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TOTALLY BIPARTITE TRIDIAGONAL PAIRS∗

KAZUMASA NOMURA† AND PAUL TERWILLIGER‡

Abstract. There is a concept in linear algebra called a tridiagonal pair. The concept was motivated by the theory of

Q-polynomial distance-regular graphs. We give a tutorial introduction to tridiagonal pairs, working with a special case as a

concrete example. The special case is called totally bipartite, or totally bipartite (TB). Starting from first principles, we give

an elementary but comprehensive account of TB tridiagonal pairs. The following topics are discussed: (i) the notion of a TB

tridiagonal system; (ii) the eigenvalue array; (iii) the standard basis and matrix representations; (iv) the intersection numbers;

(v) the Askey–Wilson relations; (vi) a recurrence involving the eigenvalue array; (vii) the classification of TB tridiagonal systems;

(viii) self-dual TB tridiagonal pairs and systems; (ix) the Z3-symmetric Askey–Wilson relations; (x) some automorphisms and

antiautomorphisms associated with a TB tridiagonal pair; and (xi) an action of the modular group PSL2(Z) associated with a

TB tridiagonal pair.
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1. Introduction. This paper is about a linear algebraic object called a tridiagonal pair [71, Definition

1.1]. Before describing our purpose in detail, we give the definition of a tridiagonal pair. Let F denote a field

and let V denote a vector space over F with finite positive dimension. A tridiagonal pair on V is an ordered

pair of F-linear maps A : V → V and A∗ : V → V that satisfy the following conditions (i)–(iv).

(i) Each of A, A∗ is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),(1.1)

where V−1 = 0 and Vd+1 = 0.

(iii) There exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ δ),(1.2)

where V ∗−1 = 0 and V ∗δ+1 = 0.

(iv) There does not exist a subspace W ⊆ V such that AW ⊆W , A∗W ⊆W , W 6= 0, W 6= V .

We summarize the history behind the tridiagonal pair concept. There is a type of finite undirected

graph said to be distance-regular (see [31]). In [39], Delsarte investigated a class of distance-regular graphs

said to be Q-polynomial. Given a Q-polynomial distance-regular graph, Delsarte obtained two sequences

of orthogonal polynomials that are related by what is now called Askey–Wilson duality. In [93], Leonard

classified the pairs of orthogonal polynomial sequences that obey this duality. He found that all the solutions

come from the terminating branch of the Askey scheme, which consists of the q-Racah polynomials and their
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limits (see [13]). In [15], Bannai and Ito gave a thorough study of Q-polynomial distance-regular graphs,

including a detailed version of Leonard’s theorem (see [15, Theorem 5.1]). In [132–134], the second author

introduced an algebra T = T (x), called the subconstituent algebra (or Terwilliger algebra), to analyze the

subconstituents of a Q-polynomial distance-regular graph Γ with respect to a fixed vertex x. The algebra

T is generated by the adjacency matrix A of Γ and a certain diagonal matrix A∗, called the dual adjacency

matrix of Γ with respect to x. In [132, Lemmas 3.9, 3.12], it was observed that each of A,A∗ acts on the

eigenspaces of the other one in a block-tridiagonal fashion. This observation motivated the definition of a

tridiagonal pair (see [71, Definition 1.1]).

This paper is meant for graduate students and researchers who seek an introduction to tridiagonal pairs.

The theory of tridiagonal pairs is extensive, and some proofs are rather intricate. So for the beginner, it is

best to start with a special case. In this paper, we consider a special case said to be totally bipartite (TB).

A pair of F-linear maps A : V → V and A∗ : V → V is called a TB tridiagonal pair whenever it satisfies the

above conditions (i)–(iv), with (1.1) replaced by

A∗Vi ⊆ Vi−1 + Vi+1 (0 ≤ i ≤ d),(1.3)

and (1.2) replaced by

AV ∗i ⊆ V ∗i−1 + V ∗i+1 (0 ≤ i ≤ δ).(1.4)

We are not the first authors to consider the TB tridiagonal pairs. A number of previous articles are

effectively about this topic, although they may not use the term. We now summarize these articles. In

[32], Brown classified up to isomorphism a certain class of TB tridiagonal pairs, said to have Bannai/Ito

type. Later in [64], Gao, Hou, and Wang classified up to isomorphism all the TB tridiagonal pairs. This

classification separates the TB tridiagonal pairs into three infinite families, called Krawtchouk, Bannai/Ito,

and q-Racah. It has been shown that a TB tridiagonal pair can be extended to a Leonard triple in the

sense of Curtin [35]. This result is due to Balmaceda and Maralit for Krawtchouk type (see [14]), Brown

for Bannai/Ito type (see [32]), and Gao, Hou, Wang for q-Racah type (see [64]). In [138], the second author

showed that a finite-dimensional irreducible module for the Lie algebra sl2 gives a TB tridiagonal pair of

Krawtchouk type. In [7], Alnajjar and Curtin obtained a similar result using the equitable basis for sl2.

The anticommutator spin algebra was introduced by Arik and Kayserilioglu [12]. In [32], Brown showed

that certain irreducible modules for this algebra give TB tridiagonal pairs of Bannai/Ito type. In [59, 68],

Havliček, Pošta and Huang showed that certain irreducible Uq(so3)-modules give TB tridiagonal pairs of q-

Racah type. We remark that in all the above articles except [7,138] the field F is assumed to be algebraically

closed.

We just summarized the previous articles that are effectively about TB tridiagonal pairs. Among these,

the articles [7, 14, 32, 35, 63, 64, 68] explicitly refer to the concept of a tridiagonal pair. What these cited

papers have in common is that they invoke results about general tridiagonal pairs and then specialize to the

TB case. In our view, this makes the theory more complicated than necessary. In our approach, we examine

TB tridiagonal pairs from first principles and do not invoke any results from the literature about general

tridiagonal pairs. For most of our results, we do not assume that F is algebraically closed.

In this paper, we discuss the following topics: (i) the notion of a TB tridiagonal system; (ii) the eigenvalue

array; (iii) the standard basis and matrix representations; (iv) the intersection numbers; (v) the Askey–

Wilson relations; (vi) a recurrence involving the eigenvalue array; (vii) the classification of TB tridiagonal

systems; (viii) self-dual TB tridiagonal pairs and systems; (ix) the Z3-symmetric Askey–Wilson relations;
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(x) some automorphisms and antiautomorphisms associated with a TB tridiagonal pair; and (xi) an action

of the modular group PSL2(Z) associated with a TB tridiagonal pair.

We now summarize our results in detail. Let V denote a vector space over F with finite positive

dimension. Let End(V ) denote the F-algebra consisting of the F-linear maps from V to V . Let A,A∗ denote

a TB tridiagonal pair on V . Fix an ordering {Vi}di=0 (resp. {V ∗i }δi=0) of the eigenspaces of A (resp. A∗) that

satisfies (1.3) (resp. (1.4)). For 0 ≤ i ≤ d let Ei ∈ End(V ) denote the projection onto Vi. The elements

{Ei}di=0 are called the primitive idempotents of A. The primitive idempotents {E∗i }δi=0 of A∗ are similarly

defined. We call the sequence Φ = (A; {Ei}di=0;A∗; {E∗i }δi=0) a TB tridiagonal system. For 0 ≤ i ≤ d let

θi denote the eigenvalue of A for the eigenspace EiV , and for 0 ≤ i ≤ δ let θ∗i denote the eigenvalue of A∗

for the eigenspace E∗i V . We call the sequence ({θi}di=0; {θ∗i }δi=0) the eigenvalue array of Φ. We show that

d = δ (see Corollary 4.11). We show that the eigenspaces EiV , E∗i V have dimension 1 for 0 ≤ i ≤ d (see

Corollary 4.11). Fix a nonzero v ∈ E0V and define vi = E∗i v (0 ≤ i ≤ d). We show that {vi}di=0 form a

basis for V (see Lemma 4.10). With respect to this basis, the matrix representing A∗ is diagonal and the

matrix representing A is tridiagonal with diagonal entries all zero. Let {ci}di=1 (resp. {bi}d−1i=0 ) denote the

subdiagonal entries (resp. superdiagonal entries) of this tridiagonal matrix. The scalars {ci}di=1 and {bi}d−1i=0

are called the intersection numbers of Φ. We represent these intersection numbers in terms of the eigenvalue

array (see Lemma 5.4). Using this we show that a TB tridiagonal system is uniquely determined up to

isomorphism by its eigenvalue array (see Corollary 5.5). We show that A,A∗ satisfy a pair of equations

called the Askey–Wilson relations (see lines (8.42), (8.43)). We show that there exists β ∈ F such that

θi−1 − βθi + θi+1 = 0, θ∗i−1 − βθ∗i + θ∗i+1 = 0,

for 1 ≤ i ≤ d− 1 (see Proposition 9.10). We classify the TB tridiagonal systems up to isomorphism in terms

of the eigenvalue array (see Theorem 11.1). We represent the eigenvalue array in closed form (see Examples

13.3–13.6). The TB tridiagonal pair A,A∗ is said to be self-dual whenever it is isomorphic to A∗, A. We

show that there exists 0 6= ζ ∈ F such that ζA,A∗ is self-dual (see Lemma 14.8). In Theorem 14.9, we show

that if A,A∗ is self-dual, then the following TB tridiagonal pairs are mutually isomorphic:

(1.5)
A,A∗, A,−A∗, −A,A∗, −A,−A∗,
A∗, A, A∗,−A, −A∗, A, −A∗,−A.

The explicit isomorphisms are given in Section 14. We put the Askey–Wilson relations in a form said to

be Z3-symmetric (see Propositions 15.2–15.4). For our remaining results, we assume that F is algebraically

closed, and that A,B is self-dual, where B = A∗. We show that there exists C ∈ End(V ) such that

A,B,C is a modular Leonard triple in the sense of Curtin (see [35]). We display some automorphisms and

antiautomorphisms of End(V ) that act on A, B, C in an attractive manner. Recall that the modular group

PSL2(Z) has a presentation by generators r, s and relations r3 = 1, s2 = 1. We show that PSL2(Z) acts on

End(V ) as a group of automorphisms such that r sends A 7→ B 7→ C 7→ A and s sends A↔ B (see Corollary

16.11 and Proposition 17.9). In the last part of the paper, we describe general tridiagonal pairs, using the

TB case as a guide.

The paper is organized as follows. In Section 2, we recall some materials from linear algebra. In Section

3, we define a TB tridiagonal system and its eigenvalue array. In Section 4, we discuss the diameter and

eigenspace dimensions of a TB tridiagonal system. In Section 5, we discuss the intersection numbers of a

TB tridiagonal system. In Sections 6 and 7 we obtain some linear algebra facts that will be needed later. In

Section 8, we discuss the Askey–Wilson relations. In Sections 9 and 10, we investigate a recurrence satisfied

by the eigenvalue array of a TB tridiagonal system. In Section 11, we classify the TB tridiagonal systems up



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 434-491, May 2021.

437 Totally bipartite tridiagonal pairs

to isomorphism. In Sections 12 and 13, we examine in detail the eigenvalue array of a TB tridiagonal system.

In Section 14, we show that in the self-dual case the TB tridiagonal pairs (1.5) are mutually isomorphic. In

Section 15, we put the Askey–Wilson relations in Z3-symmetric form. In Sections 16 and 17, we obtain some

automorphisms and antiautomorphisms of End(V ) that act on a given TB tridiagonal pair in an attractive

manner. In Section 18, we discuss an action of PSL2(Z). In Section 19, we describe the general tridiagonal

pairs.

2. Preliminaries. In this section, we recall some materials from linear algebra. Throughout the paper,

we use the following notation. Let F denote a field and let F denote the algebraic closure of F. For an integer

n ≥ 0, let Matn+1(F) denote the F-algebra consisting of the n + 1 by n + 1 matrices that have all entries

in F. We index the rows and columns by 0, 1, . . . , n. Let Fn+1 denote the vector space over F consisting

of the column vectors of length n + 1 that have all entries in F. We index the rows by 0, 1, . . . , n. Let V

denote a vector space over F with finite positive dimension. Let End(V ) denote the F-algebra consisting of

the F-linear maps from V to V . For the F-algebras Matn+1(F) and End(V ), the identity element is denoted

by I. For X ∈ Matn+1(F) let Xt denote the transpose of X.

Let A denote an element of End(V ). For θ ∈ F define V (θ) = {v ∈ V |Av = θv}. Observe that V (θ)

is a subspace of V . The scalar θ is called an eigenvalue of A whenever V (θ) 6= 0. In this case, V (θ) is

called the eigenspace of A corresponding to θ. We say that A is diagonalizable whenever V is spanned by

the eigenspaces of A. Assume that A is diagonalizable. Let {Vi}di=0 denote an ordering of the eigenspaces

of A. So V =
∑d
i=0 Vi (direct sum). For 0 ≤ i ≤ d let θi denote the eigenvalue of A corresponding to Vi.

For 0 ≤ i ≤ d define Ei ∈ End(V ) such that (Ei − I)Vi = 0 and EiVj = 0 if j 6= i (0 ≤ j ≤ d). Thus, Ei
is the projection onto Vi. Observe that (i) Vi = EiV (0 ≤ i ≤ d); (ii) EiEj = δi,jEi (0 ≤ i, j ≤ d); (iii)

I =
∑d
i=0Ei; (iv) A =

∑d
i=0 θiEi. Also

Ei =
∏

0≤j≤d

j 6=i

A− θjI
θi − θj

(0 ≤ i ≤ d).(2.6)

We call Ei the primitive idempotent of A for θi (0 ≤ i ≤ d). Let M denote the subalgebra of End(V )

generated by A. Observe that {Ai}di=0 is a basis for the F-vector space M , and
∏d
i=0(A − θiI) = 0. Also

observe that {Ei}di=0 is a basis for the F-vector space M .

Let {vi}ni=0 denote a basis for V . For A ∈ End(V ) and X ∈ Matn+1(F), we say that X represents A with

respect to {vi}ni=0 whenever Avj =
∑n
i=0Xi,jvi for 0 ≤ j ≤ n. For A ∈ End(V ) let A[ denote the matrix in

Matn+1(F) that represents A with respect to {vi}ni=0. Then the map End(V ) → Matn+1(F), A 7→ A[ is an

isomorphism of F-algebras.

For an F-algebra A, by an automorphism of A we mean an isomorphism of F-algebras from A to A.

For an invertible T ∈ A, the map X 7→ T−1XT is an automorphism of A, said to be inner. By the

Skolem–Noether theorem [126, Corollary 7.125], every automorphism of End(V ) is inner.

At several places in the paper, we will discuss polynomials. Let x denote an indeterminate. Let F[x]

denote the F-algebra consisting of the polynomials in x that have all coefficients in F.

3. Totally bipartite tridiagonal pairs. In this section, we define a totally bipartite tridiagonal pair

and obtain some basic facts about this object.
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Definition 3.1 (See [32, Definition 1.2]). Let V denote a vector space over F with finite positive dimen-

sion. A totally bipartite tridiagonal pair (or TB tridiagonal pair) on V is an ordered pair A,A∗ of elements

in End(V ) that satisfy the following (i)–(iv).

(i) Each of A, A∗ is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi+1 (0 ≤ i ≤ d),(3.7)

where V−1 = 0 and Vd+1 = 0.

(iii) There exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i+1 (0 ≤ i ≤ δ),(3.8)

where V ∗−1 = 0 and V ∗δ+1 = 0.

(iv) There does not exist a subspace W ⊆ V such that AW ⊆W , A∗W ⊆W , W 6= 0, W 6= V .

We say that A,A∗ is over F. We call V the underlying vector space.

Note 3.2. According to a common notational convention, A∗ denotes the conjugate-transpose of A. We

are not using this convention. In a TB tridiagonal pair, the elements A and A∗ are arbitrary subject to

(i)–(iv) above.

Note 3.3. If A,A∗ is a TB tridiagonal pair on V , then so is A∗, A.

Note 3.4. Let A,A∗ denote a TB tridiagonal pair on V . Pick nonzero ζ, ζ∗ ∈ F. Then ζA, ζ∗A∗ is a

TB tridiagonal pair on V .

We mention a special case of a TB tridiagonal pair.

Example 3.5. Referring to Definition 3.1, assume that dimV = 1 and A = 0, A∗ = 0. Then, A,A∗ is

a TB tridiagonal pair on V , said to be trivial.

Lemma 3.6. With reference to Definition 3.1, assume that A,A∗ is a TB tridiagonal pair on V . Then

the following (i)–(vi) are equivalent: (i) A,A∗ is trivial; (ii) d = 0; (iii) δ = 0; (iv) A = 0; (v) A∗ = 0; (vi)

dimV = 1.

Proof. Routine.

For the rest of this section, let V denote a vector space over F with finite positive dimension.

Let A,A∗ denote a TB tridiagonal pair on V . Let V ′ denote a vector space over F with finite positive

dimension, and let A′, A∗′ denote a TB tridiagonal pair on V ′. By an isomorphism of TB tridiagonal pairs

from A,A∗ to A′, A∗′, we mean an F-linear bijection ψ : V → V ′ such that ψA = A′ψ and ψA∗ = A∗′ψ.

We say that A,A∗ and A′, A∗′ are isomorphic whenever there exists an isomorphism of TB tridiagonal pairs

from A,A∗ to A′, A∗′.

Let A,A∗ denote a TB tridiagonal pair on V . An ordering {Vi}di=0 of the eigenspaces of A is said to be

standard whenever it satisfies (3.7). Let {Vi}di=0 denote a standard ordering of the eigenspaces of A. Then

the ordering {Vd−i}di=0 is also standard and no further ordering is standard. An ordering of the eigenvalues

or primitive idempotents for A is said to be standard whenever the corresponding ordering of the eigenspaces

is standard. Similar comments apply to A∗.
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Definition 3.7. By a TB tridiagonal system on V , we mean a sequence

(3.9) Φ = (A; {Ei}di=0;A∗; {E∗i }δi=0),

of elements in End(V ) that satisfy the following (i)–(iii):

(i) A,A∗ is a TB tridiagonal pair on V ;

(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A;

(iii) {E∗i }δi=0 is a standard ordering of the primitive idempotents of A∗.

We say that Φ is over F. We call V the underlying vector space.

Definition 3.8. Referring to Definition 3.7, for notational convenience define E−1 = 0, Ed+1 = 0,

E∗−1 = 0, E∗δ+1 = 0.

Definition 3.9. Referring to Definition 3.7, we say that the TB tridiagonal pair A,A∗ and the TB

tridiagonal system Φ are associated.

Definition 3.10. A TB tridiagonal system is said to be trivial whenever the associated TB tridiagonal

pair is trivial.

Definition 3.11. Consider the TB tridiagonal system Φ from (3.9). For 0 ≤ i ≤ d let θi denote the

eigenvalue of A corresponding to Ei, and for 0 ≤ i ≤ δ let θ∗i denote the eigenvalue of A∗ corresponding to

E∗i . We call {θi}di=0 (resp. {θ∗i }δi=0) the eigenvalue sequence (resp. dual eigenvalue sequence) of Φ. We call

({θi}di=0; {θ∗i }δi=0) the eigenvalue array of Φ.

