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REDUCING THE ADJACENCY MATRIX OF A TREE�

GERD H. FRICKEy , STEPHEN T. HEDETNIEMIz , DAVID P. JACOBSz { AND

VILMAR TREVISANx {

Abstract. Let T be a tree, A its adjacency matrix, and � a scalar. We describe a
linear-time algorithm for reducing the matrix �In +A. Applications include computing the
rank of A, �nding a maximum matching in T , computing the rank and determinant of the
associated neighborhood matrix, and computing the characteristic polynomial of A.
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1. Introduction. Let G = (V;E) be an undirected graph with vertices
V = (v1; : : : ; vn) and edge set E. The adjacency matrix A = [aij ] of G is the
n� n (0� 1) symmetric matrix in which aij = 1 if and only if i 6= j and vi is
adjacent to vj (that is, there is an edge between vi and vj). The neighborhood
matrix of G, which we denote with N , is obtained by placing 1's along the
diagonal of the adjacency matrix (i.e. N = A + In). Note that the rank and
determinant of these matrices are independent of the vertex ordering, since
interchanging two rows and then interchanging two columns leaves the rank
and determinant unchanged.

In this paper, we are concerned only with trees T (i.e., connected, acyclic
graphs), their adjacency matrices A, and neighborhood matrices N . In [3],
it was shown that the rank of A is exactly twice the matching number of T
(i.e., the maximum number of edges in a set, no two of which have a common
vertex). Recently, it was shown how the determinant of N can be computed
in linear time [9]. In this paper we present a single linear-time algorithm for
computing the rank and determinant, over a �eld F , of the matrix �In + A,
for arbitrary � 2 F . As special cases, we obtain linear-time algorithms for
the rank and determinant of the adjacency and neighborhood matrices, by
taking � = 0 and � = 1, respectively. By treating � symbolically, we can also
compute the characteristic polynomial of A.

The primary contribution is that our algorithm o�ers a general way of
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looking at several seemingly unrelated topics including rank, determinant,
matching number, independence, and the characteristic polynomial. Several
known results are looked at in this new light, in addition to some new appli-
cations.

2. The reduction algorithm. Let F be any �eld, T a tree having ad-
jacency matrix A, and M = �In + A, for some � 2 F . We wish to compute
rank(M) and det(M) over F . Instead of computing with the matrix M , how-
ever, we compute directly on T in the following way.

Our algorithm associates with each vertex v, a scalar a(v) 2 F . Initially,
a(v) = �, for all v 2 V . A variable d (for deletions) is initialized to 0.
The tree is rooted at an arbitrary vertex. The algorithm then processes the
vertices bottom-up, beginning with the leaves, which are initially declared to
be processed. (We do not regard a degree-1 root as a leaf.) In general, we
choose any unprocessed vertex v of maximum depth, and mark it processed.
If there exist undeleted children w of v for which a(w) = 0 then one such child
w is selected. Both v and w are deleted, and d is incremented by one. (All
other children of v are una�ected, including those that might also have zero
values.) On the other hand, if all children of v have nonzero values, and C is
the set of (undeleted) children of v, then a(v) becomes

a(v)�
X
c2C

1

a(c)
:(1)

After all vertices have been processed, we compute

det = (�1)d �
Y
u2U

a(u)(2)

rank = 2d+ k(3)

where U is the set of undeleted vertices, and k = jfu 2 U j a(u) 6= 0gj, the
number of undeleted vertices having nonzero values.� This algorithm, called
TreeReduction, is summarized in Figure 1. In Figure 2 we illustrate the e�ect
of the algorithm on the tree shown, assuming � = 1, and F = IQ. The number
appearing on each vertex v is the value a(v) at the algorithm's termination.

Theorem 2.1. Let F be a �eld, � 2 F , T a tree with adjacency matrix
A, and M = �In + A. Then TreeReduction(T;�) computes the determinant
and rank of M over F , assuming arithmetic is done in this �eld.

Consider applying TreeReduction to the tree in Figure 2, where � = 1.
This tree has 14 vertices, but after the computation there is exactly one un-
deleted vertex having value zero. By Theorem 2.1 we conclude that rank(N) =
13, where N = In + A is the tree's neighborhood matrix.

� If U = ; then the right side of (2) is (�1)n.
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Algorithm TreeReduction(T; �)
Initialize a(v) := �, for all vertices v
Initialize U := V (all vertices are Undeleted)
Initialize all leaves \processed" and non-leaves \unprocessed"
Initialize d = 0
while Unprocessed 6= ; do

choose any v 2 Unprocessed of greatest depth
Unprocessed := Unprocessed � fvg
if v has an undeleted child with value 0 then

select one such child w
U := U � fv; wg
d := d+ 1

else a(v) := a(v)�
P 1

a(ci)
,

where the sum ranges over the undeleted children ci of v
end loop

det = (�1)d �
Q

u2U a(u)
rank = 2d+ jfu 2 U j a(u) 6= 0gj
return rank, det

Fig. 1. Tree reduction algorithm.

