)×(n−r). It follows from A ∈ RSP

∗
n(P ),

Lemma 2.2 and Lemma 2.4 that A1 ∈ SP
∗
r , A2 ∈ SP

∗
n−r.

Conversely, by Lemmas 2.2, 2.4 and 2.8, it is easy to verify that the matrix A
with the form of (2.4) is reflexive rennd, where A1 ∈ SP

∗
r , A2 ∈ SP

∗
n−r.
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3. The re-nonnegative definite solution to (1.2). In this section, given
A1 ∈ Hm×r, A2 ∈ Hm×(n−r) and B ∈ Hm×m, we investigate the rennd solution to
the matrix equation (1.2).

In order to investigate the rennd solution to (1.2), we recall the following lemma.

Lemma 3.1. ([30]) Let A1 ∈ Hm×r
ra1

, A2 ∈ H
m×(n−r)
ra2

. Then there exist P ∈
GLm, Q ∈ GLr, T ∈ GLn−r such that

PA1Q =
(
Ira1

0
0 0

)
ra1

m− ra1

, (3.1)

PA2T =



Is
0
0
0

0
0
0
0

0
0
It
0




s

ra1 − s
t

m− ra1 − t
s n− r − ra2 t

(3.2)

where

rab = r
(
A1, A2

)
, s = ra1 + ra2 − rab, t = rab − ra1 .

In some way, Lemma 3.1 can be regarded as an extension of the generalized
singular value decomposition (GSVD) on a complex matrix pair (see [31]-[33]). It is
worth pointing out that there is a good collection of literature, [8] and [9] for example,
on the GSVD approach for solving matrix equations.

Now we propose an algorithm for finding out P,Q and T in Lemma 3.1.

Algorithm 3.2. Let

K =


 Im A1 A2

0 0 In−r

0 Ir 0


 .

Apply a sequence of elementary row operations on the submatrices
(
Im A1 A2

)

of K, and a sequence of elementary column operations on the submatrices


 A1

0
Ir



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and
(
A2

In−r

)
of K, respectively, till we obtain the following




P

(
Ira1

0
0 0

) 

Is
0
0
0

0
0
0
0

0
0
It
0




0 0 T

0 Q 0



.

Then P,Q and T are obtained.

Now we consider (1.2). Let

Q−1X1Q
−∗ =

(
X11

X21

X12

X22

)

ra1 r − ra1

ra1

r − ra1

, (3.3)

T−1X2T
−∗ =


 Y11

Y21

Y31

Y12

Y22

Y32

Y13

Y23

Y33




s n− r − ra2 t

s

n− r − ra2

t

, (3.4)

PBP ∗ =



B11

B21

B31

B41

B12

B22

B32

B42

B13

B23

B33

B43

B14

B24

B34

B44




s ra1 − s t m− ra1 − t

s

ra1 − s
t

m− ra1 − t
. (3.5)

Lemma 3.3. Let A1 ∈ H
m×r, A2 ∈ H

m×(n−r) and B ∈ H
m×m. Then matrix

equation (1.2) is consistent if and only if

Bα4 = 0, B4β = 0, α, β = 1, 2, 3, 4;B32 = 0, B23 = 0. (3.6)

In that case, the general solution of (1.2) can be expressed as

X1 = Q




(
B11 − Y11 B12

B21 B22

)
X12

X21 X22


Q∗, (3.7)

X2 = T


 Y11 Y12 B13

Y21 Y22 Y23

B31 Y32 B33


T ∗, (3.8)
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where X12, X21, X22; Y11, Y12, Y21, Y22, Y23, Y32 are arbitrary quaternion matrices
whose sizes are determined by (3.3) and (3.4).

Proof. Obviously, matrix equation (1.2) is equivalent to the following matrix
equation

PA1QQ
−1X1Q

−∗Q∗A∗
1P

∗ + PA2TT
−1X2T

−∗T ∗A∗
2P

∗ = PBP ∗. (3.9)

If (1.2) is consistent, then by (3.1)−(3.5) and (3.9), we have the following



X11 +

(
Y11 0
0 0

) (
Y13 0
0 0

)
(
Y31 0
0 0

) (
Y33 0
0 0

)

 =



B11

B21

B31

B41

B12

B22

B32

B42

B13

B23

B33

B43

B14

B24

B34

B44




yielding

X11 =
(
B11 − Y11 B12

B21 B22

)
, Y13 = B13, Y31 = B31, Y33 = B33,

and (3.6) holds. ThereforeX1 andX2 can be expressed as (3.7) and (3.8), respectively.

Conversely, if (3.6) holds, then it can be verified that the matrices X1 and X2

with the form (3.7) and (3.8), respectively, consist of a solution of (1.2).

