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ENERGIES OF HYPERGRAPHS∗

KAUÊ CARDOSO† AND VILMAR TREVISAN‡

Abstract. In this paper, energies associated with hypergraphs are studied. More precisely, results are obtained for the

incidence and the singless Laplacian energies of uniform hypergraphs. In particular, bounds for the incidence energy are

obtained as functions of well known parameters, such as maximum degree, Zagreb index and spectral radius. It is also related

the incidence and signless Laplacian energies of a hypergraph with the adjacency energies of its subdivision graph and line

multigraph, respectively. In addition, the signless Laplacian energy for the class of the power hypergraphs is computed.
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1. Introduction. The study of molecular orbital energy levels of π-electrons in conjugated hydrocar-

bons may be seen as one of the oldest applications of spectral graph theory (see [21]). Research on this

topic can be traced back to the 1930s [18]. In those studies, graphs were used to represent hydrocarbon

molecules and it was shown that an approximation of the total π-electron energy may be computed from

the eigenvalues of the graph. Based on this chemical concept, in 1977 Gutman [13] defined graph energy,

starting a new line of research within the spectral graph theory community. In 2007, Nikiforov [22] extended

the concept of graph energy to matrices. For a matrix M, its energy E(M), is defined as the sum of its

singular values. From this work, other energies associated with graphs emerged, such as incidence energy

[19] in 2009 and signless Laplacian energy [17] in 2010. Additionally, new developments in the study of

(adjacency) graph energy, may be seen in, for example, [12, 25].

Regarding hypergraphs, a natural way to define energy is to associate a hypegraph with a matrix M and

then, using Nikiforov’s definition, say that its energy is E(M). It is worth mentioning that we have found

no record of this natural extension in the literature. Perhaps the main reason for this lack of results is the

fact that in 2012, Cooper and Dutle [7] proposed the study of hypergraphs through tensors, and this new

approach has been widely accepted by researchers of this area. However, to obtain eigenvalues of tensors

has a high computational and theoretical cost, so the definition of energy does not seem so natural in that

setting. In this regard, we see that the study of hypergraphs via matrices still has its place. Indeed, the first

attempts to study spectral theory of hypergraphs were done using matrices [10] and it is worth pointing out

that more recently, some authors have renewed the interest to study matrix representations of hypergraphs,

as in [3, 6, 20].

Following this trend, we propose in this note the study of hypergraph energies from their matrix repre-

sentations. More precisely, we define and study two energies associated with hypergraphs. First, suppose H
is a hypergraph and B is its incidence matrix, we define its incidence energy BE(H) as the energy of B.

Here we prove some interesting properties for the incidence energy as for example, we show that if BE(H)
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is a rational number, then it is an integer, and also if k or m are even, then BE(H) is even. In addition, we

obtain several lower and upper bounds, and a NordhausGaddum type result relating BE(H) to important

parameters. A surprising result proved here relates the incident energy of a hypergraph to the adjacency

energy of a graph as follows. The subdivision graph S(H) is obtained by adding a new vertex to each

hyperedge e and make it adjacent to all vertices of e.

Theorem 1.1. If H is a uniform hypergraph, then BE(H) = 1
2E(AS), where AS is the adjacency matrix

of S(H).

The signless Laplacian matrix of a hypergraph is defined (see [6]) as Q = BBT . So, we define its

signless Laplacian energy as QE(H) = E (Q− d(H)I). Here we make a detailed study of the relationship of

this parameter to the adjacency energy of the line multigraph associated with H. We are also able to bound

the variation in energy when we add a new edge to the hypergraph.

As a particular case, we also study this energy for the class of power hypergraphs (see definition in Section

5). We prove that, if a sufficiently large number of new vertices is added to each edge of the hypergraph,

then it is possible to determine its signless Laplacian energy even without knowing its spectrum.

The paper is organized as follows. In Section 2, we present some basic definitions about hypergraphs

and matrices. In Section 3, we study the incidence energy, extending many classical results of this energy to

the context of uniform hypergraphs. In Section 4, we study the signless Laplacian energy of a hypergraph,

relating this spectral parameter with the adjacency energy of the line multigraph. In Section 5, we study

the signless Laplacian energy of a power hypergraph.

2. Preliminaries. In this section, we shall present some basic definitions about hypergraphs and ma-

trices, as well as terminology, notation and concepts that will be useful in our proofs.

A hypergraph H = (V,E) is a pair composed by a set of vertices V (H) and a set of (hyper)edges

E(H) ⊆ 2V , where 2V is the power set of V . H is said to be a k-uniform (or a k-graph) for k ≥ 2, if all

edges have cardinality k. Let H = (V,E) and H′ = (V ′, E′) be hypergraphs, if V ′ ⊆ V and E′ ⊆ E, then H′
is a subgraph of H. The complete k-graph Kn on n vertices, is a hypergraph, such that any subset of V (Kn)

with k vertices is an edge in E(Kn). The complement of a k-graph H = (V,E) is the k-uniform hypergraph

H = (V ,E), where V = V and E = E(Kn) r E.