Rather than give a formal proof to Theorem 2.1, we will make some gen-
eral comments that will help convince the motivated reader. Our algorithm, in
disguise, is really operating onM and is transforming it into a diagonal matrix
(of possibly smaller dimension). The values a(v) in the (undeleted) vertices
of the algorithm represent main diagonal values of the matrix. During the
transformation, certain rows and columns may be deleted. In the submatrix
of undeleted rows and columns, main diagonal entries are modi�ed, and all
other entries become zero. A precise description of this matrix transforma-
tion appears in [9] for the case when � = 1. However, an inspection of the
transformation in [9] shows that it applies for any �.

In general, the fastest known algorithms for computing the determinant
and rank of an n � n matrix require time in O(n2+�) (for example, see [1]).
The signi�cance of Theorem 2.1 is that for the matrices M of trees we have a
linear-time algorithm. Taking � = 1, M is the neighborhood matrix of T . In
[9] it was reported that det(M) can be computed in linear time, but we see
that this applies to computing rank(M) as well.

Corollary 2.2. The determinant and rank of the neighborhood matrix
of a tree with n vertices can be computed in O(n) arithmetic operations.

Another bene�t of algorithm TreeReduction is that it provides conceptual
insight into various issues such as matching and eigenvalues. These topics will
be discussed in the remainder of this paper.
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Fig. 2. Computing the determinant of N .

3. Matching number of trees. Recall that a matching in a graph G =
(V;E) is a set S � E no two edges in which share a common vertex. A
matching S is perfect if jV j = 2jSj. The matching number, denoted �1(G), is
the largest cardinality of a matching in G. It is known that for some classes of
graphs, the matching number and the rank of the adjacency matrix are related
[2]. The following elegant theorem for trees is due to Bevis, Domke and Miller
[3].

Theorem 3.1 (Bevis, Domke, Miller). For T a tree with adjacency
matrix A,

rank(A) = 2 � �1(T ):

A striking corollary of this theorem is that the rank of a tree's adjacency
matrix must be even. Theorem 3.1 is not a direct corollary of Theorem 2.1, but
there is a relationship which we now explain. Consider what happens when
algorithm TreeReduction is applied to the adjacency matrix A (i.e. � = 0).
Because all vertices are initialized with 0, no undeleted vertex will ever have
nonzero value. Hence k = 0 in (3), and so rank(A) = 2d, the number of deleted
vertices. But note that vertices are always deleted as parent-child pairs, no
vertex can ever be deleted twice, and so the edges between these pairs must
be disjoint. Thus Theorem 2.1 implies that rank(A) is even, and that T has a
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matching of size rank(A)
2 , i.e.,

rank(A)

2
� �1(T ):

To obtain Theorem 3.1, it su�ces to show that

rank(A) � 2 � �1(T ):(4)

Let S � E be any set of �1(T ) disjoint edges, and let X be the set of vertices
incident with the edges in S. By the disjointness of S, jX j = 2�1. Let A0 =
A[X jX ] be the principal submatrix of A whose rows and columns correspond
to X . To establish (4), it su�ces to show that A0 has full rank. We leave the
proof as an exercise. We mention that a linear-time algorithm for �nding a
maximum matching in a tree is also given in [3]. This method is very similar
to the method generated by TreeReduction.

We now seek alternate characterizations of rank(A). De�ne a perfect tree
as follows: The tree K2 is perfect, and if T1 and T2 are disjoint perfect trees,
so is the tree formed by adding an edge between any vertex of T1 and any
vertex of T2.

Lemma 3.2. A tree T has a perfect matching if and only if it is perfect.
Proof. It is trivial to show, by induction, that every perfect tree has a

perfect matching. Conversely, assume that a tree T has a perfect matching,
and assume, by induction that smaller trees with perfect matchings are perfect.
Let v be a leaf of T , w its neighbor, and let T1; : : : ; Tk be the subtrees formed
by removing v and w. Since any perfect matching must include fv; wg, the
edges between the Ti and w cannot be used in a perfect matching. Therefore,
the perfect matching of T induces a perfect matching in each Ti. By the
induction assumption, each Ti is perfect. We can now use the de�nition of
perfect to reconstruct T from the Ti and the K2 = fv; wg.

There is an equivalent way to de�ne perfect trees. Let us de�ne an even
tree as follows: The graph K2 is even. If T is an even tree, so is the tree
obtained by appending a length-2 path to any vertex of T . In particular, we
see that all paths of even length are even trees. It is possible to show that T
is even if and only if T is perfect. Since this is not crucial to our discussion,
we leave it as an exercise.

