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THE MULTIPLICITY OF Aα-EIGENVALUES OF GRAPHS∗

JIE XUE† , RUIFANG LIU† , GUANGLONG YU‡ , AND JINLONG SHU§

Abstract. For a graph G and real number α ∈ [0, 1], the Aα-matrix of G is defined as Aα(G) = αD(G) + (1 − α)A(G),

where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. In this paper, the largest

multiplicity of the Aα-eigenvalues of a broom tree is considered, and all graphs with an Aα-eigenvalue of multiplicity at least

n− 2 are characterized.
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1. Introduction. Unless stated otherwise, we follow [2] for terminology and notations. All graphs

considered here are simple and undirected. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The

adjacency matrix of G is denoted by A(G). The (i, j)-entry of A(G) is 1 if vivj ∈ E(G), and otherwise 0. Let

D(G) be the diagonal matrix of the vertex degrees of G. For real number α ∈ [0, 1], Nikiforov [19] defined

the Aα-matrix of G:

Aα(G) = αD(G) + (1− α)A(G).

It is clear that A0(G) is the adjacency matrix, and A 1
2
(G) is essentially equivalent to the signless Laplacain

matrix. The eigenvalues of Aα(G) are called Aα-eigenvalues of G. Clearly, the Aα-eigenvalues are the vertex

degrees of G when α = 1. Thus, unless otherwise specified, we only consider the case of 0 ≤ α < 1 throughout

this paper. For more results about Aα-matrix, one can see [14, 15, 16, 17, 18, 20, 21, 22, 29].

The study of the eigenvalue multiplicity is a classical topic in spectral graph theory. Biggs [1] presented

that for any symmetric graph with valency k, every adjacency eigenvalue λ (6= ±k) has multiplicity at

least two. In [28], Terwilliger obtained a lower bound on the eigenvalue multiplicity for highly symmetric

graphs. Yamazaki [30] proved that if a bipartite distance-regular graph has an eigenvalue with multiplicity

equals its valency, then such graph is 2-homogeneous. Furthermore, the relationship between the eigenvalue

multiplicity and the valency of triangle-free distance-regular graphs was investigated in [6, 11, 12]. The

upper bounds on the eigenvalue multiplicity for cubic graphs and triangle-free graphs were considered in

[24, 25]. The multiplicity of a specific eigenvalue was also studied in many papers. The multiplicity of the

eigenvalue zero of a graph is called its nullity. There are many studies about the nullity of graphs (see, for

example, [7, 8, 9, 10, 23]). In particular, Cheng and Liu [7] determined the graphs with the nullity n − 2

or n − 3. In [8], the bipartite graphs with nullity n − 4 and the regular bipartite graphs with nullity n − 6
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were characterized. For Aα-matrix, Gardoso, Pastén and Rojo [5] considered the multiplicity of α as an

Aα-eigenvalue of a graph. Along this line, we study the multiplicity of the Aα-eigenvalue of a graph.

For a graph G, we use Mα(G) to denote the largest multiplicity for its Aα-eigenvalues, that is,

Mα(G) = max{m(λ) : λ is an Aα-eigenvalue of G},

where m(λ) is the multiplicity of λ. Let d(G) be the diameter of a connected graph G. Nikiforov presented

that Aα(G) has at least d(G) + 1 distinct eigenvalues (see Corollary 33 in [19]). Therefore, for a connected

graph we obtain that

(1.1) Mα(G) ≤ n− d(G).

Note that the upper bound is sharp. Brualdi and Goldwasser [3] defined the broom Bn,k as follows: it is

a tree obtained from the path Pk by attaching n − k pendent vertices to an end vertex of Pk. The broom

tree has the extremal values with respect to some spectral parameters (see, for example, [13, 26, 27, 31]).

Clearly, Bn,k ∼= K1,n−1 if k = 1, 2 and Bn,k ∼= Pn if k = n− 1, n. It is easy to see that both K1,n−1 and Pn
achieve the upper bound in (1.1). In Section 2, we will determine the value of Mα(Bn,k) for 3 ≤ k ≤ n− 2,

and show that

(1.2) Mα(Bn,k) = n− d(Bn,k)− 1

if α > 2/3. Clearly, Mα(Kn) = n − 1 and Mα(nK1) = n. Hence, any integer from 1 to n is a possible

value of Mα(G). It is natural to consider the following problem: Characterize all graphs with Mα(G) = i for

i = 1, . . . , n. We consider the problem for some special values. In Section 3, we determine all graphs with

an Aα-eigenvalue of multiplicity at least n− 2.

2. The largest multiplicity of the Aα-eigenvalues of a broom tree. Let S be a symmetric real

matrix whose rows and columns are indexed by X = {1, 2, . . . , n}. Let {X1, . . . , Xm} be a partition of X.

The matrix S may be represented as

S =

S1,1 · · · S1,m

...
. . .

...

Sm,1 · · · Sm,m

 ,
where Si,j is a sub-matrix (block) of S with respect to rows in Xi and columns in Xj . Let R be a matrix

of order m whose (i, j)-entry equals the average row sum of Si,j . We say that R is a quotient matrix of S

corresponding to this partition. If the row sum of each block Si,j is constant, then the partition is called

equitable. The following lemma presents the relationship between the eigenvalues of S and R.

Lemma 2.1. ([4]) Let R be a quotient matrix of a symmetric real matrix S with respect to an equitable

partition. If λ is an eigenvalue of R, then λ is also an eigenvalue of S.