Note 3.12. Referring to Definition 3.11, the scalars {θi}di=0 are mutually distinct and contained in F.

Moreover, the scalars {θ∗i }δi=0 are mutually distinct and contained in F.

Note 3.13. Referring to Definition 3.11, assume that Φ is trivial. Then θ0 = 0 and θ∗0 = 0.

Lemma 3.14. Pick nonzero ζ, ζ∗ ∈ F. Let (A; {Ei}di=0;A∗; {E∗i }δi=0) denote a TB tridiagonal system on

V , with eigenvalue array ({θi}di=0; {θ∗i }δi=0). Then

(ζA; {Ei}di=0; ζ∗A∗; {E∗i }δi=0),

is a TB tridiagonal system on V , with eigenvalue array ({ζθi}di=0; {ζ∗θ∗i }δi=0).

Proof. By Definitions 3.7, 3.11 and linear algebra.

Consider the TB tridiagonal system Φ from (3.9). Let V ′ denote a vector space over F with finite positive

dimension, and let

Φ′ = (A′; {E′i}di=0;A∗′; {E∗′i }δi=0),

denote a TB tridiagonal system on V ′. By an isomorphism of TB tridiagonal systems from Φ to Φ′, we mean

an F-linear bijection ψ : V → V ′ such that ψA = A′ψ, ψA∗ = A∗′ψ, ψEi = E′iψ (0 ≤ i ≤ d), ψE∗i = E∗′i ψ

(0 ≤ i ≤ δ). We say that Φ and Φ′ are isomorphic whenever there exists an isomorphism of TB tridiagonal

systems from Φ to Φ′. Note that isomorphic TB tridiagonal systems have the same eigenvalue array.

Given a TB tridiagonal system Φ = (A; {Ei}di=0;A∗; {E∗i }δi=0) on V , each of the following is a TB

tridiagonal system on V :

Φ∗ = (A∗; {E∗i }δi=0;A; {Ei}di=0),

Φ↓ = (A; {Ei}di=0;A∗; {E∗δ−i}δi=0),

Φ⇓ = (A; {Ed−i}di=0;A∗; {E∗i }δi=0).
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Viewing ∗, ↓, ⇓ as permutations on the set of all TB tridiagonal systems,

∗2 = ↓2 =⇓2= 1,(3.10)

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓⇓=⇓↓ .(3.11)

The group generated by the symbols ∗, ↓, ⇓ subject to the relations (3.10), (3.11) is the dihedral group D4.

Recall that D4 is the group of symmetries of a square and has 8 elements. The elements ∗, ↓, ⇓ induce an

action of D4 on the set of all TB tridiagonal systems over F. Two TB tridiagonal systems will be called

relatives whenever they are in the same orbit of this D4 action.

Definition 3.15. Let Φ denote a TB tridiagonal system, and let g ∈ D4. For any object f attached to

Φ, let fg denote the corresponding object attached to Φg
−1

.

Lemma 3.16. Let Φ and Φ′ denote TB tridiagonal systems over F. Assume that Φ and Φ′ are isomorphic,

and let ψ denote an isomorphism of TB tridiagonal systems from Φ to Φ′. Then for g ∈ D4 the map ψ is

an isomorphism of TB tridiagonal systems from Φg to Φ′
g
.

Proof. By the construction.

Lemma 3.17. Let A,A∗ denote a TB tridiagonal pair over F, and let Φ denote an associated TB tridi-

agonal system. Then the TB tridiagonal systems associated with A,A∗ are Φ, Φ↓, Φ⇓, Φ↓⇓.

Proof. By the comments above Definition 3.7.

Definition 3.18. Let A,A∗ denote a TB tridiagonal pair over F. By an eigenvalue sequence (resp.

dual eigenvalue sequence) (resp. eigenvalue array) of A,A∗ we mean the eigenvalue sequence (resp. dual

eigenvalue sequence) (resp. eigenvalue array) of a TB tridiagonal system associated with A,A∗.

Lemma 3.19. Let Φ denote a TB tridiagonal system over F with eigenvalue array ({θi}di=0; {θ∗i }δi=0).

Then for g ∈ {∗, ↓,⇓} the eigenvalue array of Φg is as follows:

g Eigenvalue array of Φg

∗ ({θ∗i }δi=0; {θi}di=0)

↓ ({θi}di=0; {θ∗δ−i}δi=0)

⇓ ({θd−i}di=0; {θ∗i }δi=0)

Proof. By the construction.

Lemma 3.20. For the TB tridiagonal system in (3.9), we have

AE∗i V ⊆ E∗i−1V + E∗i+1V (0 ≤ i ≤ δ),
A∗EiV ⊆ Ei−1V + Ei+1V (0 ≤ i ≤ d).

Proof. By Definition 3.1(ii), (iii).

Lemma 3.21. For the TB tridiagonal system in (3.9), we have

E∗i AE
∗
j =

{
0 if |i− j| 6= 1,

6= 0 if |i− j| = 1
(0 ≤ i, j ≤ δ),(3.12)

EiA
∗Ej =

{
0 if |i− j| 6= 1,

6= 0 if |i− j| = 1
(0 ≤ i, j ≤ d).(3.13)
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Proof. We first show that

E∗i AE
∗
j = 0 if |i− j| 6= 1 (0 ≤ i, j ≤ δ).(3.14)

By Lemma 3.20,

(3.15) AE∗j V ⊆ E∗j−1V + E∗j+1V.

In the above line, apply E∗i to each side. The right-hand side becomes 0 since i 6= j− 1 and i 6= j+ 1. Thus,

E∗i AE
∗
j V = 0 and so (3.14) holds. Next we show that

E∗i AE
∗
j 6= 0 if |i− j| = 1 (1 ≤ i, j ≤ δ).(3.16)

Consider the case i = j − 1. Assume by way of contradiction that E∗i AE
∗
j = 0. For v ∈ AE∗j V we have

E∗j−1v = 0. By this and (3.15) we find v ∈ E∗j+1V . By these comments

(3.17) AE∗j V ⊆ E∗j+1V.

Define W = E∗j V + · · ·+E∗δV . We have AW ⊆W by Lemma 3.20 and (3.17). By construction A∗W ⊆W ,

W 6= 0, W 6= V . This contradicts Definition 3.1(iv), and therefore (3.16) holds for i = j − 1. A similar

argument shows that (3.16) holds for j = i− 1. We have shown (3.12). To get (3.13), apply (3.12) to Φ∗.

4. The raising and lowering maps. Throughout this section, let V denote a vector space over F
with finite positive dimension, and let

Φ = (A; {Ei}di=0;A∗; {E∗i }δi=0),

denote a TB tridiagonal system on V . Our next general goal is to show that d = δ, and that each of EiV

and E∗i V has dimension one for 0 ≤ i ≤ d. To this end, it is convenient to introduce two maps R, L called

the raising and lowering maps. Let ({θi}di=0; {θ∗i }δi=0) denote the eigenvalue array of Φ.

Definition 4.1. Define R, L ∈ End(V ) by

R =

δ∑
i=1

E∗i AE
∗
i−1, L =

δ∑
i=1

E∗i−1AE
∗
i .

We call R (resp. L) the raising map (resp. lowering map) for Φ.

Lemma 4.2. We have A = R+ L.

Proof. Evaluate A = IAI using I =
∑δ
i=0E

∗
i to get A =

∑δ
i=0

∑δ
j=0E

∗
i AE

∗
j . In this equation evaluate

the right-hand side using Lemma 3.21 and Definition 4.1.

Lemma 4.3. The following (i)–(iv) hold:

(i) E∗i R = E∗i AE
∗
i−1 = RE∗i−1 (1 ≤ i ≤ δ);

(ii) E∗0R = 0, RE∗δ = 0;

(iii) E∗i−1L = E∗i−1AE
∗
i = LE∗i (1 ≤ i ≤ δ);

(iv) E∗δL = 0, LE∗0 = 0.

Proof. Recall that E∗rE
∗
s = δr,sE

∗
r for 0 ≤ r, s ≤ δ. Using this and Definition 4.1, we routinely obtain

the results.
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Lemma 4.4. The following hold:

(i) RE∗i V ⊆ E∗i+1V (0 ≤ i ≤ δ);
(ii) LE∗i V ⊆ E∗i−1V (0 ≤ i ≤ δ).

Proof. Use Lemma 4.3.

Definition 4.5. Fix 0 6= v ∈ E0V . For 0 ≤ i ≤ δ define vi = E∗i v. For notational convenience, define

v−1 = 0 and vδ+1 = 0.

Lemma 4.6. With reference to Definition 4.5, the following hold:

(i) vi ∈ E∗i V (0 ≤ i ≤ δ);
(ii) v =

∑δ
i=0 vi.

Proof. (i) By Definition 4.5.

(ii) Use I =
∑δ
i=0E

∗
i .

We now describe the action of R and L on {vi}δi=0. Note by Lemma 4.4 that Rvδ = 0 and Lv0 = 0.

Lemma 4.7. With reference to Definition 4.5,

θ0vi = Rvi−1 + Lvi+1 (0 ≤ i ≤ δ).

Proof. We have v ∈ E0V so Av = θ0v. Using Lemmas 4.2 and 4.3,

0 = E∗i (A− θ0I)v

= E∗i (R+ L− θ0I)v

= (RE∗i−1 + LE∗i+1 − θ0E∗i )v

= Rvi−1 + Lvi+1 − θ0vi.

The result follows.

Lemma 4.8. Assume that Φ is nontrivial. Then with reference to Definition 4.5, the following (i)–(iii)

hold:

(i) θ1θ
∗
0v0 = θ∗1Lv1;

(ii) θ1θ
∗
i vi = θ∗i−1Rvi−1 + θ∗i+1Lvi+1 (1 ≤ i ≤ δ − 1);

(iii) θ1θ
∗
δvδ = θ∗δ−1Rvδ−1.

Proof. (ii) We have v ∈ E0V and A∗E0V ⊆ E1V , so A∗v ∈ E1V . Therefore AA∗v = θ1A
∗v. Using

Lemmas 4.2, 4.3 and E∗rA
∗ = θ∗rE

∗
r (0 ≤ r ≤ d),

0 = E∗i (A− θ1I)A∗v

= E∗i (R+ L− θ1I)A∗v

= (RE∗i−1 + LE∗i+1 − θ1E∗i )A∗v

= θ∗i−1Rvi−1 + θ∗i+1Lvi+1 − θ1θ∗i vi.

The result follows.

(i), (iii) Similar to the proof of (ii) above.
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Lemma 4.9. Assume that Φ is nontrivial. Then with reference to Definition 4.5,

Rvi−1 =
θ1θ
∗
i − θ0θ∗i+1

θ∗i−1 − θ∗i+1

vi (1 ≤ i ≤ δ − 1), Rvδ−1 = θ0vδ,

Lvi+1 =
θ1θ
∗
i − θ0θ∗i−1

θ∗i+1 − θ∗i−1
vi (1 ≤ i ≤ δ − 1), Lv1 = θ0v0.

Also

(θ0θ
∗
1 − θ1θ∗0)v0 = 0, (θ0θ

∗
δ−1 − θ1θ∗δ )vδ = 0.

Proof. Solve the linear equations in Lemmas 4.7 and 4.8.

Lemma 4.10. With reference to Definition 4.5, the following hold:

(i) vi is a basis for E∗i V (0 ≤ i ≤ δ);
(ii) {vi}δi=0 is a basis for V .

Proof. Assume that Φ is nontrivial; otherwise, the result holds by Lemma 3.6. The sum V =
∑δ
i=0E

∗
i V

is direct. For 0 ≤ i ≤ δ, the subspace E∗i V is nonzero and contains vi. So it suffices to show that the vectors

{vi}δi=0 span V . Let W denote the subspace of V spanned by {vi}δi=0. Note that W 6= 0 since 0 6= v ∈ W .

We have A∗W ⊆W by construction. Using Lemma 4.9 we find that RW ⊆W and LW ⊆W . So AW ⊆W
in view of Lemma 4.2. Now W = V by Definition 3.1(iv). Therefore, {vi}δi=0 span V . The result follows.

Corollary 4.11. We have d = δ and

dimEiV = 1, dimE∗i V = 1 (0 ≤ i ≤ d).

Moreover dimV = d+ 1.

Proof. By Lemma 4.10, dimE∗i V = 1 (0 ≤ i ≤ δ) and dimV = δ + 1. Applying Lemma 4.10 to Φ∗, we

obtain dimEiV = 1 (0 ≤ i ≤ d) and dimV = d+ 1. The result follows.

Note 4.12. A tridiagonal pair A,A∗ is often called a Leonard pair if all the eigenspaces of A and A∗

have dimension one.

Definition 4.13. Recall from Corollary 4.11 that d = δ. We call this common value the diameter of Φ.

Definition 4.14. A basis {vi}di=0 for V is said to be Φ-standard whenever there exists a nonzero v ∈
E0V such that vi = E∗i v for 0 ≤ i ≤ d.

A Φ-standard basis is characterized as follows.

Lemma 4.15. Given vectors {vi}di=0 in V , not all zero. Then the following are equivalent:

(i) vi ∈ E∗i V for 0 ≤ i ≤ d, and
∑d
i=0 vi ∈ E0V ;

(ii) {vi}di=0 is a Φ-standard basis for V .

Proof. (i) ⇒ (ii) Define v =
∑d
j=0 vj . By construction v ∈ E0V . For 0 ≤ i ≤ d, in the equation

v =
∑d
j=0 vj apply E∗i to each side to obtain E∗i v = vi. Note that v 6= 0 since the vectors {vi}di=0 are not all

zero. The vectors {vi}di=0 form a basis for V by Lemma 4.10. This basis is Φ-standard by Definition 4.14.

(ii)⇒ (i) By Definition 4.14 there exists 0 6= v ∈ E0V such that vi = E∗i v for 0 ≤ i ≤ d. By construction

vi ∈ E∗i V for 0 ≤ i ≤ d. Also
∑d
i=0 vi = v ∈ E0V .
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We mention a lemma for later use.

Lemma 4.16. Assume that Φ is nontrivial. Then the following (i)–(iii) hold.

(i) Each of θ0, θd, θ∗0, θ∗d is nonzero.

(ii) θ1/θ0 = θd−1/θd = θ∗1/θ
∗
0 = θ∗d−1/θ

∗
d.

(iii) θ0θd−1 = θ1θd and θ∗0θ
∗
d−1 = θ∗1θ

∗
d.

Proof. By the last assertion of Lemma 4.9 and since d = δ, v0 6= 0, vd 6= 0,

θ0θ
∗
1 = θ1θ

∗
0 ,(4.18)

θ0θ
∗
d−1 = θ1θ

∗
d.(4.19)

Applying (4.19) to Φ∗,

(4.20) θd−1θ
∗
0 = θdθ

∗
1 .

Suppose that θ0 = 0. Then θ1 6= 0 since {θi}di=0 are mutually distinct. Now θ∗0 = 0 by (4.18) and θ∗d = 0 by

(4.19). This is a contradiction since {θ∗i }di=0 are mutually distinct and d ≥ 1. Therefore, θ0 6= 0. Applying

this to Φ∗, Φ↓, Φ⇓, we obtain θd 6= 0, θ∗0 6= 0, θ∗d 6= 0. We have obtained assertion (i). Assertion (ii) follows

in view of (4.18)–(4.20). Assertion (iii) follows from assertion (ii).

5. The intersection numbers. In this section, we introduce the intersection numbers of a TB tridi-

agonal system and express these intersection numbers in terms of the eigenvalue array. We use this result to

show that a TB tridiagonal system is uniquely determined up to isomorphism by its eigenvalue array. Let

V denote a vector space over F with finite positive dimension, and let

Φ = (A; {Ei}di=0;A∗; {E∗i }di=0),

denote a TB tridiagonal system on V . Let ({θi}di=0; {θ∗i }di=0) denote the eigenvalue array of Φ. Let {vi}di=0

denote a Φ-standard basis for V . For X ∈ End(V ) let X\ denote the matrix in Matd+1(F) that represents

X with respect to the basis {vi}di=0. By construction,

(E∗i )\ = diag(0, . . . , 0,
i
1, 0, . . . , 0) (0 ≤ i ≤ d),(5.21)

(A∗)\ = diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d).(5.22)

Also by construction there exist scalars {ci}di=1, {bi}d−1i=0 in F such that

A\ =



0 b0 0

c1 0 b1
c2 · ·

· · ·
· · bd−1

0 cd 0


.(5.23)

By Definition 4.1,

R\ =



0 0

c1 0

c2 ·
· ·
· ·

0 cd 0


, L\ =



0 b0 0

0 b1
· ·
· ·
· bd−1

0 0


.(5.24)
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The scalars {ci}di=1, {bi}d−1i=0 are called the intersection numbers of Φ. The intersection numbers {c∗i }di=1,

{b∗i }
d−1
i=0 of Φ∗ are called the dual intersection numbers of Φ.

Lemma 5.1. Assume that Φ is nontrivial. Then

Av0 = c1v1,

Avi = bi−1vi−1 + ci+1vi+1 (1 ≤ i ≤ d− 1),

Avd = bd−1vd−1.

Proof. By (5.23).

Lemma 5.2. We have

Rvi = ci+1vi+1 (0 ≤ i ≤ d− 1), Rvd = 0,

Lvi = bi−1vi−1 (1 ≤ i ≤ d), Lv0 = 0.

Proof. By (5.24).

Lemma 5.3. The scalars {bi}d−1i=0 , {ci}di=1 are all nonzero.

Proof. We first show that ci 6= 0 for 1 ≤ i ≤ d. Let i be given. We have E∗i AE
∗
i−1 6= 0 by Lemma

3.21. By (5.21) and (5.23), the matrix (E∗i AE
∗
i−1)\ has (i, i − 1)-entry ci and all other entries 0. By these

comments ci 6= 0. One similarly shows that bi 6= 0 for 0 ≤ i ≤ d− 1.

Lemma 5.4. Assume that Φ is nontrivial. Then the following hold.

(i) The intersection numbers of Φ satisfy

ci =
θ1θ
∗
i − θ0θ∗i+1

θ∗i−1 − θ∗i+1

(1 ≤ i ≤ d− 1), cd = θ0,(5.25)

bi =
θ1θ
∗
i − θ0θ∗i−1

θ∗i+1 − θ∗i−1
(1 ≤ i ≤ d− 1), b0 = θ0.(5.26)

(ii) The dual intersection numbers of Φ satisfy

c∗i =
θ∗1θi − θ∗0θi+1

θi−1 − θi+1
(1 ≤ i ≤ d− 1), c∗d = θ∗0 ,(5.27)

b∗i =
θ∗1θi − θ∗0θi−1
θi+1 − θi−1

(1 ≤ i ≤ d− 1), b∗0 = θ∗0 .(5.28)

Proof. (i) By Lemmas 4.9 and 5.2.

(ii) Apply (i) above to Φ∗.

Corollary 5.5. A TB tridiagonal system is uniquely determined up to isomorphism by its eigenvalue

array.

Proof. By (5.22), (5.23) and Lemma 5.4(i), the entries of A\ and (A∗)\ are determined by the eigenvalue

array.