Gunther, Hartnell and Rall de�ned a graph to be �+-stable if the addition
of a single edge does not a�ect the graph's vertex independence number. They
showed (Corollary 4.7, [7]) that for trees T with at least two vertices, T is
�+-stable if and only if T has a perfect matching. They also characterized
(Theorem 4.6, [7]) these (i.e. nontrivial �+-stable) trees as (what we call)
even.

Lemma 3.3. A subgraph of a tree has a perfect matching if and only if it
is a forest of disjoint perfect trees.

Proof. This is a direct consequence of Lemma 3.2.
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Theorem 3.4. Let T be a tree with adjacency matrix A. The following
are equal:
(a) rank(A)
(b) 2�1(T )
(c) the number of vertices of a largest induced forest of disjoint perfect trees
(d) 2�0(T ), where �0(T ) denotes the minimum number of vertices required to
cover all edges of T .

Proof. By Theorem 3.1, (a) and (b) are equal. It is well-known (see [12], p.
346) that (b) and (d) are equal in any bipartite graph, and hence in any tree.
It su�ces to now show (a) = (c). A complex matrix M is said to be normal if
it commutes with its conjugate-transpose M�, a trivial property of any real-
symmetric matrix since M = M�. By [10] (Theorem 3.8, p. 171), because A is
normal, rank(A) equals the size of the largest nonsingular principal submatrix.
That is, rank(A) equals the size of the largest induced subgraph (of T ) with
full rank. By Theorem 3.1, this is the size of the largest induced subgraph
having a perfect matching. By Lemma 3.3, it is the largest induced forest of
disjoint perfect trees.

It appears to be well-known that the determinant of a tree's adjacency
matrix is 0, �1, or 1. It is interesting to seek a precise formulation for the
determinant. y

Theorem 3.5. For a tree T with adjacency matrix A,

det(A) =

8<
:

1 if T is a perfect tree of size 4k
�1 if T is a perfect tree of size 4k + 2
0 otherwise:

Proof. By Theorem 3.1 and Lemma 3.2, A has full rank, or nonzero
determinant, if and only if T is perfect. It su�ces, therefore, to show that the
�rst two equations hold as stated. Thus, assume T is a perfect tree having n
vertices, and consider applying algorithm TreeReduction to T with � = 0. If
n � 0 mod 4 there will be an even number of sign changes (i.e. d in equation (2)
will be even) and so det(A) = 1. On the other hand, if n � 2 mod 4 there will
be an odd number of sign changes and det(A) = �1.

4. Eigenvalues of trees. Recall that the characteristic polynomial of a
square matrix M is

q(�) = det(�In �M);(5)

and its roots are called the eigenvalues of M . It will be helpful to also de�ne

p(�) = det(M � �In):(6)

y Actually a stronger property holds for trees, namely that every square submatrix has
determinant 0, �1, or 1. Such matrices are called totally unimodular and are important in
guaranteeing an integer solution to a linear programming problem [11].
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Fig. 3. Computing the characteristic polynomial.

Since multiplying a row by �1 reverses the sign of a matrix, q(�) = (�1)np(�)
and so p and q have the same roots.

From here on, p and q have the meanings given above.
There has been considerable interest in the eigenvalues of adjacency ma-

trices [4, 5, 6, 13]. One elementary property is that for any graph, these
eigenvalues are all real [10]. We are interested in the eigenvalues of A, the
adjacency matrix of a tree. Note that according to Theorem 2.1, � 2 IR is
an eigenvalue of A if and only if the call to TreeReduction(T;��) produces
a zero. In our algorithm, there are two ways that this can happen. One way
is that at some stage in the algorithm, two vertices w1 and w2 occur having
a common parent v and for which a(w1) = a(w2) = 0. Secondly, it might
occur that the undeleted children of the root r all have nonzero values, but
expression (1) becomes zero at the last stage (as happened in Figure 2). For
purposes of discussion, let us call these two kinds of eigenvalues deep roots
and top roots, respectively. From these observations one obtains the following
theorem.

Theorem 4.1. Let T be a rooted tree, and let T 0 be formed by taking a
new root and adjoining it to the roots of two or more copies of T . Then the
set of eigenvalues of T is properly contained in the set of eigenvalues of T 0.

Proof. Clearly every deep root of T must also be a deep root of T 0. And
every top root of T also becomes a root because there are at least two copies
of T . This shows containment. Proper containment comes from the fact that
since T is a proper subgraph of T 0, the largest eigenvalue of T 0 is greater than
the largest eigenvalue of T (see Lemma 1 (3), [4]).