Lemma 2.2. ([14]) Let G be a graph with an independent set of order s. If all vertices in this independent

set have the same neighbours and the same degrees σ, then σα is an Aα-eigenvalue of G with multiplicity at

least s− 1.
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Let κ0, κ1, . . . , κi, . . . be a sequence defined as follows:

(2.3) κ0 = 0, κ1 =

∣∣∣∣ −α α− 1

α− 1 0

∣∣∣∣ , . . . , κi =

∣∣∣∣∣∣∣∣∣∣∣∣

−α α− 1

α− 1 −α α− 1
. . .

. . .
. . .

α− 1 −α α− 1

α− 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
, . . .

We remark that any entry in the above matrices is zero if it does not belong to the three middle diagonal

lines. By computing the determinant, it is easy to see that

κi + ακi−1 + (α− 1)2κi−2 = 0

for every integer i ≥ 2. Thus, the characteristic equation of the above recurrence formulas is

t2 + αt+ (α− 1)2 = 0.

If 1 > α > 2/3, then it follows that α2 − 4(α − 1)2 > 0 and so the characteristic equation has two distinct

real roots t1 and t2 such that

t1 + t2 = −α, t1t2 = (α− 1)2.

By the theory of linear recurrence equations, there exist two real numbers a and b such that κi = ati1 + bti2
for i ≥ 0. Note that 0 = κ0 = a+ b. It follows that a = −b. Thus, we obtain that

(2.4) κi = a(ti1 − ti2).

Since t1 + t2 = −α < 0 and t1t2 = (α − 1)2 > 0, we see that ti1 − ti2 6= 0. Hence, κi 6= 0 (i ≥ 1) if a 6= 0.

Note that

κ1 =

∣∣∣∣ −α α− 1

α− 1 0

∣∣∣∣ = −(α− 1)2 6= 0.

Also, since κ1 = a(t1 − t2) (by equation (2.4)), it follows that a 6= 0. Thus, we obtain the following lemma.

Lemma 2.3. Let κ0, κ1, . . . , κi, . . . be a sequence defined as in (2.3). If 1 > α > 2/3, then κi 6= 0 for any

nonnegative integer i.

Now let us give the main result of this section.

Theorem 2.4. Let 3 ≤ k ≤ n − 2. If 1 > α > 2/3, then Mα(Bn,k) = n − k − 1. If 0 ≤ α ≤ 2/3, then

Mα(Bn,k) = n− k − 1 or n− k.

Proof. Suppose that 1 > α > 2/3. We consider the partition {V1, V2, . . . , Vk+1} of V (Bn,k), where V1
contains the n− k attached pendent vertices and |Vi| = 1 for 2 ≤ i ≤ k + 1. According to this partition, we

obtain the quotient matrix of Aα(Bn,k):

R =



α 1− α
(n− k)(1− α) (n− k + 1)α 1− α

1− α 2α 1− α
. . .

. . .
. . .

1− α 2α 1− α
1− α α


.
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Hence,

|αI −R| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 α− 1

(n− k)(α− 1) −(n− k)α α− 1

α− 1 −α α− 1
. . .

. . .
. . .

α− 1 −α α− 1

α− 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −(n− k)(α− 1)2κk−1.

Using Lemma 2.3, it follows that κk−1 6= 0, and so |αI−R| 6= 0. This implies that α cannot be an eigenvalue

of R. Lemma 2.2 shows that α is an Aα-eigenvalue of Bn,k with multiplicity at least n− k − 1. Combining

these observations and Lemma 2.1, one can see that the Aα-spectrum of Bn,k contains all eigenvalues of R

together with α of multiplicity n−k−1. Then we will show that R has k+1 distinct eigenvalues. Otherwise,

assume that λ is an eigenvalues of R with multiplicity at least two. Hence, there exists a nonzero eigenvector

ν = (ν1, ν2, . . . , νk+1)t of λ such that ν1 = 0. Since Rν = λν, it follows that λν1 = αν1 + (1 − α)ν2. Using

ν1 = 0 in the above equation, we have ν2 = 0. Similarly, we obtain that ν3 = · · · = νk+1 = 0, which

contradicts the fact that ν is nonzero. Therefore,

Mα(Bn,k) = max{n− k − 1, 1} = n− k − 1,

as required. If 0 ≤ α ≤ 2/3, then Lemma 2.2 shows that Mα(Bn,k) ≥ n − k − 1. Using (1.1), we have

Mα(Bn,k) ≤ n− k, thus the result follows.

3. Graphs containing an Aα-eigenvalue of multiplicity at least n− 2. For any connected graph

with at least two vertices, the Perron-Frobenius Theory shows that its largest Aα-eigenvalue is simple. Then

we obtain the following result.

Theorem 3.1. Let G be a graph of order n. Then Mα(G) = n if and only if G ∼= nK1.

Theorem 3.2. Let G be a graph of order n ≥ 2. Then Mα(G) = n− 1 if and only if

(i) G ∼= Kn, or

(ii) G ∼= Kp ∪ (n− p)K1 with n− 1 ≥ p ≥ 2 and α = 1/p.

Proof. Suppose that Mα(G) = n− 1. If G is a connected graph, then (1.1) implies that G is a complete

graph. If G is disconnected, then clearly all but one components are isolated vertices. Thus, G ∼= Kp ∪ (n−
p)K1 with n−1 ≥ p ≥ 2. The Aα-eigenvalues of Kp are p−1, pα−1, . . . , pα−1. Since 0 is the Aα-eigenvalue

of G with multiplicity n− 1, it follows that α = 1/p. Thus, we complete the proof.