Lemma 5.6. For nonzero ζ, ζ∗ ∈ F, consider the TB tridiagonal system

Φ̌ = (ζA; {Ei}di=0; ζ∗A∗; {E∗i }di=0).

Then the (dual) intersection numbers of Φ̌ are

či = ζci, č ∗i = ζ∗c∗i (1 ≤ i ≤ d),

b̌i = ζbi, b̌ ∗i = ζ∗b∗i (0 ≤ i ≤ d− 1).
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Proof. Use Lemmas 3.14 and 5.4.

6. Tridiagonal matrices. In this section, we collect some results about tridiagonal matrices that will

be used later in the paper. Consider a tridiagonal matrix in Matd+1(F):

A =



a0 b0 0

c1 a1 b1
c2 · ·

· · ·
· · bd−1

0 cd ad


.(6.29)

We say that A is irreducible whenever cibi−1 6= 0 for 1 ≤ i ≤ d. For the rest of this section, assume that A

is irreducible.

We have some remarks about the minimal polynomial of A. For 0 ≤ r ≤ d consider the matrix Ar. For

0 ≤ i, j ≤ d the (i, j)-entry of Ar satisfies

(Ar)i,j =

{
0 if |i− j| > r,

6= 0 if |i− j| = r.
(6.30)

Consequently, the matrices {Ar}dr=0 are linearly independent. Therefore, the minimal polynomial of A

coincides with the characteristic polynomial of A. So each eigenspace of A has dimension one. We remark

that A might not be diagonalizable.

For 0 ≤ i ≤ d define E∗i ∈ Matd+1(F) by

(6.31) E∗i = diag(0, . . . , 0,
i
1, 0, . . . , 0).

Observe that E∗i E
∗
j = δi,jE

∗
i (0 ≤ i, j ≤ d) and I =

∑d
i=0E

∗
i .

Lemma 6.1. For 0 ≤ i, j, r ≤ d,

E∗i A
rE∗j =

{
0 if |i− j| > r,

6= 0 if |i− j| = r.
(6.32)

Proof. This is a reformulation of (6.30).

Lemma 6.2. The elements

(6.33) {ArE∗0As | 0 ≤ r, s ≤ d}

form a basis for the F-vector space Matd+1(F).

Proof. For 0 ≤ r, s ≤ d consider the matrix ArE∗0A
s. For 0 ≤ i, j ≤ d, we compute its (i, j)-entry using

(6.31) and evaluate the result using (6.30):

(ArE∗0A
s)i,j = (Ar)i,0(As)0,j =

{
0 if i > r or j > s,

6= 0 if i = r and j = s.

From the pattern of zero/nonzero entries, we see that the elements (6.33) are linearly independent. The set

(6.33) contains (d+ 1)2 elements, and this is the dimension of Matd+1(F). The result follows.
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Corollary 6.3. The elements A, E∗0 generate the F-algebra Matd+1(F).

Proof. By Lemma 6.2.

Definition 6.4. Let {θ∗i }di=0 denote scalars in F. Define A∗ ∈ Matd+1(F) by

(6.34) A∗ = diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d).

Observe that

(6.35) A∗ =

d∑
i=0

θ∗iE
∗
i .

Lemma 6.5. Assume that θ∗0 6= θ∗i for 1 ≤ i ≤ d. Then the following (i)–(iii) hold.

(i) The element E∗0 is a polynomial in A∗:

E∗0 =

d∏
i=1

A∗ − θ∗i I
θ∗0 − θ∗i

.

(ii) The elements A,A∗ generate the F-algebra Matd+1(F).

(iii) There does not exist a subspace W ⊆ Fd+1 such that W 6= 0, W 6= Fd+1, AW ⊆W , A∗W ⊆W .

Proof. (i) By matrix multiplication.

(ii) By (i) and Corollary 6.3.

(iii) By (ii) above and since Fd+1 is an irreducible Matd+1(F)-module.

Definition 6.6. Define scalars {ki}di=0 by

ki =
b0b1 · · · bi−1
c1c2 · · · ci

(0 ≤ i ≤ d).(6.36)

Observe that k0 = 1, and ki 6= 0 for 0 ≤ i ≤ d. Moreover,

ki−1bi−1 = kici (1 ≤ i ≤ d).(6.37)

Definition 6.7. Define K ∈ Matd+1(F) by

(6.38) K = diag(k0, k1, . . . , kd).

Lemma 6.8. We have AtK = KA.

Proof. Use (6.29) and (6.37).

For an F-algebra A, by an antiautomorphism of A, we mean an F-linear bijection ξ : A → A such that

(xy)ξ = yξxξ for x, y ∈ A.

Definition 6.9. Define the map

† : Matd+1(F)→ Matd+1(F), X 7→ K−1XtK.

Lemma 6.10. The map † is an antiautomorphism of Matd+1(F). Moreover, (X†)† = X for all X ∈
Matd+1(F).
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Proof. The map † is F-linear. For X ∈ Matd+1(F) we have (X†)† = X, since

(X†)† = (K−1XtK)† = K−1(K−1XtK)tK = K−1KXK−1K = X.

Consequently, the map † is bijective. For X, Y ∈ Matd+1(F), we have

(XY )† = K−1(XY )tK = K−1Y tXtK = K−1Y tKK−1XtK = Y †X†.

Thus † is an antiautomorphism.

The map † is characterized as follows.

Lemma 6.11. The map † is the unique antiautomorphism of Matd+1(F) that fixes each of A, E∗0 ,

E∗1 , . . . ,E∗d .

Proof. Using Lemma 6.8 and Definition 6.9,

A† = K−1AtK = K−1KA = A,

so † fixes A. For 0 ≤ i ≤ d the map † fixes E∗i by Definition 6.9 and since E∗i , K are diagonal. Concerning

the the uniqueness, let ξ denote an antiautomorphism of Matd+1(F) that fixes each of A, E∗0 , E∗1 , . . . , E∗d .

We show that ξ = †. The composition ξ† is an automorphism of Matd+1(F) that fixes A, E∗0 , E∗1 , . . . , E∗d .

Consequently ξ† = 1 in view of Corollary 6.3. So ξ = †.

7. Recurrent sequences. Let ({θi}di=0; {θ∗i }di=0) denote the eigenvalue array of a TB tridiagonal sys-

tem over F. Later in the paper we will show that there exists β ∈ F such that

θi−1 − βθi + θi+1 = 0, θ∗i−1 − βθ∗i + θ∗i+1 = 0 (1 ≤ i ≤ d− 1).

In this section, we have some comments about the above recurrence. For the rest of this section, fix an

integer d ≥ 0 and let {σi}di=0 denote a sequence of scalars taken from F.

Definition 7.1. For β ∈ F, the sequence {σi}di=0 is said to be β-recurrent whenever

σi−1 − βσi + σi+1 = 0 (1 ≤ i ≤ d− 1).(7.39)

We say that {σi}di=0 is recurrent whenever it is β-recurrent for some β ∈ F.

Lemma 7.2. For β ∈ F the following hold.

(i) Assume that {σi}di=0 is β-recurrent. Then there exists % ∈ F such that

% = σ2
i−1 − βσi−1σi + σ2

i (1 ≤ i ≤ d).(7.40)

(ii) Assume that there exists % ∈ F that satisfies (7.40). Also assume that σi−1 6= σi+1 for 1 ≤ i ≤ d−1.

Then {σi}di=0 is β-recurrent.

Proof. For 1 ≤ i ≤ d define

Si = σ2
i−1 − βσi−1σi + σ2

i .

Observe that for 1 ≤ i ≤ d− 1,

Si − Si+1 = (σi−1 − σi+1)(σi−1 − βσi + σi+1).(7.41)
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(i) In (7.41), the right-hand side is zero by (7.39). So Si − Si+1 = 0. Thus, Si is independent of i for

1 ≤ i ≤ d.

(ii) In (7.41), the left-hand side is zero. In the right-hand side, the first factor is nonzero so the second

factor is zero. Consequently {σi}di=0 is β-recurrent.

8. The Askey–Wilson relations. Let A,A∗ denote a TB tridiagonal pair over F. In this section, we

show that there exist scalars β, %, %∗ in F such that both

A2A∗ − βAA∗A+A∗A2 = %A∗,(8.42)

A∗2A− βA∗AA∗ +AA∗2 = %∗A.(8.43)

The equations (8.42), (8.43) are special cases of the Askey–Wilson relations [154,166].

For the rest of this section, fix an integer d ≥ 0, let V denote a vector space over F with dimension

d + 1, and let Φ = (A; {Ei}di=0;A∗; {E∗i }di=0) denote a TB tridiagonal system on V with eigenvalue array

({θi}di=0; {θ∗i }di=0).

First, we explain how (8.42), (8.43) are related to the recurrence discussed in Lemma 7.2.

Lemma 8.1. For β, % ∈ F the following are equivalent:

(i) θ2i−1 − βθi−1θi + θ2i = % (1 ≤ i ≤ d);

(ii) A2A∗ − βAA∗A+A∗A2 = %A∗.

Proof. Define D = A2A∗ − βAA∗A+A∗A2 − %A∗. Using I =
∑d
i=0Ei, we obtain

D = IDI =
∑

0≤i,j≤d

EiDEj .

Thus D = 0 if and only if EiDEj = 0 (0 ≤ i, j ≤ d). Pick integers i, j such that 0 ≤ i, j ≤ d. Using

EiA = θiEi and AEj = θjEj , we find that

EiDEj = EiA
∗Ej(θ

2
i − βθiθj + θ2j − %).

By (3.13), EiA
∗Ej 6= 0 if and only if |i− j| = 1. The result follows from these comments.

Our next goal is to prove (8.42), (8.43); this is accomplished in Proposition 8.23.

Lemma 8.2. The following hold.

(i) The elements A, A∗ generate End(V ).

(ii) For 0 ≤ i, j, r ≤ d,

E∗i A
rE∗j =

{
0 if |i− j| > r,

6= 0 if |i− j| = r.

Proof. Let {vi}di=0 denote a Φ-standard basis for V . For X ∈ End(V ) let X\ denote the matrix in

Matd+1(F) that represents X with respect to {vi}di=0. The matrices (E∗i )\, (A∗)\, A\ are given in (5.21)–

(5.23). Now (i) follows from Lemma 6.5(ii) and (ii) follows from Lemma 6.1.
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Lemma 8.3. For 0 ≤ i, j, k, r, s ≤ d consider the expression

(8.44) E∗i A
rE∗kA

sE∗j .

(i) Assume that |i− j| > r + s. Then (8.44) is zero.

(ii) Assume that i− j = r + s. Then (8.44) is nonzero if and only if k = j + s.

(iii) Assume that j − i = r + s. Then (8.44) is nonzero if and only if k = i+ r.

Proof. Routine verification using Lemma 8.2(ii).

Lemma 8.4. For 0 ≤ i, j, r, s ≤ d,

(8.45) E∗i A
rA∗AsE∗j =


0 if |i− j| > r + s,

θ∗j+sE
∗
i A

r+sE∗j if i− j = r + s,

θ∗i+rE
∗
i A

r+sE∗j if j − i = r + s.

Proof. Using A∗ =
∑d
k=0 θ

∗
kE
∗
k ,

E∗i A
rA∗AsE∗j =

d∑
k=0

θ∗kE
∗
i A

rE∗kA
sE∗j .

Using I =
∑d
k=0E

∗
k ,

E∗i A
r+sE∗j = E∗i A

rIAsE∗j =

d∑
k=0

E∗i A
rE∗kA

sE∗j .

By these comments and Lemma 8.3, we obtain the result.

Let M (resp. M∗) denote the subalgebra of End(V ) generated by A (resp. A∗). Recall that each of

{Ai}di=0 and {Ei}di=0 (resp. {A∗i}di=0 and {E∗i }di=0) is a basis for the F-vector space M (resp. M∗).

Lemma 8.5. There exists a unique antiautomorphism † of End(V ) that fixes each of A and A∗. The

map † fixes each element of M and each element of M∗. In particular, † fixes Ei and E∗i for 0 ≤ i ≤ d.

Moreover, (X†)† = X for all X ∈ End(V ).

Proof. Follows from Lemmas 6.10 and 6.11.

Definition 8.6. Define a subspace MA∗M of End(V ) by

MA∗M = Span{XA∗Y |X,Y ∈M}.

Lemma 8.7. The following elements form a basis for the F-vector space MA∗M :

(8.46) {Ei−1A∗Ei, EiA∗Ei−1 | 1 ≤ i ≤ d}.

Moreover dim(MA∗M) = 2d.

Proof. We assume d ≥ 1; otherwise the result follows from Lemma 3.6. The F-vector space MA∗M is

spanned by {EiA∗Ej | 0 ≤ i, j ≤ d}. By (3.13) we have EiA
∗Ej = 0 if |i − j| 6= 1 (0 ≤ i, j ≤ d). By these

comments, the elements (8.46) span MA∗M . We show that the elements (8.46) are linearly independent.

Suppose that there exist scalars {αi}di=1, {βi}di=1 in F such that

(8.47) 0 =

d∑
i=1

αiEi−1A
∗Ei +

d∑
i=1

βiEiA
∗Ei−1.
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Pick any integer j (1 ≤ j ≤ d). We show that αj = 0. In (8.47), multiply each side on the left by Ej−1
and right by Ej . This gives αjEj−1A

∗Ej = 0. This forces αj = 0 since Ej−1A
∗Ej 6= 0 by (3.13). A similar

argument shows that βj = 0. We have shown that the elements (8.46) are linearly independent. By the above

comments, the elements (8.46) form a basis for the F-vector space MA∗M . The set (8.46) has cardinality

2d so dim(MA∗M) = 2d.

Lemma 8.8. For 0 ≤ i ≤ d,

(8.48) EiA
∗ = EiA

∗Ei−1 + EiA
∗Ei+1.

Proof. Using I =
∑d
j=0Ej ,

EiA
∗ = EiA

∗I =

d∑
j=0

EiA
∗Ej .

By (3.13), EiA
∗Ej = 0 if |i− j| 6= 1 (0 ≤ j ≤ d). The result follows.

Lemma 8.9. For 0 ≤ i ≤ d,

A∗Ei = Ei−1A
∗Ei + Ei+1A

∗Ei.

Proof. Apply the antiautomorphism † to each side of (8.48).

Lemma 8.10. For 1 ≤ i ≤ d,

Ei−1A
∗Ei = Ei−1A

∗ −A∗Ei−2 + Ei−3A
∗ −A∗Ei−4 + · · ·

EiA
∗Ei−1 = A∗Ei−1 − Ei−2A∗ +A∗Ei−3 − Ei−4A∗ + · · ·

Moreover ∑
0≤i≤d

i even

EiA
∗ =

∑
0≤i≤d

i odd

A∗Ei,
∑

0≤i≤d

i odd

EiA
∗ =

∑
0≤i≤d

i even

A∗Ei.(8.49)

Proof. Solve the equations in Lemmas 8.8 and 8.9.

Lemma 8.11. We have
∑d
i=0(−1)i(EiA

∗ +A∗Ei) = 0.

Proof. Follows from (8.49).

Lemma 8.12. The element A∗ is equal to each of the following sums:∑
0≤i≤d

i even

(EiA
∗ +A∗Ei),

∑
0≤i≤d

i odd

(EiA
∗ +A∗Ei).

Proof. We have A∗ =
∑d
i=0EiA

∗. Evaluate this sum using (8.49).

Lemma 8.13. The following elements form a basis for the F-vector space MA∗M :

(8.50) {EiA∗, A∗Ei | 0 ≤ i ≤ d− 1}.

Proof. Let X denote the subspace of End(V ) spanned by (8.50). By construction X ⊆ MA∗M . By

Lemmas 8.7 and 8.10, MA∗M ⊆ X . So MA∗M = X . By Lemma 8.7, the dimension of MA∗M is 2d. The

set (8.50) has cardinality 2d. Therefore, the elements (8.50) form a basis for the F-vector space MA∗M .

Corollary 8.14. We have MA∗M = MA∗ +A∗M .
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Proof. By construction MA∗ +A∗M ⊆MA∗M . By Lemma 8.13, MA∗M ⊆MA∗ +A∗M .

Definition 8.15. Define a subspace (MA∗M)sym of End(V ) by

(MA∗M)sym = {Z ∈MA∗M |Z† = Z}.

We call (MA∗M)sym the symmetric part of MA∗M .

Lemma 8.16. The subspace (MA∗M)sym contains XA∗X for all X in M . Moreover, (MA∗M)sym

contains XA∗Y + Y A∗X for all X, Y in M .

Proof. Observe that (XA∗Y )† = Y A∗X for all X, Y ∈M .

Lemma 8.17. The following elements form a basis for the F-vector space (MA∗M)sym:

(8.51) {Ei−1A∗Ei + EiA
∗Ei−1 | 1 ≤ i ≤ d}.

Moreover, dim(MA∗M)sym = d.

Proof. Let Z denote the subspace of End(V ) spanned by (8.51). We show that Z = (MA∗M)sym. By

Lemma 8.16, we have Z ⊆ (MA∗M)sym. To show the reverse inclusion, pick any Z ∈ (MA∗M)sym. By

construction Z† = Z. By Lemma 8.7, there exist scalars {αi}di=1, {βi}di=1 in F such that

Z =

d∑
i=1

αiEi−1A
∗Ei +

d∑
i=1

βiEiA
∗Ei−1.

We have

Z† =

d∑
i=1

αiEiA
∗Ei−1 +

d∑
i=1

βiEi−1A
∗Ei.

By Z† = Z and the above two equations, we find that αi = βi for 1 ≤ i ≤ d. Thus,

Z =

d∑
i=1

αi(Ei−1A
∗Ei + EiA

∗Ei−1),

and so Z ∈ Z. We have shown that Z = (MA∗M)sym. Therefore, the elements (8.51) span (MA∗M)sym.

Using Lemma 8.7 one checks that the elements (8.51) are linearly independent. The result follows.

Lemma 8.18. The following elements form a basis for the F-vector space (MA∗M)sym:

(8.52) {EiA∗ +A∗Ei | 0 ≤ i ≤ d− 1}.

Proof. Each of the elements in (8.52) is fixed by †, and therefore contained in (MA∗M)sym. The elements

(8.52) are linearly independent by Lemma 8.13. The set (8.52) has cardinality d. The subspace (MA∗M)sym

has dimension d by Lemma 8.17. The result follows from these comments.

Lemma 8.19. We have

(8.53) (MA∗M)sym = {XA∗ +A∗X |X ∈M}.

Proof. The inclusion ⊆ follows from Lemma 8.18. The inclusion ⊇ follows from Lemma 8.16.

Lemma 8.20. The F-vector space (MA∗M)sym is spanned by

(8.54) {A∗, AA∗ +A∗A, A2A∗ +A∗A2, . . . , AdA∗ +A∗Ad}.
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Proof. Let Z denote the subspace of End(V ) spanned by (8.54). We show that Z = (MA∗M)sym. We

have Z ⊆ (MA∗M)sym by Lemma 8.16. By Lemma 8.19,

(MA∗M)sym = Span{AiA∗ +A∗Ai | 0 ≤ i ≤ d} ⊆ Z.