The edge neighborhood of a vertex v ∈ V , denoted by E[v], is the set of all edges that contains v. More

precisely, E[v] = {e : v ∈ e ∈ E}. The degree of a vertex v ∈ V , denoted by d(v), is the number of edges

that contain v. More precisely, d(v) = |E[v]|. A hypergraph is r-regular if d(v) = r for all v ∈ V . We define

the maximum, minimum and average degrees, respectively, as

∆(H) = max
v∈V
{d(v)}, δ(H) = min

v∈V
{d(v)}, d(H) =

1

n

∑
v∈V

d(v).

For a hypergraph H, its line multigraph L(H) is obtained by transforming the hyperedges of H in its

vertices, and the number of edges between two vertices of this multigraph is equal the number of vertices

in common in the two respective hyperedges. The clique multigraph C(H), is obtained by transforming the

vertices of H in its vertices. The number of edges between two vertices of this multigraph is equal the number

of hyperedges containing them in H. For more details see [6].

Example 2.1. The clique and line multigraphs from H = ({1, . . . , 5}, {123, 145, 345}), are illustrate in
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Figure 1.
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Figure 1. Clique C(H) and line L(H) multigraphs.

Let M be a matrix. The singular values of M are the square roots of the eigenvalues of the matrix

MMT . The rank of M is defined as the number of non zero singular values (counting multiplicities). If

M is a square matrix with n rows, we denote its characteristic polynomial by PM(λ) = det(λIn −M). Its

eigenvalues will be denoted by λ1(M) ≥ · · · ≥ λn(M). The spectral radius ρ(M), is the largest modulus of

an eigenvalue. Let H = (V,E) be a hypergraph. The incidence matrix B(H) is defined as the matrix of

order |V | × |E|, where b(v, e) = 1 if v ∈ e and b(v, e) = 0 otherwise.

Lemma 2.2. (Theorem 2, [6]) Let H be a k-graph, B its incidence matrix, D its degree matrix, AL and

AC the adjacency matrices of its line and clique multigraphs, respectively. So, we have BTB = kI + AL,

and BBT = D + AC .

For a non-empty subset of vertices α = {v1, . . . , vt} ⊂ V and a vector x = (xi) of dimension n = |V |,
we denote x(α) = xv1 + · · ·+ xvt . Recall that the signless Laplacian matrix is defined as Q = BBT , so we

can write

(Qx)u = (Dx)u + (ACx)u = d(u)xu +
∑
e∈E[u]

x (e− {u}) =
∑
e∈E[u]

x(e), ∀u ∈ V (H).

3. Incidence energy. In this section, we will study the incidence energy of a hypergraph, relating it

to the adjacency energy of its subdivision graph. In addition, we obtain upper and lower bounds for this

parameter. Many results in this section are generalizations of incidence energy properties in the context of

graphs, which can be found in [15, 16, 19].

Definition 3.1. Let H be a k-graph with at least one edge and B its incidence matrix. The incidence

energy of H is defined as the energy os its incidence matrix. More precisely BE(H) = E(B). If H has no

edge, then we define BE(H) = 0.

Let H be a k-graph with n vertices and m edges, let Q be its signless Laplacian matrix and L its

line multigraph. We observe that, BE(H) =
∑n
i=1

√
λi(Q), this occurs because BBT = Q. Similarly,

BE(H) =
∑m
i=1

√
k + λi(AL), this occurs because BBT and BTB have the same non zero eigenvalues and,

moreover, BTB = kI + AL.

Example 3.2. We will determine the incidence energy of the complete k-graph. First, we notice that its

eigenvalues are ρ(Q) = k(n−1)!
(k−1)!(n−k)! and λ = (n−2)!

(k−1)!(n−k−1)! with multiplicity n− 1. Therefore, the incidence
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energy of the complete k-graph is

BE(Kn) =

√
k(n− 1)!

(k − 1)!(n− k)!
+ (n− 1)

√
(n− 2)!

(k − 1)!(n− k − 1)!
.

Definition 3.3. Let H be a k-graph. Its subdivision graph S(H) is obtained as follows. For each

hyperedge e ∈ E(H), add a new vertex ve and make it adjacent to all vertices of e.

Example 3.4. Let H be the 3-graph with the following sets of vertices and edges V = {1, 2, 3, 4},
E = {123, 234}. We illustrate it and its subdivision graph in Figure 2.

1

2

3

4 1

2

3

4

Figure 2. The hypergraph H and its subdivision graph.

Remark 3.5. Informally we may see that the subdivision graph of H transforms each hyperedge into

a star with k + 1 vertices. If H has n vertices and m edges, then S(H) is a bipartite graph with n + m

vertices and km edges. Also, if B is the incidence matrix of H, then the adjacency matrix of S(H) is given

by AS =
(

0 B
BT 0

)
.