In the following, we will determine the graphs with Mα(G) = n − 2. We first consider connected

graphs. Let G be a set of connected graphs on n vertices: G = {K1 ∨ 2Kn−1
2
,K1 ∨ (K1 ∪Kn−2),Ks ∨ (K1 ∪

Kn−s−1), sK1 ∨ (K1 ∪Kn−s−1),K1 ∨Kn−1
2 ,n−1

2
,Ks ∨ (n− s)K1,Ks,n−s}. For conciseness, we use J and 0

to denote the all ones matrix and all zeros matrix of appropriate size, respectively.

Lemma 3.3. Let G be a connected graph of order n ≥ 3. If Mα(G) = n− 2, then G ∈ G.

Proof. Suppose that λ is an Aα-eigenvalue of G with multiplicity n− 2. Thus, rank(Aα(G)− λI) = 2.

Let us consider the matrix Ã = Aα(G)−λI
1−α . Suppose that the degrees of G are denoted by d1, d2, . . . , dn. Let

εi = diα−λ
1−α for i = 1, . . . , n. Hence, Ã = diag(ε1, ε2, . . . , εn) +A(G). The following fact is direct.

Fact 1. If two diagonal entries of Ã are equal, then the corresponding two vertices have the same degree.
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Clearly, rank(Ã) = 2. Assume that its first two rows (say v1-row and v2-row) are linear independent.

It follows that:

Fact 2. Any other row of Ã must be a linear combination of v1-row and v2-row.

Let V ∗ = V (G)\{v1, v2}. We infer that any vertex of V ∗ is adjacent to v1 or v2. Otherwise, assume

that w is a vertex of V ∗ which is nonadjacent to v1 and v2, the (v1, w)-entry and (v2, w)-entry equal zero.

Hence, Fact 2 shows that the (u,w)-entry of Ã is zero for any vertex u ∈ V (G)\{w}, and so w is an isolated

vertex. But this contradicts the connectivity of G. We denote by N(vi) the set of neighbours of vi in G. Let

N1 = N(v1)\{v2} and N2 = N(v2)\{v1}. Thus, V ∗ = N1 ∪N2. We divide our proof into five cases:

(I) N1 * N2, N2 * N1 and N1 ∩N2 6= ∅;
(II) N2 6= ∅, N2 6= N1 and N2 ⊆ N1;

(III) N1 6= ∅, N2 6= ∅ and N1 ∩N2 = ∅;
(IV) N1 = N2 6= ∅;
(V) N1 = ∅ and N2 6= ∅.

Therefore, the corresponding possible structures of Ã should be as follows:

v1
v2
V1
V2
V3


ε1 b J J 0

b ε2 J 0 J

J J M1,1 M1,2 M1,3

J 0 M2,1 M2,2 M2,3

0 J M3,1 M3,2 M3,3

,

v1
v2
V1
V2


ε1 b J J

b ε2 J 0

J J M1,1 M1,2

J 0 M2,1 M2,2

 ,
(I) (II)

v1
v2
V1
V2


ε1 b J 0

b ε2 0 J

J 0 M1,1 M1,2

0 J M2,1 M2,2

 , v1
v2
V1

ε1 b J

b ε2 J

J J M1,1

 , v1
v2
V1

ε1 b 0

b ε2 J

0 J M1,1

 ,
(III) (IV ) (V )

where b ∈ {0, 1} and Mi,j denotes a block sub-matrix. We next show the properties of the block sub-matrices

of Ã.

Fact 3. If i 6= j, then Mi,j = 0 or J .

Proof of Fact 3. Note that each entry of Mi,j is 1 or 0. According to Fact 2, it is clear that the entries

of each row of Mi,j are either all ones or all zeros. The same property should also apply to Mj,i. Hence, we

see that Mi,j = 0 or J .

Fact 4. If the size of Mi,i is at least 2, then Mi,i = 0 or J .

Proof of Fact 4. Since the off-diagonal entry of Mi,i is 1 or 0, this claim follows immediately from Fact

2 and the symmetry of Mi,i.

In other words, Fact 4 also implies that Vi is either an independent set or a clique.

Fact 5. G dose not contain an induced P4.
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Proof of Fact 5. If not, we can obtain a sub-matrix of Ã with respect to P4:
∗ 1 0 0

1 ∗ 1 0

0 1 ∗ 1

0 0 1 ∗

 .
The first two rows of the above matrix are linear independent. But clearly its third row cannot be represented

as a linear combination of the first two rows due to the last column, contradicting rank(Ã) = 2. Therefore,

P4 cannot be an induced subgraph of G.

(I) Suppose that {v1, v2, V1, V2, V3} is the partition of V (G) corresponding to the partition of Ã. Let

θ1 = [ε1, b, J, J,0] and θ2 = [b, ε2, J,0, J ] be the first two rows of Ã.

Case I-1. M1,2 = 0 and M1,3 = 0.

According to Fact 2, each row of [J, J,M1,1,M1,2,M1,3] should be represented as a linear combination

of θ1 and θ2. Assume that the first row of [J, J,M1,1,M1,2,M1,3] is equal to k1θ1 + k2θ2. Since M1,2 = 0

and M1,3 = 0, it follows that k1 · 1 + k2 · 0 = 0, k1 · 0 + k2 · 1 = 0 and k1ε1 + k2b = 1, but clearly these three

equations cannot be simultaneously true.

Case I-2. M1,2 = J and M1,3 = J .

Consider the sub-matrix [J, J,M1,1,M1,2,M1,3], and suppose that one of its rows is

k1θ1 + k2θ2 = [k1ε1 + k2b, k1b+ k2ε2, (k1 + k2)J, k1J, k2J ].