The result follows.

By Lemma 8.17 the F-vector space (MA∗M)sym has dimension d. The set (8.54) contains d+1 elements.

So the vectors (8.54) are linearly dependent. We now find the dependency. To avoid trivialities we assume

that d ≥ 1.

Lemma 8.21. Assume that d ≥ 1. Then the following (i)–(iii) hold.

(i) Char(F) 6= 2.

(ii) There exists a unique integer n (1 ≤ n ≤ d) such that θ∗n = −θ∗0.

(iii) The element AnA∗ +A∗An is contained in the span of

(8.55) {A∗, AA∗ +A∗A, A2A∗ +A∗A2, . . . , An−1A∗ +A∗An−1}.
Proof. Since the vectors (8.54) are linearly dependent, there exist scalars {αi}di=0 in F, not all zero, such

that

α0A
∗ +

d∑
i=1

αi(A
iA∗ +A∗Ai) = 0.

Define n = max {i | 0 ≤ i ≤ d, αi 6= 0}. Note that n ≥ 1, since A∗ 6= 0 by Lemma 3.6. So

α0A
∗ +

n∑
i=1

αi(A
iA∗ +A∗Ai) = 0, αn 6= 0.(8.56)

By (8.56) the element AnA∗ +A∗An is contained in the span of (8.55). In (8.56), multiply each side on the

left by E∗0 and right by E∗n. Simplify the result using E∗0A
∗ = θ∗0E

∗
0 , A∗E∗n = θ∗nE

∗
n, E∗0E

∗
n = 0 to get

(θ∗0 + θ∗n)

n∑
i=1

αiE
∗
0A

iE∗n = 0.

By Lemma 8.2(ii), E∗0A
iE∗n = 0 for 1 ≤ i ≤ n− 1. So the above line becomes

αn(θ∗0 + θ∗n)E∗0A
nE∗n = 0.

We have αn 6= 0, and E∗0A
nE∗n 6= 0 by Lemma 8.2(ii). Thus, θ∗0 + θ∗n = 0, and so θ∗n = −θ∗0 . The {θ∗i }di=0

are mutually distinct, so no dual eigenvalue other than θ∗n is equal to −θ∗0 . We have Char(F) 6= 2; otherwise

θ∗n = θ∗0 . The result follows.

Note 8.22. Referring to Lemma 8.21(ii), it turns out that n = d; this will be established in Lemma

11.3.

Proposition 8.23. There exist β, %, %∗ in F that satisfy both (8.42), (8.43).

Proof. We first show that

(8.57) AA∗A ∈ Span{A∗, AA∗ +A∗A, A2A∗ +A∗A2}.

We assume that d ≥ 3; otherwise (8.57) holds by Lemma 8.20. Recall the integer n from Lemma 8.21. By

Lemmas 8.20 and 8.21(iii), there exist scalars {αi}di=0 in F with αn = 0 such that

AA∗A = α0A
∗ +

d∑
i=1

αi(A
iA∗ +A∗Ai).
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We show that αi = 0 for 3 ≤ i ≤ d. Suppose not. Then there exists an integer t (3 ≤ t ≤ d) such that

αt 6= 0. We choose t to be maximal. Then t 6= n and

AA∗A = α0A
∗ +

t∑
i=1

αi(A
iA∗ +A∗Ai).

In the above line, multiply each side on the left by E∗0 and right by E∗t . Simplify the result to get

E∗0AA
∗AE∗t = (θ∗0 + θ∗t )

t∑
i=1

αiE
∗
0A

iE∗t .

In the above line the left-hand side is zero by Lemma 8.4, and E∗0A
iE∗t = 0 (1 ≤ i ≤ t−1) by Lemma 8.2(ii).

Thus,

(8.58) 0 = αt(θ
∗
0 + θ∗t )E∗0A

tE∗t .

We examine the factors in (8.58). By construction αt 6= 0. We have θ∗0 +θ∗t 6= 0 by Lemma 8.21(ii) and t 6= n.

Also E∗0A
tE∗t 6= 0 by Lemma 8.2(ii). Therefore, the right-hand side of (8.58) is nonzero, for a contradiction.

We have shown (8.57).

Next we show that there exists β ∈ F such that

θ∗i−1 − βθ∗i + θ∗i+1 = 0 (1 ≤ i ≤ d− 1).(8.59)

We assume that d ≥ 2; otherwise the assertion is vacuous. By (8.57) there exist scalars α0, α1, α2 in F such

that

0 = α0A
∗ + α1(AA∗ +A∗A) + α2(A2A∗ +A∗A2)−AA∗A.

For 1 ≤ i ≤ d− 1, in the above line multiply each side on the left by E∗i−1 and right by E∗i+1. Simplify the

result using Lemmas 8.2(ii) and 8.4 to get

0 = E∗i−1A
2E∗i+1(α2θ

∗
i+1 + α2θ

∗
i−1 − θ∗i ). (1 ≤ i ≤ d− 1).

We have E∗i−1A
2E∗i+1 6= 0 by Lemma 8.2(ii). Thus,

α2(θ∗i−1 + θ∗i+1) = θ∗i (1 ≤ i ≤ d− 1).

Assume for the moment that α2 6= 0. Then (8.59) holds for β = α−12 . Next assume that α2 = 0. Then

θ∗i = 0 for 1 ≤ i ≤ d− 1. This forces d = 2 and θ∗1 = 0. In this case θ∗2 = −θ∗0 by Lemma 8.21(ii) and (8.59)

holds for any β ∈ F. We have shown that there exists β ∈ F that satisfies (8.59).

By (8.59) and Lemma 7.2(i) there exists %∗ ∈ F such that

θ∗2i−1 − βθ∗i−1θ∗i + θ∗i
2 = %∗ (1 ≤ i ≤ d).

By this and Lemma 8.1 (applied to Φ∗) we obtain (8.43). For 1 ≤ i ≤ d− 1, multiply each side of (8.43) on

the left by Ei−1 and right by Ei+1. Simplify the result using Lemmas 8.2(ii) and 8.4 (applied to Φ∗) to get

0 = Ei−1A
∗2Ei+1(θi−1 − βθi + θi+1) (1 ≤ i ≤ d− 1).
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Applying Lemma 8.2(ii) to Φ∗, we obtain Ei−1A
∗2Ei+1 6= 0. Thus,

θi−1 − βθi + θi+1 = 0 (1 ≤ i ≤ d− 1).

By this and Lemma 7.2(i), there exists % ∈ F such that

θ2i−1 − βθi−1θi + θ2i = % (1 ≤ i ≤ d).

By this and Lemma 8.1 we obtain (8.42).

We mention some results for later use.

Lemma 8.24. For X ∈ End(V ) the following are equivalent:

(i) X commutes with each of A, A∗;

(ii) there exists λ ∈ F such that X = λI.

Proof. (i) ⇒ (ii) By Lemma 8.2(i) the element X is contained in the center of End(V ). The center of

End(V ) is spanned by I. The result follows.

(ii) ⇒ (i) Clear.

The next two results follow from Lemma 8.24.

Corollary 8.25. For ψ ∈ End(V ) the following are equivalent:

(i) ψ is an isomorphism of TB tridiagonal pairs from A,A∗ to A,A∗;

(ii) there exists nonzero λ ∈ F such that ψ = λI.

Corollary 8.26. For ψ ∈ End(V ) the following are equivalent:

(i) ψ is an isomorphism of TB tridiagonal systems from Φ to Φ;

(ii) there exists nonzero λ ∈ F such that ψ = λI.

9. The Askey–Wilson sequence and the fundamental parameter. In this section, we introduce

the notion of an Askey–Wilson sequence and fundamental parameter for TB tridiagonal pairs and systems.

Throughout this section let A,A∗ denote a TB tridiagonal pair over F. Let Φ denote an associated TB

tridiagonal system.

Definition 9.1. By an Askey–Wilson sequence for A,A∗, we mean a sequence β, %, %∗ of scalars in F
that satisfy (8.42) and (8.43).

Definition 9.2. By an Askey–Wilson sequence for Φ, we mean an Askey–Wilson sequence for A,A∗.

Lemma 9.3. The following are the same:

(i) an Askey–Wilson sequence for Φ;

(ii) an Askey–Wilson sequence for Φ↓;

(iii) an Askey–Wilson sequence for Φ⇓.

Proof. The TB tridiagonal systems Φ, Φ↓, Φ⇓ have the same associated TB tridiagonal pair A,A∗. The

result follows.

Let ({θi}di=0; {θ∗i }di=0) denote the eigenvalue array of Φ.
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Proposition 9.4. Let β, %, %∗ denote a sequence of scalars taken from F. This sequence is an Askey–

Wilson sequence for Φ if and only if both

θ2i−1 − βθi−1θi + θ2i = % (1 ≤ i ≤ d),(9.60)

θ∗2i−1 − βθ∗i−1θ∗i + θ∗i
2 = %∗ (1 ≤ i ≤ d).(9.61)

Proof. Apply Lemma 8.1 to Φ and Φ∗.

Lemma 9.5. Let β, %, %∗ denote an Askey–Wilson sequence for A,A∗. Then β, %∗, % is an Askey–Wilson

sequence for A∗, A.

Proof. By (8.42) and (8.43).

Lemma 9.6. Let β, %, %∗ denote an Askey–Wilson sequence for A,A∗. Then for nonzero ζ, ζ∗ ∈ F the

TB tridiagonal pair ζA, ζ∗A∗ has an Askey–Wilson sequence β, ζ2%, ζ∗2%∗.

Proof. One verifies that β, ζ2%, ζ∗2%∗ satisfy the Askey–Wilson relations for ζA, ζ∗A∗.

Definition 9.7. A scalar β ∈ F is called a fundamental parameter for A,A∗ whenever there exist %,

%∗ ∈ F such that β, %, %∗ is an Askey–Wilson sequence for A,A∗.

Definition 9.8. By a fundamental parameter for Φ, we mean a fundamental parameter for A,A∗.

Lemma 9.9. Let β denote a fundamental parameter for Φ. Then β is a fundamental parameter for each

of Φ, Φ↓, Φ⇓, Φ∗.

Proof. By Lemmas 9.3 and 9.5.

Proposition 9.10. A scalar β ∈ F is a fundamental parameter for Φ if and only if both

θi−1 − βθi + θi+1 = 0 (1 ≤ i ≤ d− 1),(9.62)

θ∗i−1 − βθ∗i + θ∗i+1 = 0 (1 ≤ i ≤ d− 1).(9.63)

Proof. By Lemma 7.2 and Proposition 9.4.

Lemma 9.11. Let β denote a fundamental parameter for A,A∗. Then β is a fundamental parameter for

A∗, A.

Proof. By Lemma 9.5 or Lemma 9.9.

Lemma 9.12. Let β denote a fundamental parameter for A,A∗. Then β is a fundamental parameter for

ζA, ζ∗A∗ for all nonzero ζ, ζ∗ ∈ F.

Proof. By Lemma 9.6.

The uniqueness of the Askey–Wilson sequence and fundamental parameter will be discussed in Lemmas

12.6, 12.7.

10. More on recurrent sequences. Recall the recurrent sequences from Definition 7.1. In this

section, we obtain a detailed description of these sequences. In our description, two special cases come up,

said to be symmetric and antisymmetric. Throughout this section fix an integer d ≥ 1.

Definition 10.1. Let {σi}di=0 denote a sequence of scalars taken from F. This sequence is said to be

over F and have diameter d. The sequence {σi}di=0 is said to be symmetric whenever σi = σd−i for 0 ≤ i ≤ d.

The sequence {σi}di=0 is said to be antisymmetric whenever σi + σd−i = 0 for 0 ≤ i ≤ d.

For the rest of this section fix β ∈ F.
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Definition 10.2. Let R denote the set of β-recurrent sequences over F that have diameter d. Let Rsym

(resp. Rasym) denote the set of symmetric (resp. antisymmetric) elements in R. Note that R is a subspace

of the F-vector space Fd+1. Moreover, Rsym and Rasym are subspaces of R.

Lemma 10.3. If Char(F) = 2 then Rsym = Rasym. If Char(F) 6= 2 then

R = Rsym +Rasym (direct sum).

Proof. The first assertion is clear. Concerning the second assertion, assume that Char(F) 6= 2. For a

sequence {σi}di=0 in R define

σ+
i =

σi + σd−i
2

, σ−i =
σi − σd−i

2
(0 ≤ i ≤ d).

We have σi = σ+
i + σ−i for 0 ≤ i ≤ d. The sequence {σ+

i }di=0 is β-recurrent and symmetric. The sequence

{σ−i }di=0 is β-recurrent and antisymmetric. By these comments R = Rsym +Rasym. We show that this sum

is direct. Pick an element {σi}di=0 of Rsym ∩Rasym. For 0 ≤ i ≤ d we have both σd−i = σi and σd−i = −σi,
and so σi = 0. Therefore, Rsym ∩Rasym = 0 and consequently the sum Rsym +Rasym is direct.

Our next goal is to display a basis for Rsym and Rasym, under the assumption that Char(F) 6= 2. Our

strategy is to first display some nonzero elements inRsym andRasym, and a bit later show that these elements

form a basis. The cases β = 2, β = −2 will be handled separately.

Lemma 10.4. Assume that Char(F) 6= 2 and β = ±2. For 0 ≤ i ≤ d define σi as follows:

(10.64)

Case σi

β = 2 1

β = −2, d even (−1)i

β = −2, d odd (d− 2i)(−1)i

Then {σi}di=0 is nonzero and contained in Rsym.

Proof. One routinely checks that {σi}di=0 is nonzero, β-recurrent, and symmetric. The result follows.

Lemma 10.5. Assume that Char(F) 6= 2 and β = ±2. For 0 ≤ i ≤ d define σi as follows:

(10.65)

Case σi

β = 2 d− 2i

β = −2, d even (d− 2i)(−1)i

β = −2, d odd (−1)i

Then {σi}di=0 is nonzero and contained in Rasym.

Proof. One routinely checks that {σi}di=0 is nonzero, β-recurrent, and antisymmetric. The result

follows.

Lemma 10.6. Assume that Char(F) 6= 2 and β 6= ±2. Let q ∈ F be such that β = q2+q−2. For 0 ≤ i ≤ d
define σi by

σi =


qd−2i + q2i−d if d is even,

qd−2i + q2i−d

q + q−1
if d is odd.

Then {σi}di=0 is nonzero and contained in Rsym.
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Proof. Clearly {σi}di=0 is nonzero. We verify that {σi}di=0 is contained in Rsym. One routinely checks

that {σi}di=0 is β-recurrent and symmetric. We show that σi ∈ F for 0 ≤ i ≤ d. First assume that d is even.

Observe that σd/2 = 2 and σd/2−1 = q2 + q−2 = β. Therefore, each of σd/2, σd/2−1 is contained in F. By

this and since {σi}di=0 is β-recurrent, we obtain σi ∈ F for 0 ≤ i ≤ d. Next assume that d is odd. Observe

that σ(d−1)/2 = 1 and σ(d+1)/2 = 1. Therefore, each of σ(d−1)/2, σ(d+1)/2 is contained in F. By this and

since {σi}di=0 is β-recurrent, we obtain σi ∈ F for 0 ≤ i ≤ d. Thus, {σi}di=0 is contained in Rsym. The result

follows.

Lemma 10.7. Assume that Char(F) 6= 2 and β 6= ±2. Let q ∈ F be such that β = q2+q−2. For 0 ≤ i ≤ d
define σi by

σi =


qd−2i − q2i−d

q2 − q−2
if d is even,

qd−2i − q2i−d

q − q−1
if d is odd.

Then {σi}di=0 is nonzero and contained in Rasym.

Proof. Clearly {σi}di=0 is nonzero. We verify that {σi}di=0 is contained in Rasym. One routinely checks

that {σi}di=0 is β-recurrent and antisymmetric. We show that σi ∈ F for 0 ≤ i ≤ d. First assume that d is

even. Observe that σd/2 = 0 and σd/2−1 = 1. Therefore, each of σd/2, σd/2−1 is contained in F. By this

and since {σi}di=0 is β-recurrent, we obtain σi ∈ F for 0 ≤ i ≤ d. Next assume that d is odd. Observe that

σ(d−1)/2 = 1 and σ(d+1)/2 = −1. Therefore, each of σ(d−1)/2, σ(d+1)/2 is contained in F. By this and since

{σi}di=0 is β-recurrent, we obtain σi ∈ F for 0 ≤ i ≤ d. Thus, {σi}di=0 is contained in Rasym. The result

follows.

Note 10.8. The parameter q in Lemmas 10.6, 10.7 is not uniquely determined by {σi}di=0. To clarify

the situation, let y denote an indeterminate, and consider the equation

(10.66) β = y2 + y−2.

Let 0 6= q ∈ F denote a solution of (10.66). Then the solutions of (10.66) are q, −q, q−1, −q−1. In Lemmas

10.6 and 10.7, replacing q by −q, q−1, −q−1 does not change σi. Thus, the given sequence {σi}di=0 depends

only on d and β and not on the choice of q.

In Lemmas 10.6 and 10.7, each scalar σi can be represented as a polynomial in β. The polynomial has

Chebychev type, as we now explain. Assume that Char(F) 6= 2. For scalars a, b, c in F define polynomials

T0(x), T1(x), T2(x), . . . by

T0(x) = a,

T1(x) = bx+ c,

Ti(x) = 2xTi−1(x)− Ti−2(x) i = 2, 3, . . . .

Then Ti(x) is the ith Chebychev polynomial with parameters a, b, c [11, Remark 2.5.3]. Now consider the

sequence {σi}di=0 from Lemma 10.6.

(i) Assume that d is even. Then for n = d/2 and a = 2, b = 2, c = 0,

σi = Tn−i(β/2) (0 ≤ i ≤ n).
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(ii) Assume that d is odd. Then for n = (d− 1)/2 and a = 1, b = 2, c = −1,

σi = Tn−i(β/2) (0 ≤ i ≤ n).

Next consider the sequence {σi}di=0 from Lemma 10.7.

(i) Assume that d is even. Then for n = d/2 and a = 1, b = 2, c = 0,

σi = Tn−1−i(β/2) (0 ≤ i ≤ n− 1), σn = 0.

(ii) Assume that d is odd. Then for n = (d− 1)/2 and a = 1, b = 2, c = 1,

σi = Tn−i(β/2) (0 ≤ i ≤ n).

Lemma 10.9. Assume that Char(F) 6= 2. Then

dimR = 2, dimRsym = 1, dimRasym = 1.

Proof. Pick a sequence {σi}di=0 in R. By the β-recurrence, the scalars {σi}di=0 are uniquely determined

by σ0, σ1. Thus, dimR ≤ 2. The subspace Rsym is nonzero by Lemmas 10.4 and 10.6. The subspace Rasym

is nonzero by Lemmas 10.5 and 10.7. By these comments and Lemma 10.3, we obtain the results.

Corollary 10.10. The following hold.

(i) Assume that β = ±2. Then the sequence {σi}di=0 from Lemma 10.4 (resp. Lemma 10.5) is a basis

for Rsym (resp. Rasym).