Proposition 3.6. Let H be a k-graph on n vertices and m edges, and S be its subdivision graph. The

set {λ1, . . . , λt, 0n−t} is the spectrum of Q if and only if the spectrum of AS is {±
√
λ1, . . . ,±

√
λt, 0

m+n−2t}.

Proof. First, we observe that λ is an eigenvalue of Q if and only if σ =
√
λ is a singular value of B.

Let x and y be the singular vectors of σ, such that Bx = σy and BTy = σx. We define a vector z of

dimension m+ n by zi = yi if 1 ≤ i ≤ n and zj = xj if n+ 1 ≤ j ≤ m+ n. We have

ASz =

[
Bx

BTy

]
=

[
σy

σx

]
= σz ⇒ σ is an eigenvalue of S(H).

Let σ be a positive eigenvalue of S(H) and z be an eigenvector of σ. We define vectors y and x of

dimensions n and m respectively, by yi = zi if 1 ≤ i ≤ m and xi = zm+i if 1 ≤ i ≤ n. We have[
Bx

BTy

]
= ASz = σz =

[
σy

σx

]
⇒ σ is an singular value of B.

Finally, if σ is a positive eigenvalue of S(H), then −σ is also an eigenvalue of S(H), and with the same

multiplicity. In fact, if z = (y,x) is an eigenvector of σ, we define z̃ = (y,−x). We have

AS z̃ =

[
B(−x)

BTy

]
=

[
−σy
σx

]
= −σ

[
y

−x

]
= −σz̃.

Under these conditions, we conclude that the set of all nonzero eigenvalues of S(H) is {±
√
λ1, . . . ,±

√
λt}.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 293-308, May 2020.

297 Energies of Hypergraphs

Theorem 1.1. If H is a k-graph, then BE(H) = 1
2E(AS).

Proof. Let λ1, . . . , λt be all positive eigenvalues of Q(H). By Proposition 3.6, we have

E(AS) = |
√
λ1|+ · · ·+ |

√
λt|+ | −

√
λ1|+ · · ·+ | −

√
λt| = 2BE(H).

Therefore, the result follows.

Lemma 3.7. (Lemma 2, [2]) If G is a graph, then E(AG) ≥ rank(AG).

Corollary 3.8. If H is a k-graph with incidence matrix B, then BE(H) ≥ rank(B).

Proof. We observe that BE(H) = 1
2E(AS) ≥ 1

2 rank(AS) = rank(B). The first equality is given by

Theorem 1.1, while the inequality is given by Lemma 3.7 and the last equality is from Proposition 3.6.

Lemma 3.9. (Lemmas 1 and 2, [26]) Let G1 and G2 be graphs. If µ1 and µ2 are eigenvalues of G1 and

G2 respectively, then there are graphs G+ and G× such that, µ1 + µ2 and µ1 · µ2 are eigenvalues of G+ and

G×, respectively.

Lemma 3.10. (Lemma 3, [26]) If an eigenvalue of a graph is rational, then it is an integer.

Lemma 3.11. (See [4]) If the energy of a graph is rational, then it is an even integer.

Theorem 3.12. Let H be a k-graph with m edges. If its incidence energy BE(H) is a rational number,

then it is an integer. Moreover:

(a) If k is even, then BE(H) is also even.

(b) If k is odd, then BE(H) and m have the same parity.

Proof. If BE is rational, then by Theorem 1.1, E(AS) is rational and by Lemma 3.11, we know that

E(AS) is even, thus BE = 1
2E(AS) is integer. Now, we notice

(BE)2 = (σ1 + · · ·+ σn)2 =

n∑
i=1

σ2
i + 2

∑
1≤i<j≤n

σiσj = km+ 2
∑

1≤i<j≤n

σiσj .

If BE is integer, then
∑
σiσj must be rational. By Lemma 3.9 this sum is an eigenvalue of a graph. By

Lemma 3.10 this sum must be an integer, denote p =
∑
σiσj . That is, (BE)2 = km+ 2p. Therefore, if k or

m are even, then BE is even too, otherwise BE is odd.

Lemma 3.13. (See [8]) If R and S are symmetric matrices with n rows, then

λi(R + S) ≥ max{λi(R), λi(S)}, ∀ i = 1, . . . , n.

Proposition 3.14. Let H = (V,E) be a k-graph. For each edge e ∈ E(H), we have

BE(H) > BE(H− e).

Proof. Let H−e = (V,Er{e}) and H[e] = (V, {e}) be subgraphs of H. We see that Q(H) = Q(H−e)+

Q(H[e]). By Lemma 3.13, we have λi(Q(H)) ≥ λi(Q(H−e)) for each i ∈ V , so BE(H) ≥ BE(H−e). Now we

suppose, by way of contradiction, that λi(Q(H)) = λi(Q(H−e)) for all i ∈ V , thus Tr(Q(H)) = Tr(Q(H−e)),
so Tr(Q(H[e])) = 0, which is a contradiction. Therefore, the inequality must be strict.