Since M1,2 = J and M1,3 = J , it follows that k1 = k2 = 1. Hence, M1,1 = 2J . According to Fact 4, we see

that the size of M1,1 is one, and so M1,1 = 2. Moreover, since k1ε1 + k2b = 1 and k1b + k2ε2 = 1, we have

ε1 = ε2 and b+ ε1 = 1.

Subcase I-2.1. b = 1.

Thus, ε1 = ε2 = 0. In this case, θ1 = [0, 1, J, J,0] and θ2 = [1, 0, J,0, J ]. According to Fact 2, one can

easily obtain that each row of [J,0,M2,1,M2,2,M2,3] is equal to θ2 (since its second column is 0), yielding

M2,2 = 0 and M2,3 = J . Similarly, since each row of [0, J,M3,1,M3,2,M3,3] is equal to θ1, we have M3,2 = J

and M3,3 = 0. To summarize what we have obtained:

• b = 1 implies that v1 is adjacent to v2;

• ε1 = ε2 and Fact 1 imply |V2| = |V3|;
• M1,1 = 2 implies |V1| = 1;

• M2,2 = 0 and M3,3 = 0 imply that V2 and V3 are independent sets;

• M1,2 = J , M1,3 = J and M2,3 = J imply that two vertices are adjacent if they belong to two

different sets of V1, V2, V3.

The structure of G is depicted in Figure 1-i. Therefore, G ∼= K1 ∨K|V2|+1,|V2|+1 ∈ G.

Subcase I-2.2. b = 0.

Hence, ε1 = ε2 = 1. It follows from Fact 1 that v1 and v2 have the same degree, which implies

|V2| = |V3|. By an argument similar to above, we obtain M2,2 = J , M3,3 = J and M2,3 = 0. Figure 1-ii

shows the structure of G, that is, G ∼= K1 ∨ 2K|V2|+1 ∈ G.
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Case I-3. Without loss of generality, suppose that M1,2 = J and M1,3 = 0.

Consider the sub-matrix [J, J,M1,1,M1,2,M1,3] = [J, J,M1,1, J,0]; by Fact 2, we may assume that one

of its rows equals k1θ1 + k2θ2. Recall that θ1 = [ε1, b, J, J,0] and θ2 = [b, ε2, J,0, J ]. A simple calculation

shows that k1 = 1 and k2 = 0. It follows that ε1 = 1, b = 1 and M1,1 = J . If two vertices u ∈ V2
and u′ ∈ V3 are nonadjacent, then G contains an induced subgraph P4 = uv1v2u

′, contradicting Fact

5. Hence, any vertex of V2 is adjacent to all vertices of V3, and so M2,3 = J . Consider the sub-matrix

[J,0,M2,1,M2,2,M2,3] = [J,0, J,M2,2, J ]. By Fact 2, we may assume that one of its rows is k′1θ1 + k′2θ2 =

[k′1 + k′2, k
′
1 + k′2ε2, (k

′
1 + k′2)J, k′1J, k

′
2J ]. Thus, k′1 = 0 and k′2 = 1, and so ε2 = 0 and M2,2 = 0. Hence, θ1 =

[1, 1, J, J,0] and θ2 = [1, 0, J,0, J ]. Clearly, we see that each row of [0, J,M3,1,M3,2,M3,3] = [0, J,0, J,M3,3]

is equal to θ1− θ2, yielding M3,3 = −J . Using Fact 4, we obtain that the size of M3,3 is one and M3,3 = −1.

It follows that

Ã =

v1
v2
V1
V2
V3


1 1 J J 0

1 0 J 0 1

J J J J 0

J 0 J 0 J

0 1 0 J −1

 .

Figure 1-iii shows the structure of G. Therefore, G ∼= (|V2|+ 1)K1 ∨ (K|V1|+1 ∪K1) ∈ G.

(II) Suppose that {v1, v2, V1, V2} is the partition of V (G) corresponding to the partition of Ã. Let

θ1 = [ε1, b, J, J ] and θ2 = [b, ε2, J, 0] be the first two rows of Ã.

Case II-1. b = 0.

Thus, θ1 = [ε1, 0, J, J ] and θ2 = [0, ε2, J,0]. See Figure 1-iv. We first claim that any vertex of V1 is

adjacent to all vertices of V2. Otherwise, if two vertices u ∈ V1 and u′ ∈ V2 are nonadjacent, then G contains

an induced subgraph P4 = v2uv1u
′, this contradicting Fact 5. Hence, M1,2 = J . Consider the sub-matrix

[J,0,M2,1,M2,2] = [J,0, J,M2,2]. Assume that one of its rows is k1θ1 + k2θ2 = [k1ε1, k2ε2, (k1 + k2)J, k1J ].

It follows that k1ε1 = 1 and M2,2 = k1J . If M2,2 = 0, then k1 = 0. But this is impossible since k1ε1 = 1.

Therefore, M2,2 6= 0. From Fact 4, we see that V2 is a clique, and also V1 is either a clique or an independent

set. It follows that G ∼= K|V1| ∨ (K1 ∪K|V2|+1) or |V1|K1 ∨ (K1 ∪K|V2|+1), and thus, G ∈ G.

Case II-2. b = 1.

Thus, θ1 = [ε1, 1, J, J ] and θ2 = [1, ε2, J,0]. Fact 3 shows that M1,2 is either 0 or J . Suppose first

that M1,2 = 0. Consider the sub-matrix [J, J,M1,1,M1,2] = [J, J,M1,1,0]. Suppose that a row of the

above sub-matrix is equal to k1θ1 + k2θ2 = [k1ε1 + k2, k1 + k2ε2, (k1 + k2)J, k1J ]. Since k1ε1 + k2 = 1 and

k1J = 0, it follows that k1 = 0 and k2 = 1, yielding M1,1 = J . Moreover, we see that M2,2 6= 0. If not,

[J,0,M2,1,M2,2] = [J,0,0,0] and its rows cannot be the linear combination of θ1 and θ2, a contradiction.