(ii) Assume that β 6= ±2. Then the sequence {σi}di=0 from Lemma 10.6 (resp. Lemma 10.7) is a basis

for Rsym (resp. Rasym).

Proof. By Lemma 10.9.

For a sequence {σi}di=0 in R, we sometimes consider the case in which {σi}di=0 are mutually distinct. Of

course this does not happen if {σi}di=0 is symmetric. But it could happen if {σi}di=0 is antisymmetric. We

now give the details.

Definition 10.11. A sequence {σi}di=0 in R is said to be MutDist whenever σ0, σ1, . . . , σd are mutually

distinct.

Definition 10.12. A subspace of R is said to be MutDist whenever the subspace is nonzero and every

nonzero element of the subspace is MutDist.

Lemma 10.13. The following (i), (ii) are equivalent:

(i) Rasym is MutDist;

(ii) Rasym contains a MutDist element.

Assume that (i), (ii) hold. Then Char(F) 6= 2.

Proof. Fist assume that (i) holds. Then (ii) follows from Definition 10.12. Next assume that (ii) holds.

Let {σi}di=0 denote a MutDist element in Rasym. Then σd = −σ0 and σd 6= σ0. Thus, Char(F) 6= 2. By this

and Lemma 10.9, the space Rasym has dimension 1. Now (i) follows. Next assume that (i), (ii) hold. We

mentioned in the proof of (ii) ⇒ (i) that Char(F) 6= 2.

Lemma 10.14. Assume that d ≥ 2 and β = −2. Assume that Rasym is MutDist. Then d is even.
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Proof. By Lemma 10.13, Char(F) 6= 2. Let {σi}di=0 be from Lemma 10.5. Then {σi}di=0 is MutDist. If

d is odd, then σ0 = σ2, for a contradiction. Thus, d is even.

Lemma 10.15. Let the sequence {σi}di=0 be from Lemmas 10.5 and 10.7. Then for 0 ≤ i, j ≤ d the scalar

σi − σj is given as follows:

Case σi − σj
β = 2 2(j − i)

β = −2, d even

j even j odd

i even 2(j − i) 2(d− i− j)
i odd 2(i+ j − d) 2(i− j)

β 6= ±2, d even
(q2j − q2i)(1 + q2d−2i−2j)

qd(q2 − q−2)

β 6= ±2, d odd
(q2j − q2i)(1 + q2d−2i−2j)

qd(q − q−1)

In the above table the scalar q is from Lemma 10.7.

Proof. Routine.

Lemma 10.16. For d = 1, Rasym is MutDist if and only if Char(F) 6= 2. For d ≥ 2, Rasym is MutDist

if and only if the following conditions hold:

(10.67)

Case Conditions

β = 2 Char(F) is 0 or greater than d

β = −2 d is even, Char(F) is 0 or greater than d

β 6= ±2 Char(F) 6= 2, q2i 6= 1 (1 ≤ i ≤ d), q2i 6= −1 (1 ≤ i ≤ d− 1)

In the above table the scalar q is from Lemma 10.7.

Proof. Use Lemmas 10.13–10.15.

We mention a lemma for later use.

Lemma 10.17. Let {σi}di=0 denote a MutDist element in Rasym. Then σ0, σd are nonzero and

σ1σi 6= σ0σi−1, σ1σi 6= σ0σi+1 (1 ≤ i ≤ d− 1).

Proof. Without loss of generality, we may assume that {σi}di=0 is the sequence from Lemmas 10.5, 10.7.

One routinely verifies the results using Lemma 10.16.

Motivated by Lemma 4.16(iii) we consider the relation σ1σd = σ0σd−1. We will need the following result.

Lemma 10.18. For sequences {σi}di=0 and {τi}di=0 in R the following are equivalent:

(i) σ0τ1 6= σ1τ0;

(ii) {σi}di=0 and {τi}di=0 are linearly independent.
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Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (i) Consider the d + 1 by 2 matrix H with row i equal to σi, τi for 0 ≤ i ≤ d. The rank of H is

2. By the β-recurrence, each row of H is a linear combination of rows 0 and 1. Therefore, rows 0 and 1 are

linearly independent. Now take the determinant of the submatrix of H consisting of rows 0 and 1.

Proposition 10.19. Assume that Char(F) 6= 2. Then for a sequence {σi}di=0 in R the following are

equivalent:

(i) σ1σd = σ0σd−1;

(ii) the sequence {σi}di=0 is symmetric or antisymmetric.

Proof. By Lemma 10.3 there exist {τi}di=0 in Rsym and {µi}di=0 in Rasym such that σi = τi + µi for

0 ≤ i ≤ d. We have

σ0σd−1 − σ1σd = (τ0 + µ0)(τd−1 + µd−1)− (τ1 + µ1)(τd + µd)

= (τ0 + µ0)(τ1 − µ1)− (τ1 + µ1)(τ0 − µ0)

= 2(τ0µ1 − τ1µ0).

By this and Lemma 10.18, σ0σd−1 = σ1σd if and only if {τi}di=0 and {µi}di=0 are linearly dependent. Since

the sum Rsym +Rasym is direct, the sequences {τi}di=0, {µi}di=0 are linearly dependent if and only if at least

one of {τi}di=0, {µi}di=0 is zero. The result follows.

Corollary 10.20. Assume that Char(F) 6= 2. Let {σi}di=0 denote a MutDist element in R. Then the

following are equivalent:

(i) {σi}di=0 is antisymmetric;

(ii) σ1σd = σ0σd−1.

Proof. By Proposition 10.19 and since no element of Rsym is MutDist.

11. The classification of TB tridiagonal systems. In this section, we classify up to isomorphism

the TB tridiagonal systems. Fix an integer d ≥ 1 and consider a sequence of scalars taken from F:

(11.68) ({θi}di=0; {θ∗i }di=0).

We now state the classification.

Theorem 11.1. There exists a TB tridiagonal system Φ over F that has eigenvalue array (11.68) if and

only if the following (i)–(iii) hold:

(i) θi 6= θj, θ∗i 6= θ∗j if i 6= j (0 ≤ i, j ≤ d);

(ii) there exists β ∈ F such that both

θi−1 − βθi + θi+1 = 0, θ∗i−1 − βθ∗i + θ∗i+1 = 0 (1 ≤ i ≤ d− 1);(11.69)

(iii) θi + θd−i = 0, θ∗i + θ∗d−i = 0 (0 ≤ i ≤ d).

In this case Φ is unique up to isomorphism of TB tridiagonal systems.
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Note 11.2. For d ≤ 2, Theorem 11.1 remains valid if condition (ii) is deleted. Here is the reason. First

assume that d = 1. Then (11.69) is vacuous and so holds for any β ∈ F. Next assume that d = 2. Then

condition (ii) follows from conditions (i), (iii). Indeed by condition (iii) we have θ0 + θ2 = 0 and 2θ1 = 0.

By this and condition (i) we have Char(F) 6= 2 and θ1 = 0. Similarly θ∗0 + θ∗2 = 0 and θ∗1 = 0. Therefore,

(11.69) holds for any β ∈ F.

The proof of Theorem 11.1 takes up most of this section.

Lemma 11.3. Assume that there exists a TB tridiagonal system Φ over F that has eigenvalue array

(11.68). Then this eigenvalue array satisfies conditions (i)–(iii) in Theorem 11.1. Moreover, Φ is unique up

to isomorphism.

Proof. Condition (i) holds by construction. Condition (ii) holds by Proposition 9.10. Condition (iii)

holds by Lemmas 4.16(iii), 8.21(i), and Corollary 10.20. The uniqueness follows from Corollary 5.5.

For the rest of this section, we assume that the sequence (11.68) satisfies Conditions (i)–(iii) in Theorem

11.1. We will construct a TB tridiagonal system Φ over F that has eigenvalue array (11.68). Fix β ∈ F that

satisfies (11.69). We will refer to Section 10 with this β. Observe that each of the sequences {θi}di=0, {θ∗i }di=0

is MutDist and contained in Rasym. Note that Char(F) 6= 2 by Lemma 10.13.

Lemma 11.4. There exists 0 6= ζ ∈ F such that θ∗i = ζθi for 0 ≤ i ≤ d.

Proof. By Lemma 10.9 the subspace Rasym has dimension one. Each of {θi}di=0, {θ∗i }di=0 is a nonzero

element of Rasym. The result follows.

Lemma 11.5. The following hold.

(i) Each of θ0, θd, θ∗0, θ∗d is nonzero.

(ii) θ1/θ0 = θd−1/θd = θ∗1/θ
∗
0 = θ∗d−1/θ

∗
d.

Proof. (i) By Lemmas 10.17 and 11.4.

(ii) We have θ1θd = θ0θd−1 by Corollary 10.20. The result follows from this and Lemma 11.4.

The following definition is motivated by Lemma 5.4.

Definition 11.6. Define scalars {ci}di=1, {bi}d−1i=0 by

ci =
θ1θ
∗
i − θ0θ∗i+1

θ∗i−1 − θ∗i+1

(1 ≤ i ≤ d− 1), cd = θ0,(11.70)

bi =
θ1θ
∗
i − θ0θ∗i−1

θ∗i+1 − θ∗i−1
(1 ≤ i ≤ d− 1), b0 = θ0.(11.71)

Lemma 11.7. We have ci = bd−i for 1 ≤ i ≤ d.

Proof. Compare (11.70), (11.71) using the fact that the sequence {θ∗i }di=0 is antisymmetric.

Lemma 11.8. The scalars {ci}di=1, {bi}d−1i=0 are all nonzero.

Proof. By Lemma 11.4, ci is a nonzero scalar multiple of θ1θi − θ0θi+1 for 1 ≤ i ≤ d − 1 and cd = θ0.

By this and Lemma 10.17, ci 6= 0 for 1 ≤ i ≤ d. By this and Lemma 11.7, bi 6= 0 for 0 ≤ i ≤ d− 1.
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Lemma 11.9. The following hold:

(i) cd = θ0, b0 = θ0 and

ci + bi = θ0 (1 ≤ i ≤ d− 1);(11.72)

(ii) cdθ
∗
d−1 = θ1θ

∗
d, b0θ

∗
1 = θ1θ

∗
0 and

ciθ
∗
i−1 + biθ

∗
i+1 = θ1θ

∗
i (1 ≤ i ≤ d− 1).(11.73)

Proof. (i) Use Definition 11.6.

(ii) To get (11.73) use Definition 11.6. Concerning the first two equations, use cd = θ0, b0 = θ0, and

Lemma 11.5.

Definition 11.10. Define matrices A, A∗ in Matd+1(F) by

A =



0 b0 0

c1 0 b1
c2 · ·

· · ·
· · bd−1

0 cd 0


, A∗ = diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d).

Recall the vector space V = Fd+1. We are going to show that A,A∗ is a TB tridiagonal pair on V and

{θi}di=0 (resp. {θ∗i }di=0) is a standard ordering of the eigenvalues of A (resp. A∗).

We first consider the eigenspaces of A∗, and the action of A on these eigenspaces. Define matrices

{E∗i }di=0 in Matd+1(F) by

E∗i = diag(0, . . . , 0,
i
1, 0, . . . , 0) (0 ≤ i ≤ d).

For 0 ≤ i ≤ d define V ∗i = E∗i V . Observe that V ∗i is a subspace of V with dimension 1.

Lemma 11.11. For 0 ≤ i ≤ d, V ∗i is the eigenspace of A∗ with eigenvalue θ∗i . Moreover

AV ∗i ⊆ V ∗i−1 + V ∗i+1 (0 ≤ i ≤ d),

where V ∗−1 = 0, V ∗d+1 = 0.

Proof. By the form of the matrices A, A∗ in Definition 11.10.

Next we consider the eigenspaces of A, and the action of A∗ on these eigenspaces. Each eigenspace of A

has dimension 1, as we saw below (6.30). But conceivably A is not diagonalizable. For 0 ≤ i ≤ d define

Vi = {v ∈ V |Av = θiv}.

The subspace Vi is nonzero if and only if θi is an eigenvalue of A, and in this case Vi has dimension 1. Our

next goal is to show that each of {θi}di=0 is an eigenvalue of A, and A∗Vi ⊆ Vi−1 + Vi+1 for 0 ≤ i ≤ d, where

V−1 = 0 and Vd+1 = 0.

By Lemma 7.2 there exists %∗ ∈ F such that

%∗ = θ∗2i−1 − βθ∗i−1θ∗i + θ∗2i (1 ≤ i ≤ d).(11.74)
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Lemma 11.12. We have

(11.75) A∗2A− βA∗AA∗ +AA∗2 = %∗A.

Proof. Let Z denote the left-hand side of (11.75) minus the right-hand side of (11.75). We show that

Z = 0. To do this, we use Definition 11.10 and matrix multiplication to show that each entry of Z is zero.

For 0 ≤ i, j ≤ d the (i, j)-entry of Z is

(11.76) Zi,j = (θ∗2i − βθ∗i θ∗j + θ∗2j − %∗)Ai,j .

First assume that |i− j| 6= 1. Then Ai,j = 0 so Zi,j = 0. Next assume that |i− j| = 1. Then in (11.76) the

first factor on the right is zero so Zi,j = 0. We have shown Z = 0, and the result follows.

Lemma 11.13. For 0 ≤ i ≤ d the scalar θi is an eigenvalue of A. Moreover,

A∗Vi ⊆ Vi−1 + Vi+1 (0 ≤ i ≤ d),(11.77)

where V−1 = 0 and Vd+1 = 0.

Proof. We first show that for 0 ≤ i ≤ d− 1,

A∗Vi ⊆ V0 + V1 + · · ·+ Vi−1 + Vi+1,(11.78)

A∗Vi 6⊆ V0 + V1 + · · ·+ Vi−1.(11.79)

We prove this using induction on i. Define vectors v0, v1 in V by

v0 = (1, 1, . . . , 1)t, v1 = (θ∗0 , θ
∗
1 , . . . , θ

∗
d)t.(11.80)

The vectors v0, v1 are nonzero. Using Lemma 11.9 one finds that Av0 = θ0v0 and Av1 = θ1v1. So v0 ∈ V0
and v1 ∈ V1. Using the form of A∗ in Definition 11.10, we find A∗v0 = v1. So (11.78), (11.79) hold for i = 0.

Assume that 1 ≤ i ≤ d− 1. By induction,

A∗Vi−1 ⊆ V0 + V1 + · · ·+ Vi−2 + Vi,(11.81)

A∗Vi−1 6⊆ V0 + V1 + · · ·+ Vi−2.(11.82)

By (11.82), Vi−1 6= 0. Pick 0 6= v ∈ Vi−1, and note that v is a basis for Vi−1. By (11.81) there exist

w ∈ V0 + V1 + · · ·+ Vi−2 and v′ ∈ Vi such that A∗v = w+ v′. By (11.82) the vector v′ is nonzero and hence

a basis for Vi. We apply each side of (11.75) to v. Evaluate each term using A∗v = w + v′ and simplify the

result using θi−1 − βθi = −θi+1 to get

(11.83) (A− θi+1I)A∗v′ = −θi−1A∗w + βA∗Aw −AA∗w + %∗θi−1v.

By construction Aw ∈ V0 + · · · + Vi−2. By induction A∗(V0 + · · · + Vi−2) ⊆ V0 + · · · + Vi−1. By these

comments, the right-hand side of (11.83) is contained in V0 + · · ·+ Vi−1. So (11.83) yields

(A− θi+1I)A∗v′ ∈ V0 + V1 + · · ·+ Vi−1.

Thus, there exist vectors {vr}i−1r=0 in V such that vr ∈ Vr (0 ≤ r ≤ i − 1) and (A − θi+1I)A∗v′ =
∑i−1
r=0 vr.

Define v′′ ∈ V by

v′′ = A∗v′ +

i−1∑
r=0

vr
θi+1 − θr

.
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One routinely checks Av′′ = θi+1v
′′. So v′′ ∈ Vi+1. Therefore, (11.78) holds. We show (11.79). Assume by

way of contradiction that A∗Vi ⊆ V0 +V1 + · · ·+Vi−1. Define W = V0 +V1 + · · ·+Vi. Then A∗W ⊆W . By

construction AW ⊆W . We have W 6= 0 since i ≥ 0, and W 6= V since i ≤ d−1. These comments contradict

Lemma 6.5(iii). Thus, (11.79) holds. We have now shown that (11.78) and (11.79) hold for 0 ≤ i ≤ d− 1.

Next we show that for 1 ≤ i ≤ d,

A∗Vi ⊆ Vd + Vd−1 + · · ·+ Vi+1 + Vi−1,(11.84)

A∗Vi 6⊆ Vd + Vd−1 + · · ·+ Vi+1.(11.85)

We prove this using induction on i = d, d− 1, . . . , 1. Define vectors vd, vd−1 in V by

vd = (1,−1, 1,−1, . . .)t, vd−1 = (θ∗0 ,−θ∗1 , θ∗2 ,−θ∗3 , . . .)t.(11.86)

Each of vd, vd−1 is nonzero. Using Lemma 11.9 and the fact that {θi}di=0 is antisymmetric, we obtain

Avd = θdvd and Avd−1 = θd−1vd−1. So vd ∈ Vd and vd−1 ∈ Vd−1. Using the form of A∗ in Definition 11.10

and (11.86), we obtain A∗vd = vd−1. So (11.84) and (11.85) hold for i = d. Assume that 1 ≤ i ≤ d − 1.

Adjusting the proof of (11.78) and (11.79), we obtain (11.84) and (11.85). We have now shown that (11.84)

and (11.85) hold for 1 ≤ i ≤ d.

By (11.79) or (11.85) we see that Vi is nonzero for 0 ≤ i ≤ d. Consequently, θi is an eigenvalue of A for

0 ≤ i ≤ d. Comparing (11.78) and (11.84), we obtain (11.77).

Lemma 11.14. The pair A,A∗ is a TB tridiagonal pair on V . Moreover, {θi}di=0 (resp. {θ∗i }di=0) is a

standard ordering of the eigenvalues of A (resp. A∗).

Proof. We verify the conditions (i)–(iv) in Definition 3.1. By construction A∗ is diagonalizable. By

Lemma 11.13, A is diagonalizable. Thus, condition (i) holds. Conditions (ii) and (iii) hold by Lemmas 11.13

and 11.11, respectively. Condition (iv) holds by Lemma 6.5(iii). Thus, A,A∗ is a TB tridiagonal pair on V .

We have shown that {Vi}di=0 (resp. {V ∗i }di=0) is a standard ordering of the eigenspaces of A (resp. A∗). The

result follows.

For 0 ≤ i ≤ d let Ei ∈ End(V ) denote the projection onto Vi. Define

Φ = (A; {Ei}di=0;A∗; {E∗i }di=0).

Lemma 11.15. The above Φ is a TB tridiagonal system on V with eigenvalue array (11.68).

Proof. By Lemma 11.14 the pair A,A∗ is a TB tridiagonal pair on V . By Lemma 11.14 and the

construction, {Ei}di=0 (resp. {E∗i }di=0) is a standard ordering of the primitive idempotents of A (resp. A∗).

The result follows.