Corollary 3.15. The complete k-graph Kn has the highest incidence energy between the k-graphs with

n vertices. That is, if H is a k-graph with n vertices, then

BE(H) ≤

√
k(n− 1)!

(k − 1)!(n− 1)!
+ (n− 1)

√
(n− 2)!

(k − 1)!(n− k − 1)!
.
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3.1. Bounds for the incidence energy.

Theorem 3.16. If H is a k-graph with n vertices and m edges, then
√
km ≤ BE(H) ≤

√
kmn.

Moreover, the first inequality is attained if and only if H has at most one edge, while the second inequality

is attained if and only if the hypergraph has no edges.

Proof. First, we notice that

BE =

n∑
i=1

σi ≥

√√√√ n∑
i=1

σ2
i =
√
km.

This inequality can only be attained if at most one singular value is nonzero. That is rank(B) ≤ 1, so H
must not have more than one edge.

Now, using the Cauchy-Schwarz inequality, we obtain

BE =

n∑
i=1

σi ≤

√√√√n

n∑
i=1

σ2
i =
√
kmn.

However, this inequality is attained when all singular values are equal. Thus, BBT = σI, so AC = 0, and

therefore, H should have no edges.

Theorem 3.17. Let H be a k-graph with m edges. If rank(B) = r, then

BE(H) ≤
√
kmr ≤

√
km.

Equality holds if and only if H is formed by disjoint edges.

Proof. Using Cauchy-Schwarz inequality, we notice that

BE =

m∑
i=1

√
k + λi(L) =

r∑
i=1

√
k + λi(L) ≤

√√√√r

r∑
i=1

(k + λi(L))

=
√
r(kr + Tr(AL) + k(m− r)) =

√
kmr ≤

√
km2 =

√
km.

Further, equality holds only when all eigenvalues of L(H) are equal. But as Tr(AL) = 0, so AL = 0. That

is, L must have only isolated vertices, and therefore, H must have disjoint edges.

Lemma 3.18. If H is a k-graph on n vertices and m edges, then

BE(H) ≤ √ρ+
√

(n− 1)(km− ρ).

Also, if H is complete, then the equality holds.

Proof. We observe that,

n∑
i=2

λi(Q) = km− ρ(Q) and thus, by Cauchy-Schwarz inequality we have

BE =
√
ρ+

n∑
i=2

√
λi ≤

√
ρ+

√√√√(n− 1)

n∑
i=2

λi =
√
ρ+

√
(n− 1)(km− ρ).

To finish the proof, we observe that for a complete k-graph, all signless Laplacian eigenvalues distinct from

the spectral radius, are equal to km−ρ
n−1 , see Example 3.2.
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Let H be a hypergraph. Its Zagreb index is defined as the sum of the squares of the degrees of its

vertices. More precisely

Z(H) =
∑

v∈V (H)

d(v)2.

This is an important parameter in graph theory, having chemistry applications, [14]. We define the following

auxiliary value Z(H) = k
√

1
nZ(H).

Lemma 3.19. (Theorem 13, [6]) Let H be a connected k-graph on n vertices and Q its signless Laplacian

matrix. The hypergraph H is regular if and only if x =
(

1√
n
, . . . , 1√

n

)
, is an eigenvector from ρ(Q).

Lemma 3.20. Let H be a k-graph. If Q is its signless Laplacian matrix, then ρ(Q) ≥ Z(H). Equality

holds if and only if H is regular.

Proof. Let y = ( 1√
n
, . . . , 1√

n
), so we have

ρ(Q) =
√
ρ(Q2) ≥

√
yTQ2y =

√∑
v∈V

(kd(v))2

n
= k

√
1

n
Z(H).

We notice that the equality holds if and only if y =
(

1√
n
, . . . , 1√

n

)
is an eigenvector of ρ(Q). By Lemma

3.19, it occurs only if the hypergraph is regular.

The following result improves the bound of Lemma 3.18.

Theorem 3.21. If H is a k-graph on n vertices and m edges, then

BE(H) ≤
√
Z(H) +

√
(n− 1)(km− Z(H)).

Also, if H is complete then equality holds.

Proof. First, notice that f(x) =
√
x+
√

(n− 1)(km− x) is decreasing if x > km
n . To prove it, we observe

that, if x > km
n , then f ′(x) < 0. Now, we notice

∑
v∈V

d(v) ≤
√
n
∑
v∈V

d2(v) ⇒ km

n
≤
√

1

n

∑
v∈V

d2(v) < Z(H).

As ρ(Q) ≥ Z(H), so the result follows.

Lemma 3.22. If H is a k-graph with n vertices, then

n∑
i=1

λ2i (Q) ≤ kZ(H).

The equality holds if and only if H is formed by disjoint edges.