Thus, V1 and V2 are cliques. The structure of G is depicted in Figure 1-v. If the size of M2,2 is one (i.e.,

|V2| = 1), then G ∼= K1 ∨ (K1 ∪ K|V1|+1) ∈ G. If the size of M2,2 is at least two, then Fact 4 shows that

M2,2 = J . Since M1,1 = J and M2,2 = J , it follows from Fact 1 that the vertices in V1 and V2 have the same

degree, that is, |V2| = |V1|+ 1. Thus, G ∼= K1 ∨ (K|V1|+1 ∪K|V1|+1) ∈ G.

Now suppose that M1,2 = J . If M1,1 6= 0, then Fact 4 implies that V1 is a clique. Again, using

fact 4, it follows that V2 is either a clique or an independent set. Figure 1-vi shows the structure of G;

it follows that G ∼= K|V1|+1 ∨ (K|V2| ∪ K1) or K|V1|+1 ∨ (|V2| + 1)K1, and so G ∈ G. If M1,1 = 0, then



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 645-657, September 2020.

Jie Xue, Ruifang Liu, Guanglong Yu, and Jinlong Shu 652

[J, J,M1,1,M1,2] = [J, J,0, J ]. Assume that one of the rows of the above sub-matrix is represented as

k1θ1 + k2θ2 = [k1ε1 + k2, k1 + k2ε2, (k1 + k2)J, k1J ].

Thus, k1ε1 + k2 = 1, k1 + k2ε2 = 1, k1 + k2 = 0 and k1 = 1. Therefore, we have ε1 = 2 and ε2 = 0, yielding

that θ1 = [2, 1, J, J ] and θ2 = [1, 0, J,0]. Consider the sub-matrix [J,0,M2,1,M2,2]. According to Fact 2,

it is easy to see that each row of [J,0,M2,1,M2,2] is equal to θ2, implying M2,2 = 0. Since M1,1 = 0 and

M2,2 = 0, both V1 and V2 are independent sets. Moreover, Fact 1 implies that all vertices in V1 ∪ V2 have

the same degree. Note that the degree of any vertex in V1 is |V2| + 2 and the degree of any vertex in V2 is

|V1|+1. Hence, |V1| = |V2|+1. The structure of G is depicted in Figure 1-vii, and so G ∼= K1∨K|V1|,|V1| ∈ G.

(III) Suppose that {v1, v2, V1, V2} is the partition of V (G) corresponding to the partition of Ã. Let

θ1 = [ε1, b, J,0] and θ2 = [b, ε2,0, J ] be the first two rows of Ã. See Figure 1-viii. Since P4 is not an induced

subgraph of the connected graph G, one can easily obtain that v1 is adjacent to v2, and any vertex of V1
is adjacent to all vertices of V2. This implies that M1,2 = J and b = 1. There are three possible cases for

V1 and V2: two cliques; two independent sets; one clique and one independent set. Suppose that V1 and

V2 are two cliques. If |V1| ≥ 2 and |V2| ≥ 2, then Fact 4 shows that M1,1 = J and M2,2 = J . Note that

θ1 = [ε1, 1, J,0] and θ2 = [1, ε2,0, J ]. Consider the sub-matrix [J,0,M1,1,M1,2] = [J,0, J, J ]. According to

Fact 2, it follows that each row of the above sub-matrix is equal to θ1 + θ2 = [ε1 + 1, ε2 + 1, J, J ], yielding

ε1 + 1 = 1. Also, since [0, J,M2,1,M2,2] = [0, J, J, J ], its rows are equal to θ1 + θ2 = [ε1 + 1, ε2 + 1, J, J ]. It

follows that ε1+1 = 0, contradicting ε1+1 = 1. So, we may assume, without loss of generality, that |V1| = 1.

Thus, G ∼= 2K1 ∨ (K1 ∪K|V2|) ∈ G. If A1 and A2 are two independent sets, then G ∼= K|V1|+1,|V2|+1 ∈ G.

Finally, without loss of generality, suppose that V1 is a clique and V2 is an independent set, and thus,

G ∼= (|V2|+ 1)K1 ∨ (K1 ∪K|V1|) ∈ G.
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Figure 1. Proof of Lemma 3.3.

(IV) See Figure 1-ix. According to Fact 4, V1 is either a clique or an independent set. Note that G

cannot be a complete graph, and thus, it is easy to see that G ∼= K2∨|V1|K1, K2,|V1| or 2K1∨K|V1|, yielding

G ∈ G.
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(V) See Figure 1-x. Since G is connected, we obtain that v1 is adjacent to v2. By Fact 4, it follows that

G ∼= K1 ∨ (K1 ∪K|V1|) or K1,|V1|+1, yielding G ∈ G.

From Lemma 3.3, we only need to consider the Aα-eigenvalue multiplicity of graphs belonging to G. The

next lemma is needed.

Lemma 3.4. Let G be a connected graph of order n ≥ 4 and Mα(G) = n−2. If λ is a multiple eigenvalue

of Aα(G), then its multiplicity is n− 2 and the other two Aα-eigenvalues are simple.

Proof. Clearly, Aα(G) is irreducible, so its spectral radius is simple. If there is another Aα-eigenvalue

(not λ) of multiplicity at least two, then Mα(G) ≤ n − 3, a contradiction. Therefore, λ is the only one

multiple Aα-eigenvalue, thus this lemma follows.