Theorem 3.4. Let A1 ∈ Hm×r, A2 ∈ Hm×(n−r) and B ∈ Hm×m be given. Put

C =
1
2
(B12+B∗

21)(B22+B∗
22)

†(B∗
12+B21), D =

1
2
(B13+B∗

31)(B33+B∗
33)

†(B∗
13+B31),

and L = B11 − C − D. Then matrix equation (1.2) has a solution X1 ∈ SP
∗
r , X2 ∈

SP
∗
n−r if and only if (3.6) holds,

r(B22+B∗
22, B21+B∗

12) = r(B22+B∗
22), r(B33+B∗

33, B31+B∗
13) = r(B33+B∗

33), (3.10)

and L ∈ SP
∗
s, B22 ∈ SP

∗
ra1−s, B33 ∈ SP

∗
t . In that case, the general solution X1 ∈ SP

∗
r ,

X2 ∈ SP
∗
n−r of (1.2) can be expressed as the following, respectively,

X1 = Q
(
N −X∗

21 + (N +N∗)U1

X21 F + 1
2U

∗
1 (N∗ +N)U1

)
Q∗, (3.11)

X2 = TMT ∗, (3.12)

with

N =
(
E + C B12

B21 B22

)
, (3.13)
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M =


 G+D −Y ∗

21 + (G+D +G∗ +D∗)U2 B13

Y21 K + 1
2U

∗
2 (G+D +G∗ +D∗)U2 Y23

B31 Y32 B33


 , (3.14)

where E,G ∈ SP
∗
r are arbitrary but satisfy

E +G = L; (3.15)

F ∈ SP
∗
n−ra1

,K ∈ SP
∗
n−r−ra2

;Y23 ∈ {
Y23 ∈ H(n−r−ra2)×t

∣∣M ∈ SP
∗
n−r

}
,

Y32 ∈ Ht×(n−r−ra2), U1 ∈ Hra1×(n−ra1), U2 ∈ Hs×(n−r−ra2) are all arbitrary.

Proof. If matrix equation (1.2) has a solution X1 ∈ SP
∗
r , X2 ∈ SP

∗
n−r, then by

Lemma 3.3, (3.6) holds andX1, X2 has the form of (3.7) and (3.8), respectively. Hence
by Lemma 2.2,


 Y11 Y12 B13

Y21 Y22 Y23

B31 Y32 B33


 ∈ SP

∗
n−r (3.16)

and



(
B11 − Y11 B12

B21 B22

)
X12

X21 X22


 ∈ SP

∗
r . (3.17)

For (3.16), it follows from Theorem 2.6 that
(
Y11 B13

B31 B33

)
∈ SP

∗
s+t,

(
Y11 Y12

Y21 Y22

)
∈ SP

∗
n−r−ra2+s.

By Lemma 2.4, B33 ∈ SP
∗
t and the last equation of (3.10) holds. Moreover,

Y11 −D def= G

is also rennd, i.e.,

Y11 = G+D (3.18)

where G is rennd;

r(Y11 + Y ∗
11, Y12 + Y ∗

21) = r(Y11 + Y ∗
11), (3.19)

and

Y22 − 1
2
(Y21 + Y ∗

12)(Y11 + Y ∗
11)

†(Y ∗
21 + Y12)

def= K (3.20)

is rennd.
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It follows from (3.19) that the matrix equation (Y11 + Y ∗
11)X = Y12 + Y ∗

21 is
consistent for X . Let U2 is an any solution of the matrix equation. Then by (3.18),

Y12 = −Y ∗
21 + (G+D +G∗ +D∗)U2. (3.21)

Hence by (3.20),

Y22 = K +
1
2
U∗

2 (Y11 + Y ∗
11)(Y11 + Y ∗

11)
†(Y11 + Y ∗

11)U2

= K +
1
2
U∗

2 (Y11 + Y ∗
11)U2

= K +
1
2
U∗

2 (G+D +G∗ +D∗)U2. (3.22)

Accordingly, it follows from (3.18), (3.20), (3.21) and (3.22) that (3.16) can be ex-
pressed as (3.14) implying X2 can be expressed as (3.12).