Proof. By Lemma 2.2, we have Q = D + AC , so Tr(Q2) = Z(H) + Tr(A2
C). Now, we notice that

Tr(A2
C) =

n∑
i=1

n∑
j=1

a2ij
(#)

≤
n∑
i=1

d(i)

n∑
j=1

aij

 = (k − 1)

n∑
i=1

d(i)2 = (k − 1)Z(H),

The inequality (#) is true because aij is the number of edges containing the vertices i and j, so aij ≤
min{d(i), d(j)}. Therefore, we conclude that

∑n
i=1 λ

2
i (Q) = Tr(Q2) ≤ kZ(H).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 293-308, May 2020.
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Now observe that the equality (#) is achieved only for hypergraphs with the following property: If

two vertices i and j are neighbors, then they are contained in the same edges. But this is possible only in

hypergraphs with disjoint edges and possibly some isolated vertices.

Lemma 3.23. (Equation (12), [16]) If a1, . . . , as is a sequence of non negative integers, then

s∑
i=1

ai ≥

√
(
∑s
i=1 a

2
i )

3∑s
i=1 a

4
i

.

The equality holds if and only if all positive elements of the sequence are equal.

Proposition 3.24. If H is a k-graph with n vertices and m edges, then

BE(H) ≥

√
(km)3

kZ(H)
≥
√
km√
∆
.

The first equality holds if and only if H is formed by disjoint edges. The second equality holds if and only if

H is formed by disjoint edges without isolated vertices or it has no edges.

Proof. By Lemmas 3.22 and 3.23, we have

BE(H) =

n∑
i=1

√
λi(Q)

(∗)
≥

√√√√√(∑n
i=1(

√
λi(Q))2

)3
∑n
i=1(

√
λi(Q))4

(∗∗)
≥

√
(km)3

kZ(H)
.

Now, we notice that

Z(H) =

n∑
i=1

d(i)2 ≤ ∆

n∑
i=1

d(i) = ∆km,

and therefore,

BE(H)
(∗∗∗)
≥
√
km√
∆
.

Finally, we notice that the equality (∗) occurs if and only if all positive eigenvalues are equal, that is, when

the hypergraph is formed by disjoint edges. The equality (∗∗) is achieved under the same conditions of (∗).
The equality (∗ ∗ ∗) occurs if and only if the equality (∗) occurs and the hypergraph is regular, that is, when

the hypergraph is formed by disjoint edges without isolated vertices or it has only isolated vertices.

Lemma 3.25. (Corollary 16, [6]) If H is a k-graph, then kd(H) ≤ ρ(Q).

Theorem 3.26. Let H be a k-graph on n vertices. If H is its complement, then

√
k
(
n
k

)√(
n−1
k−1
) ≤ BE(H) + BE(H) ≤ k

√
2

n

(
n

k

)
+

√
2k(n− 1)(n− k)

n

(
n

k

)
.

The first equality occur if and only if H has at most k vertices and one edge.

Proof. Suppose that H and H have m and m edges, respectively. We have m + m =
(
n
k

)
and, by

Proposition 3.24,

BE(H) + BE(H) ≥
√
km√

∆(H)
+

√
km√

∆(H)
≥
√
k
(
n
k

)√(
n−1
k−1
) .
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For the equality to be possible, we observe that H must be formed by disjoint edges without isolated vertices

or only isolated vertices, as well as its complement. In addition, it must occur ∆(H) =
(
n−1
k−1
)

or m = 0.

That is, H must have at most k vertices and one edge.

Let λ1 ≥ · · · ≥ λn be all eigenvalues of Q(H) and λ1 ≥ · · · ≥ λn be the eigenvalues of Q(H). By

Cauchy-Schwarz inequality, we have

BE(H) + BE(H) ≤
√
λ1 +

√
λ1 +

√√√√(n− 1)

n∑
i=2

λi +

√√√√(n− 1)

n∑
i=2

λi

≤
√

2(λ1 + λ1) +

√
2(n− 1)

[
k

(
n

k

)
− (λ1 + λ1)

]
.(3.1)

We observe that the function f(x) =
√

2x +
√

2(n− 1)(k
(
n
k

)
− x) is decreasing for x ≥ k

n

(
n
k

)
. Now, by

Lemma 3.25 we have

(3.2) λ1 + λ1 ≥
k2m

n
+
k2m

n
=
k2

n

(
n

k

)
>
k

n

(
n

k

)
.

Changing λ1 + λ1 by k2

n

(
n
k

)
in equation (3.1), we obtain the desired result.

4. Signless Laplacian energy. In this section, we will study the signless Laplacian energy of hyper-

graphs. This energy has already been well studied for graphs (see for example [1, 9, 11, 17, 24]). Our main

result relates this energy to the adjacency energy of a line multigraph. For more details about the signless

Laplacian matrix, see [6].

Definition 4.1. Let H be a k-graph. We define its signless Laplacian energy as the energy of the matrix

Q− d(H)I, that is QE(H) = E(Q− d(H)I).