Let PGα (x) = |xI − Aα(G)| denote the Aα-characteristic polynomial of a graph G. In the following, we

consider the Aα-eigenvalues of the graphs in G by using the Aα-characteristic polynomials. With the help of

Matlab and the properties of the Aα-matrices, we obtain the Aα-characteristic polynomials for the graphs

in G. For conciseness, we present here the Aα-characteristic polynomials without proofs:

P
Ks∨(K1∪Kt)
α (x) =(x− (s+ t+ 1)α+ 1)s−1(x− (t+ s)α+ 1)t−1(

x3 + (2− s− t− 2αs− αt− α)x2 + (α2s2 + α2st+ α2s+ 2αs2 + 3αst

− αs+ αt2 − α− 2s− t+ 1)x− α2s3 − 2α2s2t− α2s2 − α2st2 + α2st

+ 2αs2 − αst+ αs+ st− s
)
,

(3.5)

P
sK1∨(K1∪Kt)
α (x) =(x− (t+ 1)α)s−1(x− (s+ t)α+ 1)t−1(

x3 + (1− t− 2αs− αt− α)x2 + (α2s2 + α2st+ α2s+ 3αst+ αs

+ αt2 − α− st− s)x− 2α2s2t− 2α2s2 − α2st2 + α2st+ αs2t+ αs2

− 2αst+ 2αs+ st− s
)
,

(3.6)

PK1∨2Ks
α (x) =(x− (s+ 1)α+ 1)2s−2(x− s− α+ 1)

(
x2 + (1− s− 2αs− α)x+ 2αs− 2s+ 2αs2

)
,(3.7)

P
K1∨Ks,s
α (x) = (x− (s+ 1)α)2s−2(x− (2s+ 1)α+ s)

(
x2 − (α+ s+ 2αs)x+ 4αs− 2s+ 2αs2

)
,(3.8)

PKs∨tK1
α (x) = (x− (s+ t)α+ 1)s−1(x− sα)t−1

(
x2 + (1− (s+ t)α− s)x+ 2stα+ s2α− sα− st

)
,(3.9)

P
Ks,t
α (x) = (x− sα)t−1(x− tα)s−1

(
x2 + α(s+ t)x+ 2αst− st

)
.(3.10)

Lemma 3.5. Let G ∼= K1 ∨ 2Kn−1
2

with n ≥ 5. Then Mα(G) = n− 2 if and only if α = 2
n+1 .

Proof. If α = 2
n+1 , then clearly Mα(G) = n − 2 (see Table 1). Suppose that Mα(G) = n − 2. Let

s = n−1
2 ≥ 2. By (3.7), the Aα-characteristic polynomial of G is as follows:

PGα (x) = (x− (s+ 1)α+ 1)2s−2(x− s− α+ 1)
(
x2 + (1− s− 2αs− α)x+ 2αs− 2s+ 2αs2

)
Since 2s− 2 ≥ 2, we have m((s+ 1)α− 1) ≥ 2. Moreover, Lemma 3.4 implies that m((s+ 1)α− 1) = n− 2,

and so (s+ 1)α− 1 is a root of the equation

(x− s− α+ 1)
(
x2 + (1− s− 2αs− α)x+ 2αs− 2s+ 2αs2

)
= 0.

Using x = (s+ 1)α− 1 in the above equation, we have −s2(α− 1)2(α+ αs− 1) = 0, yielding α(s+ 1) = 1,

as required.

Lemma 3.6. Let G ∼= K1 ∨ (K1 ∪Kn−2) with n ≥ 4. Then Mα(G) = n− 3.
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Proof. According to (3.5), it follows that the Aα-characteristic polynomial of G is as follows:

PGα (x) = (x− (n− 1)α+ 1)n−3f(x),

where

f(x) = x3 + (3− n− (n+ 1)α)x2 + (nα2 + (n2 − n− 2)α− n+ 1)x− (n2 − 3n+ 4)α2 − (n− 5)α+ n− 3.

By calculation, we have f((n−1)α−1) = (n−2)(1−α)((n−1)α2−3α+1) and f(n−2) = (α−1)((n−4)α+1).

Since n ≥ 4 and 0 ≤ α < 1, we have f((n− 1)α− 1) > 0 and f(n− 2) < 0. This implies that f(x) = 0 has

three distinct roots which belong to intervals (−∞, (n − 1)α − 1), ((n − 1)α − 1, n − 2) and (n − 2,+∞).

Therefore, Mα(G) = n− 3.

Lemma 3.7. Let G ∼= Ks ∨ (K1 ∪Kn−s−1) with 2 ≤ s ≤ n− 3. Then Mα(G) ≤ n− 3.

Proof. From (1.1), we have Mα(G) ≤ n − 2. By contradiction, assume that Mα(G) = n − 2. Let

t = n− s− 1 ≥ 2. Thus, by (3.5), the Aα-characteristic polynomial of G is as follows:

(3.11) PGα (x) = (x− (s+ t+ 1)α+ 1)s−1(x− (t+ s)α+ 1)t−1f(x),

where

f(x) = x3 + (2− s− t− 2αs− αt− α)x2 + (α2s2 + α2st+ α2s+ 2αs2 + 3αst− αs+ αt2 − α− 2s

− t+ 1)x− α2s3 − 2α2s2t− α2s2 − α2st2 + α2st+ 2αs2 − αst+ αs+ st− s.

