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IMPROVEMENTS ON SPECTRAL BISECTION∗

ISRAEL DE SOUZA ROCHA†

Abstract. In this paper, the third eigenvalue of the Laplacian matrix is used to provide a lower bound on the minimum

cutsize. This result has algorithmic implications that are exploited in this paper. Besides, combinatorial properties of certain

configurations of a graph partition which are related to the minimality of a cut are investigated. It is shown that such

configurations are related to the third eigenvector of the Laplacian matrix. It is well known that the second eigenvector encodes

structural information, and that can be used to approximate a minimum bisection. In this paper, it is shown that the third

eigenvector carries structural information as well. Then a new spectral bisection algorithm using both eigenvectors is provided.

The new algorithm is guaranteed to return a cut that is smaller or equal to the one returned by the classic spectral bisection.

Also, a spectral algorithm that can refine a given partition and produce a smaller cut is provided.
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1. Introduction. The classic problem of finding a minimum cut of a graph is known to be NP-hard.

Nevertheless, the problem has direct applications in VLSI design, data-mining, finite elements and communi-

cation in parallel computing, etc. In practice, given the importance of the problem, the solution is generally

approximated using heuristic algorithms. The problem is to separate the vertices of a graph in two parts,

such that the number of edges connecting vertices in different parts is minimized. Such a partition, also

known as a cut, is called a balanced cut or a bisection whenever both parts have the same size.

In many applications, it is desired to obtain the smallest possible cut at a cost of having a partition that

is not balanced, but acceptable in the sense both parts have almost the same size. However, even for those

cases efficient algorithms that approximates balanced cuts up to a constant factor do not exist. In fact, this

approximation problem is NP-hard [2].

Spectral techniques are well-known approaches to this problem and they have its roots in the work of

Fiedler [10] and Donath and Hoffman [8, 9]. These spectral methods are known to provide good answers,

and they are broadly used in several problems [20, 23, 24]. Spectral partitioning algorithms recover global

structural information and connectivity of a graph by means of an eigenvector of the second eigenvalue of

the Laplacian matrix of the graph.

In [26], Spielman and Teng provided a recursive spectral bisection algorithm and showed that spectral

partitioning methods work well on bounded-degree planar graphs. Guattery and Miller [14] perform an

analysis of the quality of the separators produced by such methods. Papers [26] and [14] discuss the difference

between guarantees on the size of a balanced cut versus its optimality. Hendrickson and Leland [20] extend the

spectral approach to partition a graph into four or eight parts by using multiple eigenvectors. Furthermore,

Lee, Gharan, and L. Trevisan [21] provides theoretical justification for the use of multiple eigenvectors in
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multi-way clustering algorithms.

In this paper, instead of using structural information provided by multiple eigenvectors to partition

graphs into multiple parts, we develop an approach that uses multiple eigenvectors to create a bisection of

the graphs. It is well known that the second eigenvector encodes structural information, and that can be used

to approximate a minimum bisection. In this paper, we show that the third eigenvector carries structural

information as well, which enables us to apply that information in the bisection problem. We then provide

a new spectral bisection algorithm using both eigenvectors.

Beyond the second eigenvector there is a large literature about graph spectra of graphs [5, 6, 7, 13, 18].

Going in a related direction of our investigation, Pati [22] investigated the connection between the third

smallest eigenvalue and the graph structure and especially for trees. Grady and Schwartz [12] provide an

isoperimetric algorithm derived and motivated by the isoperimetric constant, which share close similarities

with spectral partitioning and in particular the method presented in this paper. Also related to our inves-

tigation is the work of Lang [17], which uses random hyperplane rounding of multiple eigenvectors. There,

the author empirically investigates the behavior of six graph partitioning algorithms on power law graphs.

From a more general perspective, there are several heuristics for the graph partitioning problem, and

they can be classified as either:

• Geometric - based solely on the coordinate information of the vertices;

• Combinatorial - which attempts to group together highly connected vertices;

• Spectral - formulates as the optimization of a discrete quadratic function. The relaxed counterpart

of the discrete problem becomes a continuous one, which can be solved by computing the second

eigenvector of the discrete Laplacian of the graph;

• Multilevel methods - a sequence of smaller graphs is constructed in order to produce a similar

coarser graph. The initial bisection is performed on the smallest of these graphs. Finally, the graph

is uncoarse and partition refinement is performed on each of the coarse graph.

Each method has its advantages and disadvantages, and many of them are described in [25], where we can

find a detailed description of several different methods in each of these classes. Combining those methods is

a common strategy to overcome the disadvantages. For instance, spectral schemes can use eigenvectors to

produce coordinate information for vertices. Geometric methods can then use these coordinates to partition

the graph. Usually, for each application it is unclear which method is better. There are many factors to be

considered: degree of parallelism, run time, quality of the cut produced. Karypis and Kumar [16] evaluate

different aspects for many combinations of methods. In general, it is agreed that spectral methods are good,

especially multilevel spectral bisection.