Definition 4.2. Let H be a k-graph. We define ω(H) as the number of eigenvalues of Q greater than

or equal to the average degree. More precisely, if λ1 ≥ · · · ≥ λn are the eigenvalues of Q, then λω ≥ d(H)

and λω+1 < d(H).

Proposition 4.3. If H is a k-graph, then QE(H) = 2
∑ω
i=1 λi − 2ωd(H).

Proof. We notice that,

QE(H) =

n∑
i=1

|λi − d(H)| =
ω∑
i=1

(λi − d(H)) +

n∑
i=ω+1

(d(H)− λi)

= 2

ω∑
i=1

(λi − d(h)) +

n∑
i=1

(d(H)− λi)

= 2

ω∑
i=1

λi − 2ωd(H) + nd(H)− km︸ ︷︷ ︸
=0

.

Therefore, the result follows.

Lemma 4.4. (Lemma 2.21, [23]) If M and N are square matrices, then

E(M + N) ≤ E(M) + E(N), |E(M)− E(N)| ≤ E(M−N).
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Proposition 4.5. Let H be a non complete k-graph. If e /∈ E(H), then

|QE(H+ e)− QE(H)| ≤ 2k − 2k

n
.

Proof. First, we observe that

|QE(H+ e)− QE(H)| =
∣∣∣∣E(Q(H+ e)− k(m+ 1)

n
I

)
− E

(
Q(H)− km

n
I

)∣∣∣∣
≤ E

(
Q(H+ e)−Q(H)− k

n
I

)
.

The inequality above follows from Lemma 4.4. Now, we observe that

M := Q(H+ e)−Q(H)− k

n
I =



1− k
n 1 · · · 1 0 · · · 0

1 1− k
n · · · 1 0 · · · 0

...
...

. . .
...

...
...

...

1 1 · · · 1− k
n 0 · · · 0

0 0 · · · 0 − k
n · · · 0

...
...

...
...

...
. . .

...

0 0 · · · 0 0 · · · − k
n


.

That is, the eigenvalues of M are k− k
n with multiplicity 1 and − k

n with multiplicity n−1. Thus, the energy

of this matrix is

E

(
Q(H+ e)−Q(H)− k

n
I

)
= k − k

n
+ (n− 1)

k

n
= 2k − 2k

n
.

Therefore, the result follows.

Theorem 4.6. Let H be a k-graph with n vertices and m ≥ 1 edges.

(a) If m = n, then QE(H) = E(AL).

(b) If m < n, then QE(H) − 2km(n−m)
n ≤ E(AL) < QE(H). Equality holds if and only if H has only

isolated edges.

(c) If m > n, then QE(H) < E(AL) < QE(H) + 2k(m− n).

Proof. To prove item (a), we notice that

E(AL) = E(BTB− kI) =

m∑
i=1

|λi(BTB)− k|.

Moreover,

QE(H) = E

(
Q− km

n
I

)
= E(BBT − kI) =

n∑
i=1

|λi(BBT )− k|.

If m = n, then BBT and BTB have the same eigenvalues, so the equality is true.

For the first inequality of item (b), we observe that if i = 1, . . . ,m, then λi(B
TB) = λi(BBT ) and if
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m < i ≤ n, then λi(BBT ) = 0. We have

QE(H) =

n∑
i=1

∣∣∣∣λi − km

n

∣∣∣∣ =

m∑
i=1

∣∣∣∣λi − km

n

∣∣∣∣+

n∑
i=m+1

∣∣∣∣kmn
∣∣∣∣

≤
m∑
i=1

|λi − k|+
m∑
i=1

∣∣∣∣k − km

n

∣∣∣∣+
km(n−m)

n
(4.3)

= E(AL) +
2km(n−m)

n
.

The equality holds in (4.3) only if λi − k and k − km
n have the same sign. That is, λi(B

TB) ≥ k, for each

i = 1, . . . ,m, and thus,

λi(kI + AL) = λi(B
TB) ≥ k ⇒ λi(AL) ≥ 0.

As Tr(AL) = 0, then all eigenvalues of AL must be zeros. Therefore, AL = 0, so L(H) should have no

edges, or equivalent, H should have only isolated edges.

Now, for the second inequality of item (b), we observe that

E(AL) =

m∑
i=1

|λi(AL)| =
m∑
i=1

|λi(BTB)− k| =
n∑
i=1

|λi(BBT )− k| − k(n−m)

≤
n∑
i=1

∣∣∣∣λi(BBT )− km

n

∣∣∣∣+

n∑
i=1

∣∣∣∣k − km

n

∣∣∣∣− k(n−m) = QE(H).

Similarly to the first part of this item, the equality could only occur if λi − km
n is equal to or less than zero

for all i = 1 . . . , n, and thus,

λi(B
TB) ≤ km

n
< k ⇒ λi(AL) < 0.

As Tr(AL) = 0, this matrix cannot have all negative eigenvalues, so equality cannot be achieved.