If t ≥ 3, then (s+t)α−1 is a multiple Aα-eigenvalue. According to Lemma 3.4, we see that m((s+t)α−1) =

n− 2, and so it is a root of f(x) = 0. But

f((s+ t)α− 1) = t(1− α)((t+ s)α2 − (2s+ 1)α+ s) 6= 0

since (2s+ 1)2 − 4s(s+ t) < 0. Thus, we infer that t = 2, and so

f(x) = x3+(−3α−s−2αs)x2+(α2s2+3α2s+2αs2+5αs+3α−2s−1)x−α2s3−5α2s2−2α2s+2αs2−αs+s.

By calculation, it follows that f(sα) = s(1 − α)2 > 0 and f(sα + 1) = −2s(1 − α)2 < 0. This implies that

f(x) = 0 has three distinct roots. Note that (s + t)α − 1 is not a root of f(x) = 0. Hence, G has at least

four distinct Aα-eigenvalues, contradicting the assumption Mα(G) = n− 2. Thus, we complete the proof.

Lemma 3.8. Let G ∼= sK1 ∨ (K1 ∪Kn−s−1) with 2 ≤ s ≤ n − 3. Then Mα(G) = n − 2 if and only if

n = 3s− 2 and α = 3
n−1 .

Proof. Suppose that Mα(G) = n−2. Let t = n−s−1 ≥ 2. It follows from (3.6) that the Aα-characteristic

polynomial of G is as follows:

PGα (x) = (x− (t+ 1)α)s−1(x− (s+ t)α+ 1)t−1f(x),

where

f(x) = x3 + (1− t− 2αs− αt− α)x2 + (α2s2 + α2st+ α2s+ 3αst+ αs+ αt2 − α− st− s)x
− 2α2s2t− 2α2s2 − α2st2 + α2st+ αs2t+ αs2 − 2αst+ 2αs+ st− s.

By calculation, we obtain that f(sα) = s(t−1)(1−α)2 > 0 and f(sα+ t−1) = −st(t−1)(1−α)2 < 0. This

implies that f(x) = 0 has three distinct roots. Note that (t+ 1)α and (s+ t)α− 1 are Aα-eigenvalues of G.
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If (t+ 1)α 6= (s+ t)α− 1, then Mα(G) ≤ n− 3, a contradiction. Therefore, we have (t+ 1)α = (s+ t)α− 1,

that is,

(3.12) α =
1

s− 1
.

Moreover, since Mα(G) = n− 2, by Lemma 3.4, we see that (t+ 1)α must be a root of f(x) = 0. Thus,

f((t+ 1)α) = −s(α− 1)2(α− t− αs+ 2αt+ αt2 − αst+ 1) = 0,

yielding

(3.13) α− t− αs+ 2αt+ αt2 − αst+ 1 = 0.

Combining (3.12) and (3.13), it follows that t = 2s− 3. Since t = n− s− 1, we obtain that n = 3s− 2 and

α = 3
n−1 , as required. Conversely, if n = 3s− 2 and α = 3

n−1 , then Table 1 shows that Mα(G) = n− 2.

Lemma 3.9. Let G ∼= K1 ∨ Kn−1
2 ,n−1

2
where n ≥ 5 is odd. Then Mα(G) = n − 2 if and only if and

α = 4
n+1 .

Proof. If α = 4
n+1 , then Table 1 shows that Mα(G) = n− 2. Conversely, suppose that Mα(G) = n− 2.

Let s = n−1
2 ≥ 2. By (3.8), the Aα-characteristic polynomial of G is as follows:

PGα (x) = (x− (s+ 1)α)2s−2(x− (2s+ 1)α+ s)
(
x2 − (α+ s+ 2αs)x+ 4αs− 2s+ 2αs2

)
.

Since s ≥ 2, we obtain that (s + 1)α is a multiple eigenvalue. According to Lemma 3.4, it follows that

m((s+ 1)α) = n− 2, and so it must be a root of

(x− (2s+ 1)α+ s)
(
x2 − (α+ s+ 2αs)x+ 4αs− 2s+ 2αs2

)
= 0.

Using x = (s+1)α in the above equation, it follows that s2(1−α)2(α+sα−2) = 0, yielding α = 2
s+1 = 4

n+1 ,

which completes the proof.

Lemma 3.10. Let G ∼= Ks ∨ (n − s)K1 with n − 2 ≥ s ≥ 2. Then Mα(G) = n − 2 if and only if and

α = 1
n−s .

Proof. Suppose that Mα(G) = n− 2. From (3.9), the Aα-characteristic polynomial of G is as follows:

PGα (x) = (x− nα+ 1)s−1(x− sα)n−s−1
(
x2 + (1− αn− s)x+ s2 − ns− αs2 − αs+ 2αns

)
.

Let f(x) = x2 + (1− αn− s)x+ s2 − ns− αs2 − αs+ 2αns. It is easy to see that

f(sα) = −s(n− s)(1− α)2 6= 0 and f(nα− 1) = s(1− α)(s− n+ 1) 6= 0.

If sα 6= nα−1, then G has four distinct Aα-eigenvalues, a contradiction. This implies that sα = nα−1, i.e.,

α = 1
n−s . Conversely, if α = 1

n−s , then Table 1 shows that Mα(G) = n− 2. Thus, we complete the proof.

Lemma 3.11. Let G ∼= Ks,n−s with 1 ≤ s ≤ n− 1. Then Mα(G) = n− 2 if and only if s = 1 or s = n
2 .

Proof. Suppose that Mα(G) = n− 2. Let t = n− s ≥ 1. From (3.10), the Aα-characteristic polynomial

of G is as follows:

PGα (x) = (x− sα)s−1(x− tα)t−1
(
x2 − α(s+ t)x+ 2αst− st

)
.