For (3.17), by Lemma 2.4,
(
B11 − Y11 B12

B21 B22

)
∈ SP

∗
ra1
. (3.23)

Hence it follows from Lemma 2.4 that B22 ∈ SP
∗
ra1−s and the first equation of (3.10)

holds, and

B11 − Y11 − C def= E (3.24)

is rennd. It is implies that (3.23) can be expressed as (3.13). Therefore, (3.15) follows
from (3.18) and L ∈ SP

∗
s from E and G is rennd. By (3.17) and Lemma 2.4,

r(N +N∗, X12 +X∗
21) = r(N +N∗) (3.25)

and

X22 − 1
2
(X21 +X∗

12)(N +N∗)†(X∗
21 +X12)

def= F (3.26)

is rennd. It follows from (3.25) that the matrix equation (N +N∗)X = X12 +X∗
21 is

solvable for X . Assume that U1 is an any solution of the matrix equation. By (3.26),
we have that

X12 = −X∗
21 + (N +N∗)U1 (3.27)

and

X22 = F +
1
2
U∗

1 (N∗ +N)U1.

Consequently, X1 can be expressed as (3.11).
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Conversely, suppose that (3.6), (3.10) and (3.15) hold, where L ∈ SP
∗
s, B22 ∈

SP
∗
ra1−s,

B33 ∈ SP
∗
t . It can be verified that M, N are all rennd by Theorem 2.6, Lemma 2.4.

And the matrices with the form of (3.11) and (3.12) are all rennd by Lemma 2.2 and
Lemma 2.4. It is easy to verify that the matrices X1 and X2 with the form of (3.11)
and (3.12), respectively, are the solution of matrix equation (1.2).

Remark 3.5. Setting A2 vanish in Theorem 3.4, we can get the corresponding
results on the rennd solution to matrix equation (1.1) over H.

4. The reflexive re-nonnegative definite solution to (1.1). In this section,
we consider the reflexive rennd solution to the matrix equation (1.1), where A ∈
Hm×n, B ∈ Hm×m are given and X ∈ RSP

∗
n(P ) is unknown.

By Theorem 2.9, we can assume that

X = U
(
X1 0
0 X2

)
U∗ (4.1)

where U is defined as (2.2) and X1 ∈ SP
∗
r , X2 ∈ SP

∗
n−r.

Suppose that

AU =
(
A1, A2

)
(4.2)

where A1 ∈ Hm×r, A2 ∈ Hm×(n−r). Then (1.1) has a solution X ∈ RSP
∗
n(P ) if and

only if matrix equation (1.2) has a rennd solution X1, X2. By Theorem 3.4, we
immediately get the following.

Theorem 4.1. Suppose that A ∈ H
m×n, B ∈ H

m×n are given and C,D,L are
the same as in Theorem 3.4, then matrix equation (1.1) has a solution X ∈ RSP

∗
n(P )

if and only if (3.6), (3.10) and (3.15) hold, L ∈ SP
∗
s, B22 ∈ SP

∗
ra1−s, B33 ∈ SP

∗
t . In

that case, the general solution X ∈ RSP
∗
n(P ) can be expressed as (4.1) where X1 and

X2 are as the same as (3.11) and (3.12), respectively.

5. Conclusions. In this paper we have presented the criteria that a 3× 3 parti-
tioned quaternion matrix is re-nonnegative definite and a quaternion matrix is reflex-
ive re-nonnegative definite. A necessary and sufficient condition for the existence and
the expression of re-nonnegative definite solution to the matrix equation (1.2) over
H have been established. Using Theorem 3.4, we have established a necessary and
sufficient condition for the existence and the expression of the reflexive re-nonnegative
definite solution to matrix equation (1.1) over H. In closing this paper, we propose
the following two open problems which are related to this paper:
(1) How do we investigate the least-square re-nonnegative definite solution to (1.2)
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and the least-square reflexive re-nonnegative definite solution to (1.1) over H?
(2) How do we investigate the maximal and minimal ranks of the general reflexive
re-nonnegative definite solution to the matrix equation (1.1) over H?

Acknowledgement. The authors would like to thank Professor Michael Neu-
mann and a referee very much for their valuable suggestions and comments, which
resulted in a great improvement of the original manuscript.
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[27] F. Zhang. Geršgorin type theorems for quaternionic matrices. Linear Algebra Appl., 424:139–

153, 2007.

[28] A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoinverses.

SIAM J. Appl. Math., 17:434–440, 1969.

[29] Q. W. Wang, H. X. Chang, and C. Y. Lin. P -(skew)symmetric common solutions to a pair of

quaternion matrix equations. Appl. Math. Comput., 195:721–732, 2008.

[30] Q. W. Wang. Pairwise matrix decompositions and matrix equations over an arbitrary skew

field. Acta Math. Sinica (Chin. Ser.), 39(3):396–403, 1996.

[31] C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13:76–

83, 1976.

[32] C. C. Paige and M. A. Saunders. Towards a generalized singular value decomposition. SIAM

J. Numer. Anal., 18:398–405, 1981.

[33] G. W. Stewart. Computing the CS-decomposition of a partitioned orthogonal matrix. Numer.

Math., 40:297–306, 1982.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 88-101, February 2008