To prove the first inequality of item (c), notice that

QE(H) =

n∑
i=1

∣∣∣∣λi(BBT )− km

n

∣∣∣∣ =

m∑
i=1

∣∣∣∣λi(BTB)− km

n

∣∣∣∣− km(m− n)

n

≤
m∑
i=1

∣∣λi(BTB)− k
∣∣+

m∑
i=1

∣∣∣∣k − km

n

∣∣∣∣− km(m− n)

n
= E(AL).

As well item (b), the equality could only be achieved if, λi(B
TB)− k ≤ 0, for all i = 1, . . . ,m, and thus,

λi(B
TB) ≤ k ⇒ λi(AL) ≤ 0.

As Tr(AL) = 0, then all eigenvalues of AL must be zeros, so AL = 0, that is H should have only isolated

edges. But this contradicts the fact that the number of edges is greater than the number of vertices.

Therefore, this equality cannot be achieved.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 293-308, May 2020.
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Finally, to prove the last inequality of item (c), we observe that

E(AL) =

m∑
i=1

∣∣λi(BTB)− k
∣∣ =

n∑
i=1

∣∣λi(BBT )− k
∣∣+ k(m− n)

≤
n∑
i=1

∣∣∣∣λi(BBT )− km

n

∣∣∣∣+

n∑
i=1

∣∣∣∣k − km

n

∣∣∣∣+ k(m− n)

= QE(H) + 2k(m− n).

As in the second part of item (b), equality could only be achieved, if λi(BBT )− km
n ≥ 0, for all i = 1, . . . , n,

thus

λi(B
TB) ≥ km

n
> k ⇒ λi(AL) > 0.

As Tr(AL) = 0, this matrix cannot have all eigenvalues positive, so the equality cannot be achieved.

5. Power hypergraphs. In this section, we compute the exact value of signless Laplacian energy

from certain power hypergraphs. In addition, we obtain some properties of the adjacency energy of a line

multigraph from a power hypergraph. For more details about this class, see [5].

Definition 5.1. Let H = (V,E) be a k-graph, let s ≥ 1 and r ≥ ks be integers. We define the

(generalized) power hypergraph Hrs as the r-graph with the following sets of vertices and edges

V (Hrs) =

(⋃
v∈V

ςv

)
∪

(⋃
e∈E

ςe

)
and E(Hrs) = {ςe ∪ ςv1 ∪ · · · ∪ ςvk : e = {v1, . . . , vk} ∈ E},

where ςv = {v1, . . . , vs} for each vertex v ∈ V (H) and ςe = {v1e , . . . , vr−kse } for each edge e ∈ E(H).

Informally, we may say that Hrs is obtained from a base hypergraph H, by replacing each vertex v ∈ V (H)

by a set ςv of cardinality s, and by adding a set ςe with r − ks new vertices to each edge e ∈ E(H). For

simplicity, we will denote Hr = Hr1 and Hs = Hkss , so Hrs = (Hs)r.

Example 5.2. The power hypergraph (P4)52 of the path P4 is illustrated in Figure 3.

v1 v2 v3 v4

v11 v12 v21 v22 v31 v32 v41 v42

Figure 3. The power hypergraph (P4)52.

Remark 5.3. Let H be a k-graph with n vertices, m edges having signless Laplacian eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λt > λt+1 = · · · = λn = 0. According to [6], we have the following.

For r > ks the eigenvalues of Q(Hrs) are sλ1 + r − ks, . . . , sλt + r − ks, and r − ks with multiplicity

m− t, and 0 with multiplicity (r − ks− 1)m+ sn.

Theorem 5.4. Let H be a k-graph with n vertices and m edges. For integers s ≥ 1 and r > ks, we have

that
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(a) If r − ks > d(Hrs), then QE(Hrs) = 2rm
(

1− m
ns+(r−ks)m

)
> 2ksm.

(b) If r − ks = d(Hrs), then QE(Hrs) = 2ksm.

(c) If r − ks < d(Hrs), then QE(Hrs) < 2ksm.

Proof. First of all, we notice that d(Hrs) = rm
|V (Hr

s)|
, where |V (Hrs)| = ns+ (r − ks)m. Now, let t be the

number of positive eigenvalues of Q(H), and thus,

QE(Hrs) =

|V (Hr
s)|∑

i=1

∣∣∣∣λi(Hrs)− rm

|V (Hrs)|

∣∣∣∣
=

t∑
i=1

∣∣∣∣sλi(H) + (r − ks)− rm

|V (Hrs)|

∣∣∣∣+

m∑
i=t+1

∣∣∣∣(r − ks)− rm

|V (Hrs)|

∣∣∣∣+

|V (Hr
s)|∑

i=m+1

rm

|V (Hrs)|
.