In this paper, we aggregate more information present in the spectra to improve the traditional spectral

bisection algorithm (SB) and produce a new graph bisection algorithm. While SB makes use of one eigen-

vector only, the new algorithm uses two eigenvectors, which allows us to returns a partition with cut size

smaller or equal to the SB cut size. Besides, the additional running time of computing an extra eigenvector

is rather small compared to the overall running time of SB.

One one hand, we are especially concerned with the theoretical relations of eigenvectors and cuts on

graphs, and also show there is still more to be understood about these relations. Therefore, we do not intend

to make an extensive comparison between different classes of algorithms and the new one, since the new

algorithm is guaranteed to return a cut that is not worse than the one of SB, at a cost of a rather small
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running time. Nevertheless, we present some numerical results comparing the quality of the cut between

the new algorithm and SB. It is worth it to mention that there is no restriction on using the new algorithm

in combination with other methods, and we expect that the new algorithm improves the existing mixed

methods that make use of the traditional SB.

To reach our goal, we investigate properties of certain configurations of a graph partition which are

related to the minimality of a cut and the structure of the graph, and we prove several results on that. Such

configurations, that we call organized partitions, are shown in this paper to be related to eigenvectors of

the Laplacian matrix. It turns out that organized partitions are related to the maximum cut problem as

well, as we will show in Section 2. The ideas behind the results in Section 2 are purely combinatorial; that

has algorithmic implications and we are exploiting it in the paper. We make it possible by formulating the

problem of finding organized partitions in terms of an optimization problem. This formulation shows the

link between organized partitions, minimum bisection, and eigenvectors of graphs.

Finally, we combine the organized partition, the third, and the second eigenvector to construct an

algorithm that approximates a minimum graph bisection. For this algorithm, it is proven that the resulting

partition has no more edges than the classical spectral bisection algorithm. Besides, we provide a second

algorithm that can produce a smaller cut, given a known cut, a procedure known as refining a partition.

There are several multilevel algorithms [3, 4, 15, 19] that further refine the partition during the uncoarsening

phase. The second algorithm presented in this paper refines the partition by making use of the information

about the organized partition present in the third eigenvector.

The rest of the paper is organized as follows: properties of organized partitions are investigated on

Section 2 and related to minimum and maximum cuts on graphs. In Section 3, we connect organized

partitions with spectral properties of graphs, and we prove bounds on the minimum cut in terms of these

properties. In Section 4, we derive both algorithms, the first improving SB, and the second producing a

smaller cut based on a given one. In Section 5, we present a few experimental results comparing the quality

of partitions returned by SB and the new algorithm. Finally, in Section 6 there is a list of potential lines of

investigation that arise from this paper.

2. Organized partitions. Let G = (V,E) be a connected graph with n = 4N vertices. Consider a

cut {A,B} of the vertex set V such that |A| = |B|. Such cut is also known as a balanced cut or a bisection.

In this paper, we deal only with balanced cuts, thus from now on, we will simply refer to it as a cut. Let

A = A1∪A2 and B = B1∪B2. Now create a new partition of vertices C = {A1, A2, B1, B2}. We use E(A,B)

to denote the number of edges between the set of vertices A and B. We say that the partition C is organized

whenever

(2.1) E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2)

is minimum among all subsets with |A1| = |A2| = |B1| = |B2|. See Figure 1, which depicts the partition in

question.

It is worth mentioning that saying C is organized is equivalent to say that

(2.2) E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2)

is minimum among the prescribed sets. To see that, we notice that

E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2)

= E(A,B) + E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2).
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Since A and B are fixed, we know that E(A,B) is fixed too. Thus, the same subsets that minimize (2.1)

also minimize (2.2). We will show later how organized partitions related to minimum and maximum cuts of

graphs.

Figure 1: Organized partition.

In this paper, we tacitly assume that any partition C has |A| = |B| and |A1| = |A2| = |B1| = |B2|. Now,

given a cut {A,B} we can compute the quantity

DC = min
A=Ā1∪Ā2

B=B̄1∪B̄2

|Ā1|=|Ā2|
|B̄1|=|B̄2|

E(Ā1, Ā2) + E(B̄1, B̄2)− E(Ā1, B̄1)− E(Ā2, B̄2).

In this notation, the solution of the optimization problem C = {A1, A2, B1, B2} is an organized partition for

{A,B}.

We say that C is a minimum cut whenever E(A,B) is minimum among all choices of A and B with

|A| = |B|. In Section 3, we will see that the quantity DC relates with the eigenvalues of the Laplacian matrix

whenever C is a minimum cut.

The next theorem provides a necessary condition for a cut to be minimum or maximum from the

perspective of its organized partition.

Theorem 2.1. Let {A,B} be any cut with organized partition C. If DC < 0, then {A,B} is not a

minimum cut. If DC > 0, then {A,B} is not a maximum cut.

Proof. Let C = {A1, A2, B1, B2}. Notice that

E(A,B) = E(A1, B1) + E(A1, B2) + E(A2, B1) + E(A2, B2).(2.3)

Besides,

(2.4) E(A1 ∪B1, A2 ∪B2) = E(A1, A2) + E(B1, B2) + E(A2, B1) + E(A2, B2).