Let T be a tree with adjacency matrix A, and let p be the polynomial
in (6). We can compute p(�) in the following way. Let F represent the
�eld of quotients for the polynomial ring IQ[�]. We then make a call to
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TreeReduction(T;��), performing all arithmetic over F . The values that

are placed in the vertices are rational functions, that is, quotients r(�)
s(�) where

r(�); s(�) 2 IQ[�]. Clearly the zero function will never appear at a vertex v,
for this would imply that the adjacency matrix of the subtree rooted at v has
a 0 characteristic function. Algorithm TreeReduction, therefore, deletes no
vertices, and p(�) is the product of all resulting rational functions.

Now consider computing p(��). We may do this in the same way, but by
calling TreeReduction(T; �). One observes that at each stage of the algorithm
the corresponding functions on the vertices are opposite to the functions in the
previous computation. Hence their corresponding products will be the same,
up to a sign. In particular,

p(��) = (�1)np(�):(7)

Thus we have shown that one of the following must hold:

p(��) = p(�)(8)

p(��) = �p(�):(9)

The following theorem is known to hold even for bipartite graphs (see Lemma
1 (2), [4]), but we stop to give a simple proof in the case of trees.

Theorem 4.2. For the adjacency matrix of a tree, � is an eigenvalue if
and only if �� is an eigenvalue having the same multiplicity.

Proof. We know that p satis�es (8) or (9). One can prove (by induction on
deg(p)) that any polynomial satisfying (8) or (9) must have roots that satisfy
the condition of the theorem.

Let us now make a simplifying observation. We remarked earlier that
q(�) = (�1)np(�). But by (7), p(�) = (�1)np(��). It follows that the
characteristic function q(�) = (�1)2np(��) = p(��), which can be computed
directly by simply calling TreeReduction(T; �). We illustrate the computation
on the tree shown in Figure 3. We assign the variable � to each vertex, and
apply our algorithm. In Figure 3,

r = ��
4

�

s = ��
1

�� 4
�

�
1

�
:

Taking the product of all seven rational functions in Figure 3 gives us the
characteristic polynomial

�3(�4 � 6�2 + 4);

and from this it is seen that there are exactly four nonzero eigenvalues.
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Fig. 4. Vertices at the same level having same degree.

Let us examine one more interesting aspect of eigenvalues of trees. Let T
be a rooted tree such that all vertices at the same level have the same number
of children. Such a tree is shown in Figure 4. In computing the characteristic
function as above, we note that the rational functions appearing at each level
have the form of partial fractions:

�; ��
2

�
; ��

3

�� 2
�

; ��
2

�� 3
�� 2

�

Note that the numerators which appear are the number of children at each
level.

5. Eigenvalues of paths. We �nish this paper by making some simple
observations about paths. Let dn be the characteristic polynomial for the
adjacency matrix of the n-vertex path Pn. The following theorem appears in
[8], but we give an alternate proof based on our method.

Theorem 5.1 (Harary, King, Mowshowitz). The dn satisfy d0 = 1,
d1 = �, and dn = dn�1�� dn�2 for n � 2.

Proof. Consider applying our algorithm to Pn by using the indeterminate
�, and let rn denote the rational function appearing on the n-th vertex. Then
we have that

dn = dn�1rn

= dn�1(��
1

rn�1
)

= dn�1��
dn�1

rn�1

= dn�1�� dn�2:(10)

Thus we have a recursive de�nition for the dn; computing the next few
polynomials we get d2 = �2� 1, d3 = �3� 2�, and d4 = �4� 3�2+1. Now let
En denote the set of distinct eigenvalues of Pn.



ELA
Reducing the Adjacency Matrix of a Tree 43

Theorem 5.2. For any even integer n, En \En+2 = ;.
Proof. Suppose � 2 En. Since n is even, we must have � 6= 0, using

Theorem 3.5 and the fact that the determinant of a matrix is the product
of its eigenvalues. Now consider applying TreeReduction to T = Pn+2 and
� = �. Since � 2 En, the algorithm will produce a zero on the n-th vertex,
causing both it and vertex n+ 1 to be deleted. Hence vertex n+2 will remain
with its initial value � 6= 0.

Theorem 5.3. Let n and k be integers such that 0 < k � n and n �
k mod (k + 1). Then Ek � En.

Proof. Let � 2 Ek. Imagine applying our algorithm to Pn. The value
appearing on the k-th vertex must be zero causing it and vertex k + 1 to be
eliminated. Within every block of k + 1 vertices, the last two vertices will
be deleted. However by the assumption on n, the last vertex will remain
undeleted with a zero value.

Theorem 5.4. For all n, En \ En+1 = ;.
Proof. If � 2 En \ En+1, then by (10) we would have � 2 En+2, and

� 2 En+3. Hence there would be an even k (n or n+1) for which � 2 Ek\Ek+2,
contradicting Theorem 5.2.
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