By Lemmas 11.3, 11.15 we have now proved Theorem 11.1.

12. The eigenvalue array. In this section, we introduce the notion of an eigenvalue array over F. Fix

an integer d ≥ 1 and consider a sequence of scalars taken from F:

(12.87) ({θi}di=0; {θ∗i }di=0).

Definition 12.1. The sequence (12.87) is called an eigenvalue array over F whenever it satisfies condi-

tions (i)–(iii) in Theorem 11.1. We call d the diameter of the eigenvalue array.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 434-491, May 2021.

K. Nomura and P. Terwilliger 466

Definition 12.2. Assume that (12.87) is an eigenvalue array over F. By the corresponding TB tridi-

agonal system, we mean the one from Theorem 11.1.

Definition 12.3. Assume that (12.87) is an eigenvalue array over F. By an Askey–Wilson sequence

for (12.87), we mean an Askey–Wilson sequence for the corresponding TB tridiagonal system.

Definition 12.4. Assume that (12.87) is an eigenvalue array over F. By a fundamental parameter for

(12.87), we mean a fundamental parameter for the corresponding TB tridiagonal system.

We have some comments.

Lemma 12.5. Assume that Char(F) = 2. Then there does not exist an eigenvalue array over F with

diameter d.

Proof. Combine conditions (i), (iii) in Theorem 11.1.

Lemma 12.6. Assume that (12.87) is an eigenvalue array over F.

(i) Assume that d ≤ 2. Then any scalar β ∈ F is a fundamental parameter for (12.87).

(ii) Assume that d ≥ 3. Then there exists a unique fundamental parameter β for (12.87).

(iii) Assume that d ≥ 3 and d is odd. Then β 6= −2.

Proof. (i) By Note 11.2.

(ii) By Definition 12.4 there exists at least one fundamental parameter β. This parameter satisfies

θ0− βθ1 + θ2 = 0 and θ1− βθ2 + θ3 = 0. At least one of θ1, θ2 is nonzero since θ1 6= θ2. By these comments,

β is uniquely determined by θ0, θ1, θ2, θ3. The result follows.

(iii) By Lemma 10.14.

Lemma 12.7. Assume that (12.87) is an eigenvalue array over F. Let β denote a fundamental parameter

for (12.87). Then there exists a unique ordered pair %, %∗ such that β, %, %∗ is an Askey–Wilson sequence for

(12.87).

Proof. The scalars %, %∗ exist by Proposition 8.23 and Definition 9.1. They are unique by (9.60), (9.61).

Lemma 12.8. Assume that (12.87) is an eigenvalue array over F. Let β, %, %∗ denote an Askey–Wilson

sequence for (12.87). Then the following hold.

(i) Assume that d is even. Then

% = θ2r , %∗ = θ∗2r , where r = d/2− 1.

(ii) Assume that d is odd. Then

% = (β + 2)θ2r , %∗ = (β + 2)θ∗2r , where r = (d− 1)/2.

Proof. (i) By Theorem 11.1(iii), θr+1 = 0. By this and (9.60) at i = r+ 1, we get % = θ2r . Similar for %∗.

(ii) By Theorem 11.1(iii), θr + θr+1 = 0. By this and (9.60) at i = r + 1, we get % = (β + 2)θ2r . Similar

for %∗.
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Lemma 12.9. Assume that (12.87) is an eigenvalue array over F. Then the following hold.

(i) Assume that d is even. Then

θi = 0 if and only if i = d/2 (0 ≤ i ≤ d).

(ii) Assume that d is odd. Then

θi 6= 0 (0 ≤ i ≤ d).

Proof. We have Char(F) 6= 2 by Lemma 12.5. The result follows in view of Theorem 11.1(i), (iii).

Lemma 12.10. Assume that (12.87) is an eigenvalue array over F. Let β, %, %∗ denote an Askey–Wilson

sequence for (12.87). Then the following are equivalent:

(i) % = 0; (ii) %∗ = 0; (iii) d = 1 and β = −2.

Proof. First assume that d is even. Then each of %, %∗ is nonzero by Lemmas 12.8(i) and 12.9(i). Next

assume that d is odd. Then (i)–(iii) are equivalent by Lemmas 12.6(iii), 12.8(ii), 12.9(ii).

Lemma 12.11. Assume that (12.87) is an eigenvalue array over F. Then (12.87) has an Askey–Wilson

sequence β, %, %∗ such that %, %∗ are nonzero.

Proof. By Lemma 12.10 and since the choice of β is arbitrary for d = 1.

Definition 12.12. Assume that (12.87) is an eigenvalue array over F. By the corresponding intersec-

tion numbers (resp. dual intersection numbers), we mean the intersection numbers (resp. dual intersection

numbers) of the corresponding TB tridiagonal system.

13. The TB tridiagonal systems in closed form. In this section, we give in closed form the

eigenvalue array and the (dual) intersection numbers of a TB tridiagonal system. We also display the

Askey–Wilson relations for the associated TB tridiagonal pair. Fix an integer d ≥ 1 and consider a sequence

of scalars taken from F:

(13.88) ({θi}di=0; {θ∗i }di=0).

As a warmup, we will handle the cases d = 1, d = 2 separately.

Lemma 13.1. For d = 1 the following (i), (ii) are equivalent:

(i) the sequence (13.88) is an eigenvalue array over F;

(ii) Char(F) 6= 2, the scalars θ0, θ∗0 are nonzero, and θ1 = −θ0, θ∗1 = −θ∗0.

Assume that (i), (ii) hold. Then the corresponding (dual) intersection numbers are

c1 = θ0, b0 = θ0, c∗1 = θ∗0 , b∗0 = θ∗0 .

Moreover, the Askey–Wilson sequences for (13.88) are

β, (β + 2)θ20, (β + 2)θ∗20 (β ∈ F).

In addition,

AA∗ = −A∗A, A2 = θ20I, A∗2 = θ∗20 I.
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Proof. (i)⇒ (ii) By Theorem 11.1(iii), θ1 = −θ0 and θ∗1 = −θ∗0 . By this and Theorem 11.1(i), Char(F) 6=
2 and θ0 6= 0, θ∗0 6= 0.

(ii) ⇒ (i) One verifies the conditions (i)–(iii) in Theorem 11.1. Therefore, (13.88) is an eigenvalue array

over F.

Assume that (i), (ii) hold. Then the intersection numbers and dual intersection numbers are obtained

using Lemma 5.4. The Askey–Wilson sequences are obtained by Lemmas 12.6(i) and 12.8(ii). By (ii) above,

A has eigenvalues θ0, −θ0. So A2 = θ20I. Similarly, A∗2 = θ∗20 I. By (3.7), A∗ swaps the eigenspaces of A.

By this we find that AA∗ = −A∗A.

Lemma 13.2. For d = 2 the following (i), (ii) are equivalent:

(i) the sequence (13.88) is an eigenvalue array over F;

(ii) Char(F) 6= 2, the scalars θ0, θ∗0 are nonzero, and

θ1 = 0, θ2 = −θ0, θ∗1 = 0, θ∗2 = −θ∗0 .

Assume that (i), (ii) hold. Then the corresponding (dual) intersection numbers are

c1 = θ0/2, c2 = θ0, c∗1 = θ∗0/2, c∗2 = θ∗0 ,

b0 = θ0, b1 = θ0/2, b∗0 = θ∗0 , b∗1 = θ∗0/2.

Moreover, the Askey–Wilson sequences for (13.88) are

β, θ20, θ∗20 (β ∈ F).

In addition,

AA∗A = 0, A2A∗ +A∗A2 = θ20A
∗,(13.89)

A∗AA∗ = 0, A∗2A+AA∗2 = θ∗20 A.(13.90)

Proof. For the assertions above (13.89), the proof is similar to Lemma 13.1. To obtain (13.89), set % = θ20
in (8.42) and use the fact that β is arbitrary. Equation (13.90) is similarly obtained.

For the rest of this section, assume that d ≥ 3. In Examples 13.3–13.6 below, we display all the parameter

arrays over F with diameter d. In each case, we display the (dual) intersection numbers from Definition 11.6,

as well as the corresponding Askey–Wilson sequence β, %, %∗.

Example 13.3. Assume that Char(F) is 0 or greater than d. Assume that there exist nonzero h, h∗ ∈ F
such that

θi = h(d− 2i), θ∗i = h∗(d− 2i) (0 ≤ i ≤ d).

Then (13.88) is an eigenvalue array over F with fundamental parameter β = 2. The corresponding (dual)

intersection numbers and the scalars %, %∗ are

ci = hi, c∗i = h∗i (1 ≤ i ≤ d),

bi = h(d− i), b∗i = h∗(d− i) (0 ≤ i ≤ d− 1),

% = 4h2, %∗ = 4h∗2.
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Proof. Define β = 2. One routinely verifies that each of {θi}di=0, {θ∗i }di=0 is β-recurrent and antisymmet-

ric, so contained in Rasym. By Lemma 10.16, the subspace Rasym is MutDist, so each of {θi}di=0, {θ∗i }di=0

is MutDist. By these comments (13.88) satisfies conditions (i)–(iii) in Theorem 11.1. Thus, (13.88) is an

eigenvalue array over F with fundamental parameter β. To get the (dual) intersection numbers and the

scalars %, %∗, use Lemma 5.4 and (9.60), (9.61).

The following Examples can be verified in a similar way.

Example 13.4. Assume that d is even. Assume that Char(F) is 0 or greater than d. Assume that there

exist nonzero h, h∗ ∈ F such that

θi = h(d− 2i)(−1)i, θ∗i = h∗(d− 2i)(−1)i (0 ≤ i ≤ d).

Then (13.88) is an eigenvalue array over F with fundamental parameter β = −2. The corresponding (dual)

intersection numbers and the scalars %, %∗ are

ci = hi, c∗i = h∗i (1 ≤ i ≤ d),

bi = h(d− i), b∗i = h∗(d− i) (0 ≤ i ≤ d− 1),

% = 4h2, %∗ = 4h∗2.

Example 13.5. Assume that d is even and Char(F) 6= 2. Let q denote a nonzero scalar in F such that

q2 + q−2 ∈ F, q2i 6= 1 (1 ≤ i ≤ d), q2i 6= −1 (1 ≤ i ≤ d− 1).

Assume that there exist nonzero h, h∗ ∈ F such that

θi =
h(qd−2i − q2i−d)

q2 − q−2
, θ∗i =

h∗(qd−2i − q2i−d)
q2 − q−2

(0 ≤ i ≤ d).

Then (13.88) is an eigenvalue array over F with fundamental parameter β = q2 + q−2. Moreover, β 6= ±2.

The corresponding (dual) intersection numbers and the scalars %, %∗ are

ci =
h(q2i − q−2i)

(q2 − q−2)(qd−2i + q2i−d)
(1 ≤ i ≤ d− 1), cd =

h(qd − q−d)
q2 − q−2

,

bi =
h(q2d−2i − q2i−2d)

(q2 − q−2)(qd−2i + q2i−d)
(1 ≤ i ≤ d− 1), b0 =

h(qd − q−d)
q2 − q−2

,

% = h2.

To get {c∗i }di=1, {b∗i }
d−1
i=0 , %∗, replace h with h∗ in the above.
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Example 13.6. Assume that d is odd and Char(F) 6= 2. Let q denote a nonzero scalar in F such that

q2 + q−2 ∈ F, q2i 6= 1 (1 ≤ i ≤ d), q2i 6= −1 (1 ≤ i ≤ d− 1).

Assume that there exist nonzero h, h∗ ∈ F such that

θi =
h(qd−2i − q2i−d)

q − q−1
, θ∗i =

h∗(qd−2i − q2i−d)
q − q−1

(0 ≤ i ≤ d).

Then (13.88) is an eigenvalue array over F with fundamental parameter β = q2 + q−2. Moreover,. β 6= ±2.

The corresponding (dual) intersection numbers and the scalars %, %∗ are

ci =
h(q2i − q−2i)

(q − q−1)(qd−2i + q2i−d)
(1 ≤ i ≤ d− 1), cd =

h(qd − q−d)
q − q−1

,

bi =
h(q2d−2i − q2i−2d)

(q − q−1)(qd−2i + q2i−d)
(1 ≤ i ≤ d− 1), b0 =

h(qd − q−d)
q − q−1

,

% = h2(q + q−1)2.

To get {c∗i }di=1, {b∗i }
d−1
i=0 , %∗, replace h with h∗ in the above.

Theorem 13.7. Every eigenvalue array over F with diameter d ≥ 3 is listed in exactly one of the

Examples 13.3–13.6.

Proof. Assume that (13.88) is an eigenvalue array over F, and let β denote its fundamental parameter.

Observe that each of {θi}di=0, {θ∗i }di=0 is contained in Rasym. By this and Lemma 10.13, Rasym is MutDist.

By this and Lemma 10.16 the conditions (10.67) hold. Let the sequence {σi}di=0 be from Lemmas 10.5,

10.7. By Corollary 10.10, {σi}di=0 is a basis for Rasym. Therefore, there exist h, h∗ ∈ F such that θi = hσi,

θ∗i = h∗σi for 0 ≤ i ≤ d. Now (13.88) is listed in the following Examples:

Case Listed in

β = 2 Example 13.3

β = −2 Example 13.4

β 6= ±2, d is even Example 13.5

β 6= ±2, d is odd Example 13.6

The result follows.

Note 13.8. For the eigenvalue array in Example 13.3 (resp. 13.4) (resp. 13.5, 13.6), the corresponding

TB tridiagonal system is said to have Krawtchouk type (resp. Bannai/Ito type) (resp. q-Racah type).

We now display the Askey–Wilson relations. Let Φ denote a TB tridiagonal system over F with eigenvalue

array (13.88). Let A,A∗ denote the TB tridiagonal pair associated with Φ.
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Lemma 13.9. Assume that d ≥ 3. Then with the notation in Examples 13.3–13.6, the Askey–Wilson

relations for A,A∗ are given as follows:

Case Askey–Wilson relations

β = 2
A2A∗ − 2AA∗A+A∗A2 = 4h2A∗

A∗2A− 2A∗AA∗ +AA∗2 = 4h∗2A

β = −2
A2A∗ + 2AA∗A+A∗A2 = 4h2A∗

A∗2A+ 2A∗AA∗ +AA∗2 = 4h∗2A

β 6= ±2, d even
A2A∗ − (q2 + q−2)AA∗A+A∗A2 = h2A∗

A∗2A− (q2 + q−2)A∗AA∗ +AA∗2 = h∗2A

β 6= ±2, d odd
A2A∗ − (q2 + q−2)AA∗A+A∗A2 = h2(q + q−1)2A∗

A∗2A− (q2 + q−2)A∗AA∗ +AA∗2 = h∗2(q + q−1)2A.

Proof. Evaluate (8.42), (8.43) using the data in Examples 13.3–13.6.

We will return to the Askey–Wilson relations in Section 15.

14. The relatives of a TB tridiagonal system. Let Φ denote a TB tridiagonal system over F.

Recall from Section 3 the relatives Φ∗, Φ↓, Φ⇓. In this section, we discuss how these relatives are related to

Φ at an algebraic level.

Lemma 14.1. Consider a TB tridiagonal system over F:

Φ = (A; {Ei}di=0;A∗; {E∗i }di=0).

Then for g ∈ {↓, ⇓, ↓⇓} the TB tridiagonal system Φg is isomorphic to the TB tridiagonal system shown in

the table below:
g Φg is isomorphic to

↓ (A; {Ei}di=0;−A∗; {E∗i }di=0)

⇓ (−A; {Ei}di=0;A∗; {E∗i }di=0)

↓⇓ (−A; {Ei}di=0;−A∗; {E∗i }di=0)

Proof. Use Lemmas 3.14, 3.19 and Corollary 5.5, together with Theorem 11.1(iii).

Referring to Lemma 14.1, the explicit isomorphisms will be displayed later in this section.

Lemma 14.2. Let A,A∗ denote a TB tridiagonal pair over F. Then the following TB tridiagonal pairs

are mutually isomorphic:

A,A∗, A,−A∗, −A,A∗, −A,−A∗.

Proof. By Lemma 14.1.

Definition 14.3. Let A,A∗ denote a TB tridiagonal pair over F. Then A,A∗ is said to be self-dual

whenever A,A∗ is isomorphic to A∗, A.

Definition 14.4. Let Φ denote a TB tridiagonal system over F. Then Φ is said to be self-dual whenever

Φ is isomorphic to Φ∗.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 434-491, May 2021.

K. Nomura and P. Terwilliger 472

Lemma 14.5. Let Φ denote a TB tridiagonal system over F with eigenvalue array ({θi}di=0; {θ∗i }di=0).

Then the following are equivalent:

(i) Φ is self-dual;

(ii) θi = θ∗i for 0 ≤ i ≤ d.

Proof. By Lemma 3.19, Φ∗ has eigenvalue array ({θ∗i }di=0; {θi}di=0). By Corollary 5.5, Φ and Φ∗ are

isomorphic if and only if they have the same eigenvalue array. The result follows.

Lemma 14.6. Assume that d ≥ 3. Let Φ denote a TB tridiagonal system over F with eigenvalue array

({θi}di=0; {θ∗i }di=0). Let the scalars h, h∗ be from Examples 13.3–13.6. Then Φ is self-dual if and only if

h = h∗.

Proof. By Lemma 14.5.

Lemma 14.7. Consider a TB tridiagonal system over F:

(14.91) (A; {Ei}di=0;A∗; {E∗i }di=0).

Then there exists 0 6= ζ ∈ F such that the TB tridiagonal system

(14.92) (ζA; {Ei}di=0;A∗; {E∗i }di=0)

is self-dual.

Proof. By Lemmas 11.4 and 14.5.

Lemma 14.8. Let A,A∗ denote a TB tridiagonal pair over F. Then there exists 0 6= ζ ∈ F such that the

TB tridiagonal pair ζA,A∗ is self-dual.

Proof. By Lemma 14.7.

Theorem 14.9. Let A,A∗ denote a self-dual TB tridiagonal pair over F. Then the following TB tridi-

agonal pairs are mutually isomorphic:

A,A∗, A,−A∗, −A,A∗, −A,−A∗,
A∗, A, A∗,−A, −A∗, A, −A∗,−A.

Proof. By Lemma 14.2 and Definition 14.3.

Our next goal is to display the isomorphisms in Lemma 14.1. For the rest of this section, fix a TB

tridiagonal system over F:

Φ = (A; {Ei}di=0;A∗; {E∗i }di=0).

Let ({θi}di=0; {θ∗i }di=0) denote the eigenvalue array of Φ.

Definition 14.10. Define

S =

d∑
i=0

(−1)iEi, S∗ =

d∑
i=0

(−1)iE∗i .(14.93)

Lemma 14.11. We have S2 = I and S∗2 = I. Moreover, S and S∗ are invertible.

Proof. Concerning S, use EiEj = δi,jEi (0 ≤ i, j ≤ d) and I =
∑d
i=0Ei. The case of S∗ is similar.
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Lemma 14.12. The following (i)–(iv) hold:

(i) SA = AS;

(ii) SEi = EiS for 0 ≤ i ≤ d;

(iii) SA∗ = −A∗S;

(iv) SE∗i = E∗d−iS for 0 ≤ i ≤ d.