Let f(x) = x2 + α(s + t)x + 2αst − st. Suppose s > t. If t ≥ 2, then sα is a multiple Aα-eigenvalue. By

Lemma 3.4, we obtain that m(sα) = n− 2, and so f(x) = 0. But, f(sα) = −st(1−α)2 6= 0, a contradiction.

If t = 1 or s = t, then Table 1 shows that Mα(G) = n− 2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 645-657, September 2020.

Jie Xue, Ruifang Liu, Guanglong Yu, and Jinlong Shu 656

Graphs Aα-spectra

K1,n−1
nα+
√
n2α2+4(n−1)(1−α)

2
, α, . . . , α,

nα−
√
n2α2+4(n−1)(1−α)

2

Kn
2
,n
2

n
2
, nα

2
, . . . , nα

2
, n(2α−1)

2

Ks ∨ (n− s)K1(α = 1
n−s )

ns+s−s2+(n−s−1)
√
s(4n−3s)

2(n−s) , s
n−s , . . . ,

s
n−s ,

ns+s−s2−(n−s−1)
√
s(4n−3s)

2(n−s)

K1 ∨Kn−1
2
,n−1

2
(α = 4

n+1
) n2+4n−5

2(n+1)
, 2, . . . , 2, −n

2+8n+1
2(n+1)

sK1 ∨ (K1 ∪K2s−3)(α = 3
n−1

)
s2−2s+2+(s−2)

√
(3s−1)(s−1)

s−1
, 2, . . . , 2,

s2−2s+2−(s−2)
√

(3s−1)(s−1)

s−1

K1 ∨ 2Kn−1
2

(α = 2
n+1

) (n−1)2

2(n+1)
, n

2+2n−3
2(n+1)

, 0, 0, . . . , 0

Table 1. The Aα-spectra of graphs in Theorem 3.12.

According to Lemma 3.3 and Lemmas 3.5-3.11, we obtain the following theorem immediately.

Theorem 3.12. Let G be a connected graph of order n ≥ 3. Then Mα(G) = n− 2 if and only if

(1) G ∼= K1,n−1, or

(2) G ∼= Kn
2 ,
n
2

with n ≥ 4, or

(3) G ∼= Ks ∨ (n− s)K1 with 2 ≤ s ≤ n− 2 and α = 1
n−s , or

(4) G ∼= K1 ∨Kn−1
2 ,n−1

2
with n ≥ 5 and α = 4

n+1 , or

(5) G ∼= sK1 ∨ (K1 ∪Kn−s−1) with s ≥ 3, n = 3s− 2 and α = 3
n−1 , or

(6) G ∼= K1 ∨ 2Kn−1
2

with n ≥ 5 and α = 2
n+1 .

Now, let us consider the disconnected graphs that have an Aα-eigenvalue with multiplicity n− 2.

Corollary 3.13. Let G be a disconnected graph of order n ≥ 3. Then Mα(G) = n− 2 if and only if

(1) G ∼= 2K2, or

(2) G ∼= 2K2 ∪ (n− 4)K1 with n ≥ 5 and α = 1/2, or

(3) G ∼= K2 ∪ (n− 2)K1 with α 6= 1/2, or

(4) G ∼= K1,s−1 ∪ (n− s)K1 with 3 ≤ s ≤ n− 1 and α = 0, or

(5) G ∼= K s
2 ,
s
2
∪ (n− s)K1 with 4 ≤ s ≤ n− 1 and α = 0, or

(6) G ∼= K1 ∨ 2K s−1
2
∪ (n− s)K1 with 3 ≤ s ≤ n− 1 and α = 2

s+1 .

Proof. Let λ be the Aα-eigenvalue G with multiplicity n − 2. Let G1 be a component of G with order

s ≥ 3. Thus, all Aα-eigenvalues of G − G1 are equal to λ, this implies that G − G1 is the union of some

isolated vertices, and so λ = 0. Hence, we see that λ = 0 is an Aα-eigenvalue of G1 with multiplicity s− 2.

According to Theorem 3.12 and Table 1, we obtain that G1
∼= K1,s−1 with α = 0, G1

∼= K s
2 ,
s
2

with α = 0 or

G1
∼= K1 ∨ 2K s−1

2
with α = 2

s+1 . So in the following we may assume that G ∼= sK2 ∪ (n− 2s)K1. Clearly,

its Aα-eigenvalues are

1, 1, . . . , 1︸ ︷︷ ︸
s

, 2α− 1, 2α− 1, . . . , 2α− 1︸ ︷︷ ︸
s

, 0, 0, . . . , 0︸ ︷︷ ︸
n−2s

.

Therefore, we obtain that G ∼= 2K2, G ∼= 2K2∪(n−4)K1 with α = 1/2 or G ∼= K2∪(n−2)K1 with α 6= 1/2.

Thus, we complete the proof.

4. Conclusions. For graphs on n vertices, Pn is the only graph with diameter n−1. Note also that Pn
has n distinct Aα-eigenvalues. Thus, Mα(Pn) = n−d(Pn) = 1. For Kn, clearly Mα(Kn) = n−d(Kn) = n−1.

Hence, we see that Pn and Kn achieve the upper bound (1.1). In Theorem 3.12, we determine all connected



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 645-657, September 2020.

657 The Multiplicity of Aα-Eigenvalues of Graphs

graphs with Mα(G) = n − 2. The diameter of any graph in Theorem 3.12 is two. Therefore, the graphs,

with diameter two, satisfying the equality in (1.1) are also characterized by Theorem 3.12. Motivated by

these results, we propose the following problem:

Problem 4.1. Characterize all graphs G with Mα(G) = n− d(G) for d(G) = 3, 4, . . . , n− 2.
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