For item (a), let r − ks > d(Hrs), so

QE(Hrs) =

t∑
i=1

sλi(H) +

m∑
i=1

(
(r − ks)− rm

|V (Hrs)|

)
+

|V (Hr
s)|∑

i=m+1

rm

|V (Hrs)|

= ksm+m(r − ks)− rm2

|V (Hrs)|
+ (|V (Hrs)| −m)

rm

|V (Hrs)|

= 2rm

(
1− m

|V (Hrs)|

)
> 2rm

(
1− r − ks

r

)
= 2ksm.

Now, for item (b), let r − ks = d(Hrs), so

QE(Hrs) =

t∑
i=1

sλi(H) +

|V (Hr
s)|∑

i=m+1

rm

|V (Hrs)|
= ksm+ (|V (Hrs)| −m)

rm

|V (Hrs)|

= ksm+ rm

(
1− m

|V (Hrs)|

)
= ksm+ rm

(
1− r − ks

r

)
= 2ksm.

Finally, for item (c), let r − ks < d(Hrs), so

QE(Hrs) <
t∑
i=1

sλi(H) +

m∑
i=1

(
rm

|V (Hrs)|
− (r − ks)

)
+

|V (Hr
s)|∑

i=m+1

rm

|V (Hrs)|

= ksm+
rm2

|V (Hrs)|
−m(r − ks) + (|V (Hrs)| −m)

rm

|V (Hrs)|
= 2ksm.

Therefore, the result follows.

Lemma 5.5. Let H be a k-graph. For integers r ≥ k and s ≥ 1, we have

A(L(Hr)) = A(L(H)) and A(L(Hs)) = sA(L(H)).

Proof. In the first equality, we observe that the number of hyperedges, and the connections between it,

do not change by adding new vertices. So, the line multigraph of H is the same as the line multigraph of Hr
and consequently A(L(H)) = A(L(Hr)).
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Kauê Cardoso and Vilmar Trevisan 306

For the second equality, we notice that change each vertex for a set of cardinality s, do not change the

number of hyperedges. Further, we observe that, if two hyperedges are disjoint in H, they must remain

disjoint in Hs, but if two hyperedges had t common vertices in the base k-graph, then they will have st

common vertices in the power hypergraph. Therefore, if two vertices have t common edges in L(H), these

vertices should have st common edges in L(Hs). That is, A(L(Hs)) = sA(L(H)).

Proposition 5.6. Let H be a k-graph. For integers s ≥ 1 and r ≥ ks, we have

PL(Hr
s)

(λ) = smPL(H)(λ/s).

That is, λ is an eigenvalue of A(L(H)) if and only if sλ is an eigenvalue of A(L(Hrs)).

Proof. We notice that

PL(Hr
s)

(λ) = det (λI−A(L(Hrs))) = det (λI−A(L(Hs)))
= det (λI− sA(L(H))) = sm det ((λ/s)I−A(L(H))) = smPL(H)(λ/s).

Therefore, we conclude the result.

Theorem 5.7. Let H be a k-graph. If s ≥ 1 and r ≥ ks are integers, then

E(L(Hrs)) = sE(L(H)).

Proof. According to Proposition 5.6, we have

E(L(Hrs)) =

m∑
i=1

|λi(L(Hrs))| =
m∑
i=1

|sλi(L(H))| = sE(L(H)).

Therefore, the result follows.

Lemma 5.8. (Lemma 4, [6]) Let H be a k-graph and L(H) its line graph. If u ∈ V (L(H)) is a vertex

obtained from the edge e ∈ E(H), then dL(u) =
∑
v∈e (dH(v)− 1) .

Lemma 5.9. Let H be a k-graph with n vertices and m edges. If mL is the number of edges from the

line multigraph L(H), then mL = 1
2 (Z(H)− km).

Proof. By Lemma 5.8, we have

2mL =
∑

v∈V (L(H))

dL(v) =
∑

e∈E(H)

(∑
u∈e

(dH(u)− 1)

)
=

∑
u∈V (H)

dH(u)(dH(u)− 1)

=
∑

u∈V (H)

dH(u)2 −
∑

u∈V (H)

dH(u) = Z(H)− km

Therefore, the result follows.

Lemma 5.10. (Theorem 5.2, [21]) If G is a graph with m edges, then 2
√
m ≤ E(G) ≤ 2m.

A hypergraph is linear if each pair of edges has at most one common vertex.

Theorem 5.11. If H is a linear k-graph with n vertices and m edges, then√
2s2(Z(H)− km) ≤ E(L(Hrs)) ≤ s(Z(H)− km).
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Proof. First note, if H is linear, then L(H) is a graph, so by Lemma 5.10 we have

2
√
mL ≤ E(L(H)) ≤ 2mL ⇒ 2s

√
mL ≤ E(L(Hrs)) ≤ 2smL.

Now by Lemma 5.9, we have

2s

√
1

2
(Z(H)− km) ≤ E(L(Hrs)) ≤ 2s

(
1

2
(Z(H)− km)

)
.

Thus, we prove the result.
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