Proof. (i), (ii) By construction.

(iii) By Lemma 8.11 and Definition 14.10.

(iv) Using (2.6) we obtain

SE∗i S
−1 =

∏
0≤j≤d

j 6=i

SA∗S−1 − θ∗j I
θ∗i − θ∗j

.

Evaluate the above equation using SA∗S−1 = −A∗ and Theorem 11.1(iii) to get SE∗i S
−1 = E∗d−i. The

result follows.

Lemma 14.13. The following (i)–(iv) hold:

(i) S∗A∗ = A∗S∗;

(ii) S∗E∗i = E∗i S
∗ for 0 ≤ i ≤ d;

(iii) S∗A = −AS∗;
(iv) S∗Ei = Ed−iS

∗ for 0 ≤ i ≤ d.

Proof. Apply Lemma 14.12 to Φ∗.

Lemma 14.14. The following hold:

(i) S is an isomorphism of TB tridiagonal systems from Φ↓ to

(A; {Ei}di=0;−A∗; {E∗i }di=0).

(ii) S is an isomorphism of TB tridiagonal pairs from A,A∗ to A,−A∗.

Proof. Use Lemma 14.12.

Lemma 14.15. The following hold:

(i) S∗ is an isomorphism of TB tridiagonal systems from Φ⇓ to

(−A; {Ei}di=0;A∗; {E∗i }di=0).

(ii) S∗ is an isomorphism of TB tridiagonal pairs from A,A∗ to −A,A∗.

Proof. Use Lemma 14.13.

Lemma 14.16. We have SS∗ = (−1)dS∗S.

Proof. Using Definition 14.10 and Lemma 14.12(iv),

SS∗ =

d∑
i=0

(−1)iSE∗i =

d∑
i=0

(−1)iE∗d−iS =

d∑
i=0

(−1)d−iE∗i S = (−1)dS∗S.
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Lemma 14.17. The following hold:

(i) SS∗ is an isomorphism of TB tridiagonal systems from Φ↓⇓ to

(−A; {Ei}di=0;−A∗; {E∗i }di=0).

(ii) SS∗ is an isomorphism of TB tridiagonal pairs from A,A∗ to −A,−A∗.

Proof. Follows from Lemmas 14.14 and 14.15.

For 0 ≤ i ≤ d we define some polynomials in F[x]:

τi(x) = (x− θ0)(x− θ1) · · · (x− θi−1),

ηi(x) = (x− θd)(x− θd−1) · · · (x− θd−i+1),

τ∗i (x) = (x− θ∗0)(x− θ∗1) · · · (x− θ∗i−1),

η∗i (x) = (x− θ∗d)(x− θ∗d−1) · · · (x− θ∗d−i+1).

Theorem 14.18 (See [122]). Assume that Φ is self-dual. Then the following four elements are equal,

and this common element is an isomorphism of TB tridiagonal systems from Φ to Φ∗.

d∑
i=0

ηd−i(A)E∗0Edτ
∗
i (A∗),

d∑
i=0

η∗d−i(A
∗)E0E

∗
dτi(A),

d∑
i=0

τ∗i (A∗)EdE
∗
0ηd−i(A),

d∑
i=0

τi(A)E∗dE0η
∗
d−i(A

∗).

Moreover, the above common element is an isomorphism of TB tridiagonal pairs from A,A∗ to A∗, A.

15. The Z3-symmetric Askey–Wilson relations. For convenience, we adjust our notation as fol-

lows.

From now on we abbreviate B = A∗.

Let A,B denote a TB tridiagonal pair over F. We saw in Section 8 that A,B satisfy the Askey–Wilson

relations

A2B − βABA+BA2 = %B,(15.94)

B2A− βBAB +AB2 = %∗A.(15.95)

A more detailed version of these relations is given in Lemma 13.9. In this section we put the Askey–Wilson

relations in a form said to be Z3-symmetric. This is done by introducing a third element C.

For the rest of this section, the following notation is in effect. Assume that F is algebraically closed.

Fix an integer d ≥ 1, and let V denote a vector space over F with dimension d + 1. Let A,B denote a TB

tridiagonal pair on V . By Lemma 12.11, there exists an Askey–Wilson sequence β, %, %∗ for A,B such that

%, %∗ are nonzero.
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Definition 15.1. Let z, z′, z′′ denote scalars in F that satisfy

(15.96)

Case z′z′′ z′′z

β = 2 −% −%∗

β = −2 % %∗

β 6= ±2 %(4− β2)−1 %∗(4− β2)−1

Note that zz′z′′ 6= 0.

Proposition 15.2. Assume that β = 2. Then there exists C ∈ End(V ) such that

BC − CB = zA,(15.97)

CA−AC = z′B,(15.98)

AB −BA = z′′C.(15.99)

Proof. Define C by (15.99). One verifies (15.97) and (15.98) using (15.94), (15.95), (15.96).

Proposition 15.3. Assume that β = −2. Then there exists C ∈ End(V ) such that

BC + CB = zA,(15.100)

CA+AC = z′B,(15.101)

AB +BA = z′′C.(15.102)

Proof. Similar to the proof of Proposition 15.2.

Proposition 15.4. Assume that β 6= ±2. Let 0 6= q ∈ F be such that β = q2 + q−2. Then there exists

C ∈ End(V ) such that

qBC − q−1CB
q2 − q−2

= zA,(15.103)

qCA− q−1AC
q2 − q−2

= z′B,(15.104)

qAB − q−1BA
q2 − q−2

= z′′C.(15.105)

Proof. Similar to the proof of Proposition 15.2.

Lemma 15.5. Assume that A,B is self-dual. Then in Definition 15.1, the scalars z, z′, z′′ can be chosen

such that z = z′ = z′′.

Proof. Use the fact that % = %∗ and F is algebraically closed.

The next three results follow from Propositions 15.2–15.4.

Corollary 15.6. Assume that β = 2. Then for

ρ = ρ∗ = 4, z = z′ = z′′ = 2
√
−1,

the equations (15.97)–(15.99) become

BC − CB = 2
√
−1A,(15.106)

CA−AC = 2
√
−1B,(15.107)

AB −BA = 2
√
−1C.(15.108)
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Corollary 15.7. Assume that β = −2. Then for

ρ = ρ∗ = 4, z = z′ = z′′ = 2,

the equations (15.100)–(15.102) become

BC + CB = 2A,(15.109)

CA+AC = 2B,(15.110)

AB +BA = 2C.(15.111)

Corollary 15.8. Assume that β 6= ±2. Then for

ρ = ρ∗ = 4− β2, z = z′ = z′′ = 1,

the equations (15.103)–(15.105) become

qBC − q−1CB
q2 − q−2

= A,(15.112)

qCA− q−1AC
q2 − q−2

= B,(15.113)

qAB − q−1BA
q2 − q−2

= C.(15.114)

Note 15.9. The equations (15.106)–(15.108) are the defining relations for sl2 in the Pauli presentation.

Here are some details. Assume that Char(F) 6= 2. Let sl2 denote the Lie algebra over F consisting of the

2 by 2 matrices that have entries in F and trace 0. The Lie bracket is [r, s] = rs − sr. Consider the Pauli

matrices (see [124]):

S1 =

(
0 1

1 0

)
, S2 =

(
0 −

√
−1√

−1 0

)
, S3 =

(
1 0

0 −1

)
.

These matrices form a basis for sl2, and satisfy the relations

[S1, S2] = 2
√
−1S3, [S2, S3] = 2

√
−1S1, [S3, S1] = 2

√
−1S2.

Note 15.10. The equations (15.109)–(15.111) are essentially the defining relations for the anticommu-

tator spin algebra (see [12]). Here are some details. In [12] Arik and Kayserilioglu introduced an F-algebra

by generators J1, J2, J3 and relations

J2J3 + J3J2 = J1, J3J1 + J1J3 = J2, J1J2 + J2J1 = J3.

This algebra is called the anticommutator spin algebra. Observe that the above relations coincide with

(15.109)–(15.111) by setting J1 = A/2, J2 = B/2, J3 = C/2.

Note 15.11. The equations (15.112)–(15.114) are essentially the defining relations for the quantum

algebra Uq(so3). Here are some details. The algebra Uq(so3) has a presentation by generators I1, I2, I3 and

relations

q1/2I2I3 − q−1/2I3I2 = I1,(15.115)

q1/2I3I1 − q−1/2I1I3 = I2,(15.116)

q1/2I1I2 − q−1/2I2I1 = I3.(15.117)
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As far as we know, the equations (15.115)–(15.117) were first considered by Santilli [128]. Later in [40], Fairlie

discovered that (15.115)–(15.117) show up in Uq(so3). The fact that (15.115)–(15.117) give a presentation for

Uq(so3) was proved by Odesski in [123]. See [58] for a more precise history. The relations (15.115)–(15.117)

become (15.112)–(15.114) by first setting I1 = A/(q − q−1), I2 = B/(q − q−1), I3 = C/(q − q−1), and then

replacing q with q2.

16. The elements W , W ′, W ′′ and the automorphism ρ. Throughout this section, the following

notation is in effect. Assume that F is algebraically closed. Fix an integer d ≥ 1, and let V denote a vector

space over F with dimension d + 1. Let A,B denote a TB tridiagonal pair on V . In view of Lemma 14.8,

assume that A,B is self-dual. Let β, %, %∗ denote the Askey–Wilson sequence for A,B from above Definition

15.1 and note that % = %∗. For the case β 6= ±2, fix 0 6= q ∈ F as in Proposition 15.4.

Lemma 16.1. Let {θi}di=0 denote an eigenvalue sequence of A,B. Then there exists 0 6= h ∈ F such that

the following holds:

(16.118)

Case θi

β = 2 h(d− 2i)

β = −2 h(d− 2i)(−1)i

β 6= ±2 h(qd−2i − q2i−d)

Proof. By Lemmas 13.1, 13.2 and Examples 13.3–13.6, together with the assumption that F is alge-

braically closed.

Lemma 16.2. Referring to Lemma 16.1,

(16.119)

Case %

β = 2 4h2

β = −2 4h2

β 6= ±2 h2(q2 − q−2)2

Proof. Use Proposition 9.4 and Lemma 16.1.

In view of Lemma 15.5, we choose the scalars z, z′, z′′ in Definition 15.1 such that z = z′ = z′′. Let

C ∈ End(V ) be from Propositions 15.2–15.4. Next, we define some invertible elements W , W ′ in End(V ),

and use them to construct an automorphism ρ of End(V ) that sends

A 7→ B, B 7→ C, C 7→ A.

For 0 ≤ i ≤ d let Ei (resp. E′i) denote the primitive idempotent of A (resp. B) for the eigenvalue θi, where

θi is from Lemma 16.1.

Definition 16.3. Define W , W ′ ∈ End(V ) by

W =

d∑
i=0

tiEi, W ′ =

d∑
i=0

tiE
′
i,(16.120)

where

(16.121)

Case ti

β = 2 2ihiz−i

β = −2 (−1)bi/2c2ihiz−i

β 6= ±2 hiz−iqi(d−i)
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Lemma 16.4. The elements W , W ′ are invertible, with inverse

W−1 =

d∑
i=0

t−1i Ei, (W ′)−1 =

d∑
i=0

t−1i E′i.

Proof. By construction.

Recall the antiautomorphism † of End(V ), from Lemma 8.5.

Lemma 16.5. The antiautomorphism † fixes each of W , W ′.

Proof. By (16.120) and since † fixes Ei and E′i for 0 ≤ i ≤ d.

Lemma 16.6. We have

AW = WA, BW ′ = W ′B.(16.122)

Proof. The element A commutes with W by Definition 16.3 and since A commutes with Ei for 0 ≤ i ≤ d.

Similarly, B commutes with W ′.

Lemma 16.7. We have

BW = WC, CW ′ = W ′A.(16.123)

Proof. We first obtain BW = WC. By (15.99), (15.102), (15.105), we have

C = eAB + e′BA,

where

(16.124)

Case e e′

β = 2 z−1 −z−1

β = −2 z−1 z−1

β 6= ±2
qz−1

q2 − q−2
− q−1z−1

q2 − q−2

It suffices to show that

(16.125) eAB + e′BA−W−1BW = 0.

To obtain (16.125), we show that

Ei(eAB + e′BA−W−1BW )Ej = 0,(16.126)

for 0 ≤ i, j ≤ d. Let i, j be given. Using EiA = θiEi, AEj = θjEj , EiW
−1 = t−1i Ei, WEj = tjEj , we find

that the left-hand side of (16.126) is equal to

(eθi + e′θj − t−1i tj)EiBEj .(16.127)

First, assume that |i − j| 6= 1. Then EiBEj = 0 by Lemma 3.21, so (16.127) is zero. Next assume that

|i − j| = 1. Using (15.96), (16.118), (16.119), (16.121), (16.124), one routinely finds that in (16.127) the

coefficient of EiBEj is zero. Therefore (16.127) is zero as desired. We have obtained BW = WC. The

equation CW ′ = W ′A is similarly obtained.
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Definition 16.8. Define P = W ′W . Note that P † = WW ′.

Lemma 16.9. We have

AP = PB, BP = PC, CP = PA.(16.128)

Proof. In the equation on the left in (16.123), multiply each side on the left by W ′ and use (16.122)

to get BP = PC. In the equation on the right in (16.123), multiply each side on the right by W and use

(16.122) to get CP = PA. Combining the equations in (16.123) we obtain BWW ′ = WW ′A. By these

comments and Definition 16.8, we obtain BP † = P †A. Applying † we get AP = PB.

Definition 16.10. Define the map ρ : End(V ) → End(V ), X 7→ P−1XP . Note that ρ is an automor-

phism of End(V ) that fixes P .

Corollary 16.11. The automorphism ρ sends

A 7→ B, B 7→ C, C 7→ A.

Proof. By Lemma 16.9.

Corollary 16.12. We have ρ3 = 1. Moreover, there exists 0 6= κ ∈ F such that P 3 = κI.

Proof. By Corollary 16.11, the element P 3 commutes with both A, B. By this and Lemma 8.24, there

exists κ ∈ F such that P 3 = κI. We have κ 6= 0 since P is invertible. Now ρ3 = 1 follows by Definition

16.10.

Note 16.13 (See [150, Corollary 14.11]). Referring to Corollary 16.12, the scalar κ is given as follows:

Case β = 2 β = −2 β 6= ±2

κ (−1)d2−dh−dzd 1 (−1)dh−dzdqd(d−1)
.

By construction and Corollary 16.11, the element C is diagonalizable with eigenvalues {θi}di=0. For

0 ≤ i ≤ d let E′′i denote the primitive idempotent of C for the eigenvalue θi.

Lemma 16.14. For 0 ≤ i ≤ d the automorphism ρ sends

Ei 7→ E′i, E′i 7→ E′′i , E′′i 7→ Ei.

Proof. We first show that ρ sends Ei 7→ E′i. In (2.6) the element Ei is expressed as a polynomial in A;

let f(x) denote the polynomial. Using the equation on the left in (16.128),

P−1EiP = P−1f(A)P = f(P−1AP ) = f(B) = E′i.

Thus ρ sends Ei 7→ E′i. Similarly, ρ sends E′i 7→ E′′i and E′′i 7→ E′i.

Definition 16.15. Define W ′′ ∈ End(V ) by

W ′′ =

d∑
i=0

tiE
′′
i ,

where {ti}di=0 are from (16.121).
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Lemma 16.16. The automorphism ρ sends

W 7→W ′, W ′ 7→W ′′, W ′′ 7→W.

In other words

WP = PW ′, W ′P = PW ′′, W ′′P = PW.(16.129)

Proof. The first assertion is by Definitions 16.3, 16.15 and Lemma 16.14. The second assertion follows

in view of Definition 16.10.

Lemma 16.17. The element P is equal to each of

W ′W, W ′′W ′, WW ′′.

Proof. By Definition 16.8, P = W ′W . Apply ρ to this and use Lemma 16.16 to get P = W ′′W ′.

Similarly P = WW ′′.

Definition 16.18. Elements X, Y in End(V ) are said to satisfy the braid relation whenever XYX =

Y XY .

Lemma 16.19. Any two of W , W ′, W ′′ satisfy the braid relation.

Proof. By (16.129) and Lemma 16.17.

Corollary 16.11 and Lemma 16.14 show that A,B,C is a Leonard triple in the sense of Curtin [35]. We

will say more about Leonard triples in Section 19.

17. Some antiautomorphisms associated with a TB tridiagonal pair. Throughout this section,

the following notation is in effect. Assume that F is algebraically closed. Fix an integer d ≥ 1, and let V

denote a vector space over F with dimension d + 1. Let A,B denote a self-dual TB tridiagonal pair on V .

Let β, %, %∗ denote the Askey–Wilson sequence for A,B from above Definition 15.1. Choose the scalars z,

z′, z′′ in Definition 15.1 such that z = z′ = z′′ and let C ∈ End(V ) be from Propositions 15.2–15.4. In this

section, we obtain some antiautomorphisms of End(V ) that act on A, B, C in an attractive manner. Recall

the antiautomorphism † of End(V ), from Lemma 8.5. By construction † fixes A, B.

Lemma 17.1. For a map ξ : End(V )→ End(V ) the following are equivalent:

(i) ξ is an antiautomorphism of End(V );

(ii) there exists an invertible T ∈ End(V ) such that Xξ = T−1X†T for all X ∈ End(V ).

Proof. (i) ⇒ (ii) Consider the composition

ω : End(V )
†−−−→ End(V )

ξ−−−→ End(V ).

The map ω is an automorphism of End(V ). By the Skolem–Noether theorem, there exists an invertible T ∈
End(V ) such that Xω = T−1XT for all X ∈ End(V ). Thus, Xξ = (X†)ω = T−1X†T for all X ∈ End(V ).

(ii) ⇒ (i) Clear.

Let {θi}di=0 denote the eigenvalue sequence of A,B from Lemma 16.1, and let Ei, E
′
i be from above

Definition 16.3. Let W , W ′ be from Definition 16.3, and let P be from Definition 16.8.
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Definition 17.2. Define the maps †′, †′′ : End(V ) → End(V ), X 7→ T−1X†T , where T is from the

table below.
†′ †′′

T P †P (PP †)−1
.

Note that †′, †′′ are antiautomorphisms of End(V ).

Recall the automorphism ρ of End(V ), from Definition 16.10.

Lemma 17.3. The map †′ is equal to the composition

End(V )
ρ−1

−−−−−→ End(V )
†−−−→ End(V )

ρ−−−→ End(V ).

The map †′′ is equal to the composition

End(V )
ρ−−−→ End(V )

†−−−→ End(V )
ρ−1

−−−−−→ End(V ).

Proof. Use Definitions 16.10 and 17.2.

Our next goal is to describe how †, †′, †′′ act on A, B, C. We will treat separately the cases β = 2,

β = −2, β 6= ±2.

Proposition 17.4. Assume that β = 2. Then the antiautomorphisms †, †′, †′′ act on A, B, C as

follows:

(i) † fixes A, B and sends C 7→ −C;

(ii) †′ fixes B, C and sends A 7→ −A;

(iii) †′′ fixes C, A and sends B 7→ −B.

Proof. (i) By construction A† = A and B† = B. Applying † to each side of (15.99), we obtain C† = −C.

(ii), (iii) Use Corollary 16.11, Lemma 17.3, and (i) above.

Proposition 17.5. Assume that β = −2. Then the maps †, †′, †′′ coincide, and this map fixes each of

A, B, C.

Proof. By Definitions 15.1, 16.3 and Lemma 16.2. we obtain t2i = 1 for 0 ≤ i ≤ d. So W 2 = I and

(W ′)2 = I. By this and Definition 16.8, P †P = I and PP † = I. By this and Definition 17.2, we obtain

†′ = † and †′′ = †. By construction † fixes A, B. By this and (15.102), we obtain C† = C. The result

follows.

Proposition 17.6. Assume that β 6= ±2. Then the antiautomorphisms †, †′, †′′ act on A, B, C as

follows:

(i) † fixes A, B and sends C 7→ C − AB−BA
z(q−q−1) ;

(ii) †′ fixes B, C and sends A 7→ A− BC−CB
z(q−q−1) ;

(iii) †′′ fixes C, A and sends B 7→ B − CA−AC
z(q−q−1) .

Proof. Similar to the proof of Proposition 17.4, using (15.105) instead of (15.99).

Definition 17.7. Define maps ‡, ‡′, ‡′′ : End(V )→ End(V ), X 7→ T−1X†T , where T is from the table

below.
‡ ‡′ ‡′′

T W (W ′)−1 WW ′W
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Note that ‡, ‡′, ‡′′ are antiautomorphisms of End(V ).

Lemma 17.8. The map ‡′ is equal to the composition

(17.130) End(V )
ρ−1

−−−−−→ End(V )
‡−−−→ End(V )

ρ−−−→ End(V ).

The map ‡′′ is equal to the composition

(17.131) End(V )
ρ−−−→ End(V )

‡−−−→ End(V )
ρ−1

−−−−−→ End(V ).

Proof. Note by Lemma 16.5 that † fixes each of W , W ′. We first show that ‡′ is equal to the composition

(17.130). Pick any X ∈ End(V ). By Definition 17.7, ‡′ sends X 7→W ′X†(W ′)−1. By Definitions 16.8, 16.10,

17.7, the composition (17.130) sends X 7→ H−1X†H, where H = WW ′WW ′W . By Definition 16.8 and

Corollary 16.12, we obtain H = κ(W ′)−1. By these comments ‡′ is equal to the composition (17.130). One

similarly shows that ‡′′ is equal to the composition (17.131).

Proposition 17.9. The antiautomorphisms ‡, ‡′, ‡′′ act on A, B, C as follows:

(i) ‡ fixes A and swaps B, C;

(ii) ‡′ fixes B and swaps C, A;

(iii) ‡′′ fixes C and swaps A, B.

Proof. Note by Lemma 16.5 that † fixes each of W , W ′.

(i) By Lemma 16.6 and Definition 17.7, A‡ = A. By Lemma 16.7, B‡ = C and C‡ = W−1C†W =

(WCW−1)† = B.

(ii), (iii) Use Corollary 16.11, Lemma 17.8, and (i) above.

The existence of the antiautomorphisms ‡, ‡′, ‡′′ shows that the Leonard triple A,B,C is modular in

the sense of Curtin [35].

Lemma 17.10. We have ‡2 = 1, (‡′)2 = 1, (‡′′)2 = 1.

Proof. Each of the given squares is an automorphism of End(V ) that fixes each of A, B, C. The result

follows in view of Lemma 8.2(i).

Next, we explain how ‡, ‡′, ‡′′ are related to the automorphism ρ from Definition 16.10.

Proposition 17.11. The automorphism ρ is equal to each of the following compositions:

End(V )
‡′−−−→ End(V )

‡−−−→ End(V ),(17.132)

End(V )
‡′′−−−→ End(V )

‡′−−−→ End(V ),(17.133)

End(V )
‡−−−→ End(V )

‡′′−−−→ End(V ).(17.134)

Proof. We first show that ρ is equal to the composition (17.132). Pick any X ∈ End(V ). By Definition

16.10, ρ sends X 7→ P−1XP . By Definition 17.7, the composition (17.132) sends X 7→W−1(W ′)−1XW ′W .

By Definition 16.8, P = W ′W . By these comments, ρ is equal to the composition (17.132). By this and

Lemma 17.8, we find that ρ is equal to each of (17.133), (17.134).
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18. An action of PSL2(Z) associated with a TB tridiagonal pair. Throughout this section, the

following notation is in effect. Assume that F is algebraically closed. Fix an integer d ≥ 1, and let V denote

a vector space over F with dimension d + 1. Let A,B denote a self-dual TB tridiagonal pair on V . Let

β, %, %∗ denote the Askey–Wilson sequence for A,B from above Definition 15.1. Choose the scalars z, z′, z′′

in Definition 15.1 such that z = z′ = z′′ and let C ∈ End(V ) be from Propositions 15.2–15.4.

In this section, we display an action of PSL2(Z) on End(V ) as a group of automorphisms that act on

A, B, C in an attractive manner. Recall from [10] that PSL2(Z) has a presentation by generators r, s and

relations r3 = 1, s2 = 1. To get the action of PSL2(Z), we need an automorphism of End(V ) that has

order 3 and one that has order 2. In Corollary 16.12, we obtained an automorphism ρ of End(V ) that has

order 3. Next we obtain an automorphism of End(V ) that has order 2. Recall the elements W , W ′ from

Definition 16.3.

Definition 18.1. Define the map σ : End(V )→ End(V ), X 7→ TXT−1, where T = WW ′W . Note that

σ is an automorphism of End(V ).

Recall the antiautomorphism † of End(V ) from Lemma 8.5, and the antiautomorphism ‡′′ of End(V )

from Definition 17.7.

Proposition 18.2. The automorphism σ is equal to the composition

End(V )
‡′′−−−→ End(V )

†−−−→ End(V ).

Proof. Routine verification using Definitions 17.7 and 18.1.

Proposition 18.3. The automorphism σ swaps A, B and sends C 7→ C†.

Proof. By Propositions 17.9(iii) and 18.2.

Corollary 18.4. We have σ2 = 1.

Proof. By Proposition 18.3 the automorphism σ2 fixes both A, B. The result follows by Lemma

8.2(i).

Corollary 18.5. The group PSL2(Z) acts on End(V ) as a group of automorphisms, such that r acts

as ρ and s acts as σ.

Proof. By Corollaries 16.12 and 18.4.

19. Concluding remarks. In earlier sections, we discussed TB tridiagonal pairs. In this section, we

summarize what is known about general tridiagonal pairs, using the TB case as a guide. The definition of a

tridiagonal pair is given in the Introduction section. The definition of a tridiagonal system is analogous to

Definition 3.7. For the rest of this section, let Φ = (A; {Ei}di=0;A∗; {E∗i }δi=0) denote a tridiagonal system on

V . It is known that d = δ (see [71, Lemma 4.5]). By [71, Theorem 10.1], there exists a sequence of scalars

β, γ, γ∗, %, %∗ in F such that both

0 = [A, A2A∗ − βAA∗A+A∗A2 − γ(AA∗ +A∗A)− %A∗],(19.135)

0 = [A∗, A∗2A− βA∗AA∗ +AA∗2 − γ∗(A∗A+AA∗)− %∗A],(19.136)

where [r, s] means rs − sr. The above equations are called the tridiagonal relations. We now describe the

eigenvalues. For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) associated with Ei (resp.

E∗i ). By [71, Theorem 11.1], the expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
,
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are equal and independent of i for 2 ≤ i ≤ d− 1. Moreover,

γ = θi−1 − βθi + θi+1 (1 ≤ i ≤ d− 1),

γ∗ = θ∗i−1 − βθ∗i + θ∗i+1 (1 ≤ i ≤ d− 1),

% = θ2i−1 − βθi−1θi + θ2i − γ(θi−1 + θi) (1 ≤ i ≤ d),

%∗ = θ∗2i−1 − βθ∗i−1θ∗i + θ∗2i − γ∗(θ∗i−1 + θ∗i ) (1 ≤ i ≤ d).

Note that γ, γ∗ are zero if Φ is TB. One topic that we did not discuss in earlier sections is the split

decomposition. This is defined as follows. For 0 ≤ i ≤ d define

Ui = (E∗0V + · · ·+ E∗i V ) ∩ (EiV + · · ·+ EdV ).

By [71, Theorem 4.6], we have V =
∑d
i=0 Ui (direct sum). This sum is called the Φ-split decomposition of

V . By [71, Theorem 4.6], the elements A, A∗ act on {Ui}di=0 as follows:

(A− θiI)Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0,(19.137)

(A∗ − θ∗i I)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U0 = 0.(19.138)

By [71, Corollary 5.7], for 0 ≤ i ≤ d the dimensions of Ui, EiV , E∗i V are equal; denote this common

dimension by ρi. By [71, Corollary 5.7], we have ρi = ρd−i. The sequence (ρ0, ρ1, . . . , ρd) is called the shape

of Φ. By [118, Theorem 1.3], the shape satisfies ρi ≤ ρ0
(
d
i

)
for 0 ≤ i ≤ d. Additional results concerning

the split decomposition and the shape can be found in [74, 97, 98, 106, 108, 112, 113, 140, 142, 157]. Some

miscellaneous results about tridiagonal pairs and systems can be found in [1, 4, 28,85,87].

The tridiagonal system Φ is said to be sharp whenever ρ0 = 1. If F is algebraically closed, then

Φ is sharp [116, Theorem 1.3]. In [72, Theorem 3.1], the sharp tridiagonal systems are classified up to

isomorphism. This result makes heavy use of [82, 83, 114–119]. For the moment assume that Φ is sharp.

By [114, Theorem 11.5] and [72, Theorem 3.1], there exists an antiautomorphism † of End(V ) that fixes each

of A, A∗. By linear algebra, there exists a nondegenerate symmetric bilinear form 〈 , 〉 : V × V → F such

that 〈Xu, v〉 = 〈u,X†v〉 for all u, v ∈ V and X ∈ End(V ). See [6, 114,130] for results on the bilinear form.

We now assume that ρi = 1 for 0 ≤ i ≤ d. In this case, A,A∗ is called a Leonard pair, and Φ is called a

Leonard system. For some surveys on this topic, see [120, 138, 143]. For a Leonard pair, we can improve on

the tridiagonal relations (19.135), (19.136) as follows. By [154, Theorem 1.5], there exist scalars ω, η, η∗ in

F such that both

A2A∗ − βAA∗A+A∗A2 − γ(AA∗ +A∗A)− %A∗ = γ∗A2 + ωA+ ηI,(19.139)

A∗2A− βA∗AA∗ +AA∗2 − γ∗(A∗A+AA∗)− %∗A = γA∗2 + ωA∗ + η∗I.(19.140)

These equations are called the Askey–Wilson relations (see [154, 166]). Observe that in (19.139) the right-

hand side is a polynomial in A, and therefore commutes with A. Thus, (19.139) implies (19.135). Similarly,

(19.140) implies (19.136). If A,A∗ is TB, then the scalars γ, γ∗, ω, η, η∗ are all zero and (19.139), (19.140)

become (8.42), (8.43). In some cases, the Askey–Wilson relations can be put in Z3-symmetric form (see [67,

Theorem 10.1]). Additional results concerning the Askey–Wilson relations can be found in [158, 159]. We

recall the Φ-split basis. Let {Ui}di=0 denote the Φ-split decomposition of V . Pick any nonzero v ∈ E∗0V .

For 0 ≤ i ≤ d define ui = τi(A)v, where τi is from above Theorem 14.18. By [143, Section 21], we have
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0 6= ui ∈ Ui. Consequently, the vectors {ui}di=0 form a basis for V , called the Φ-split basis for V . With

respect to this basis, the matrices representing A, A∗ take the form

A :



θ0 0

1 θ1
1 ·
· ·
· ·

0 1 θd


, A∗ :



θ∗0 ϕ1 0

θ∗1 ϕ2

· ·
· ·
· ϕd

0 θ∗d


,

where {ϕi}di=1 are nonzero scalars in F. The sequence {ϕi}di=1 is called the first split sequence of Φ. The

first split sequence {φi}di=1 of Φ⇓ is called the second split sequence of Φ. The sequence

({θi}di=0; {θ∗i }di=0; {ϕi}di=1; {φi}di=1)

is called the parameter array of Φ. By [135, Lemma 3.11] Φ is determined up to isomorphism by its

parameter array. In [135, Theorem 1.9], the Leonard systems are classified up to isomorphism in terms of

the parameter array. In the TB case, the first and second split sequences look as follows. By [105, Theorem

1.5] and [143, Theorem 23.6],

ϕi = −φi = (θ∗i − θ∗i−1)(θ0 + θ1 + · · ·+ θi−1) (1 ≤ i ≤ d).

In the table below, for 1 ≤ i ≤ d the scalar ϕi is displayed in closed form.

Case ϕi

Example 13.3 2hh∗i(i− d− 1)

Example 13.4 hh∗(−1)i(d+ 1)(d− 2i+ 1)− hh∗(d− 2i+ 1)2

Example 13.5 hh∗(qi − q−i)(qi−d−1 − qd−i+1)(qd−2i+1 + q2i−d−1)(q2 − q−2)−2

Example 13.6 hh∗(qi − q−i)(qi−d−1 − qd−i+1)(qd−2i+1 + q2i−d−1)(q − q−1)−2

Another topic not discussed in earlier sections is the connection between Leonard systems and orthogonal

polynomials. For 0 ≤ i ≤ d define a polynomial ui(x) ∈ F[x] by

ui(x) =

i∑
`=0

(x− θ0)(x− θ1) · · · (x− θ`−1)(θ∗i − θ∗0)(θ∗i − θ∗1) · · · (θ∗i − θ∗`−1)

ϕ1ϕ2 · · ·ϕ`
.

Define U ∈ Matd+1(F) that has (i, j)-entry ui(θj) for 0 ≤ i, j ≤ d. By [139, Theorem 15.8], U is the transition

matrix from an A∗-eigenbasis to an A-eigenbasis. By [141, Section 5], the polynomials {ui(x)}di=0 are from

the terminating branch of the Askey scheme, which consists of the following polynomial families: q-Racah,

q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, affine q-Krawtchouk, quantum q-Krawtchouk,

Racah, Hahn, dual Hahn, Krawtchouk, Bannai/Ito, Orphan. For a discussion of these polynomials, see [15,

pp. 260–300]. In the TB case, Example 13.3 corresponds to a special case of Krawtchouk polynomials,

Example 13.4 corresponds to a special case of Bannai/Ito polynomials, and Examples 13.5, 13.6 correspond

to a special case of q-Racah polynomials. Some miscellaneous results about Leonard pairs and systems can

be found in [36,52–55,100,101,107,110,111,131,137,160,161].
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At the end of Section 16 and below Proposition 17.9, we mentioned the notion of a Leonard triple. This

notion was introduced in [35, Definition 1.2]. A Leonard triple on V is a 3-tuple of elements in End(V )

such that for each map, there exists a basis for V with respect to which the matrix representing that map

is diagonal and the matrices representing the other two maps are irreducible tridiagonal. To investigate

Leonard triples, the following result is useful. For a Leonard pair A,A∗ on V and for X ∈ End(V ), consider

the matrices that represent X with respect to a standard eigenbasis for A and A∗. If these matrices are both

tridiagonal, then X is a linear combination of I, A, A∗, AA∗, A∗A [109, Theorem 3.2]. Using this result, the

Leonard triples have recently been classified up to isomorphism. The classification is summarized as follows.

Using the eigenvalues one breaks down the analysis into four cases, called q-Racah, Racah, Krawtchouk, and

Bannai/Ito [33,61]. The Leonard triples are classified up to isomorphism in [67] (for q-Racah type); [45] (for

Racah type); [89] (for Krawtchouk type); [65] (for Bannai/Ito type with even diameter); [63] (for Bannai/Ito

type with odd diameter). Additional results on Leonard triples can be found in [60, 92, 99, 150, 155] (for

q-Racah type); [9, 94, 125] (for Racah type); [14, 95] (for Krawtchouk type); [27, 32, 47, 48, 62, 66, 156] (for

Bannai/Ito type); [102] (for general case).

We mention some algebras related to tridiagonal pairs and Leonard pairs. The tridiagonal algebra

(see [136, Definition 3.9]) is defined by two generators subject to the tridiagonal relations (19.135), (19.136).

The Onsager algebra (see [37,38,57,129]) is the tridiagonal algebra for the case β = 2, γ = 0, γ∗ = 0, % 6= 0,

%∗ 6= 0. The q-Onsager algebra (see [16,19,23,151,153]) is the tridiagonal algebra for the case β = q2 + q−2,

γ = 0, γ∗ = 0, % 6= 0, %∗ 6= 0. The Askey–Wilson algebra (see [166]) is defined by two generators subject

to the Askey–Wilson relations (19.139), (19.140). This algebra has a central extension (see [144]) that we

now describe. Fix nonzero q ∈ F such that q4 6= 1. The universal Askey–Wilson algebra ∆q is defined by

generators and relations in the following way. The generators are A, B, C. The relations assert that each of

A+
qBC − q−1CB

q2 − q−2
, B +

qCA− q−1AC
q2 − q−2

, C +
qAB − q−1BA

q2 − q−2
,

is central in ∆q. By [144, Theorem 3.1, Theorem 3.11] the group PSL2(Z) acts on ∆q as a group of

automorphisms, such that the PSL2(Z)-generator r (resp. s) sends A 7→ B 7→ C 7→ A (resp. A ↔ B). For

more information on ∆q, see [68–70, 144, 145, 155]. The double affine Hecke algebra (DAHA) for a reduced

root system was defined by Cherednik (see [34]), and the definition was extended to include nonreduced

root systems by Sahi (see [127]). The most general DAHA of rank 1 is said to have type (C∨1 , C1). In [86]

a universal DAHA of type (C∨1 , C1) was introduced and denoted Ĥq. An injective algebra homomorphism

∆q → Ĥq is given in [146, Section 4]; see also [86, 90, 91]. The paper [121] shows how Ĥq is related

to Leonard pairs. Additional results in the literature link tridiagonal pairs and Leonard pairs with the

Lie algebra sl2 (see [3, 7–9, 26, 81, 120]), the quantum algebras Uq(sl2) (see [2, 29, 30, 88, 147, 162]), Uq(ŝl2)

(see [5, 24, 41, 75, 76, 84, 152]), the tetrahedron Lie algebra � (see [25, 56, 79, 96]), and its q-deformation �q
(see [42,73,77,78,80,164,165]).

Tridiagonal pairs have been used to investigate the openXXZ spin chain and related models in statistical

mechanics (see [16–22]). The study of tridiagonal pairs has lead to some conceptual advances, such as the

bidiagonal pairs/triples (see [43,44]), the billiard arrays (see [148,163]), Hessenberg pairs (see [49–51]), and

the lowering–raising triples (see [103,104,149]).
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