Now, if DC < 0, then from the definition, we have

E(A1, A2) + E(B1, B2) < E(A1, B1) + E(A2, B2).
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This together with (2.3) and (2.4), gives us

E(A1 ∪B1, A2 ∪B2) < E(A1, B1) + E(A2, B2) + E(A2, B1) + E(A2, B2)

= E(A,B).

Therefore, {A,B} is not a minimum cut.

If DC > 0, then

E(A1, A2) + E(B1, B2) > E(A1, B1) + E(A2, B2).

Similarly as before, that gives us

E(A1 ∪B1, A2 ∪B2) > E(A,B).

Thus, {A,B} is not a maximum cut.

In fact, the proof reveals a way to construct a better cut, and this is one of the fundamental ideas behind

the algorithm we provide in Section 4. We make this construction explicit in the form of the following

corollary.

Corollary 2.2. If a cut {A,B} has DC < 0, then E(A1 ∪ B1, A2 ∪ B2) < E(A,B). If DC > 0, then

E(A1 ∪B1, A2 ∪B2) > E(A,B).

The next result gives some insights on how the organized partition of a minimum/maximum cut looks.

We say that a graph has a trivial partition if it can be decomposed into four separated components of the

same size.

Theorem 2.3. A graph has no trivial partition if and only if for each minimum cut {A,B} the organized

partition satisfy E(A1, A2) + E(B1, B2) 6= 0.

If {A,B} is a maximum cut of a graph with no trivial partition, then any of its organized partitions

satisfy E(A1, B1) + E(A2, B2) 6= 0.

Proof. First, if the graph has a trivial partition, then there exists an organized partition of a minimum

cut such that

E(A1, B1) + E(A2, B2) = E(A1, A2) + E(B1, B2) = 0.

Thus, assume that the graph has no trivial partition. Let {A,B} be a minimum cut and assume by

contradiction that E(A1, A2) + E(B1, B2) = 0. We can assume that E(A1, B1) + E(A2, B2) 6= 0, otherwise

the graph would have a trivial partition. Thus,

DC = E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2) < 0.

Therefore, Theorem 2.1 implies that {A,B} is not a minimum cut, which is a contradiction. That finishes

the proof of the first claim.

Let {A,B} be a maximum cut, suppose to the contrary that E(A1, B1)+E(A2, B2) = 0. If E(A1, A2)+

E(B1, B2) = 0, then the graph has a trivial partition. Thus, E(A1, A2) + E(B1, B2) 6= 0, and that gives us

DC = E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2) > 0.

Finally, Theorem 2.1 implies that {A,B} is not a maximum cut, which is a contradiction. That estabilishes

the first claim.
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Organized partitions also indicate conditions for which a graph has more than one minimum or maximum

cut and, if that is the case, how to construct them.

Theorem 2.4. Let {A,B} be any cut with organized partition C = {A1, A2, B1, B2}. If DC = 0, then

E(A,B) = E(A1 ∪B1, A2 ∪B2).

Proof. From the definition of DC , we have

E(A1, A2) + E(B1, B2) = E(A1, B1) + E(A2, B2).

Thus, we can write

E(A1 ∪B1, A2 ∪B2) = E(A1, B1) + E(A2, B2) + E(A2, B1) + E(A2, B2)

= E(A,B).

That finishes the proof.

Corollary 2.5. Let {A,B} be a minimum or a maximum cut. If DC = 0, then it is not unique.

Thus, in some cases finding an organized partition can be useful to construct a different minimum

bisection whenever it is not unique. On the other hand, for a graph with a unique minimum bisection, the

organized partition can be used to bound the size of the second smallest bisection. As the next theorem

shows that any bisection is not too far from the minimum whenever DC is small.

Theorem 2.6. Let {A,B} be a minimum bisection and C = {A1, A2, B1, B2} its organized partition.

Let {R,S} be any other bisection. Then

E(R,S)− E(A,B) ≤ DC .

Proof. Notice that E(A1, A2) + E(B1, B2) ≤ n2

8 . Thus, the total number of missing edges between A1

and B1 together with the missing edges between A2 and B2 is

n2

8
− E(A1, B1)− E(A2, B2) ≥ E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2) = DC .

By Theorem 2.1, we have DC ≥ 0. That means we can add at least DC edges between the pairs A1, B1 and

A2, B2.

That fact allows us to create a new graph G∗ by adding DC edges between the pairs A1, B1 and A2, B2.

For this new graph it still holds that C = {A1, A2, B1, B2} is an organized partition. Similarly, denoting by

D∗C and E∗(A,B) the corresponding quantities in the graph G∗, it holds that D∗C = 0 and

(2.5) E∗(A,B) = E(A,B) +DC .

Now, assume by contradiction that there exists a cut {R,S} satisfying E(R,S) > DC +E(A,B). Notice

that the graph G∗ contains all corresponding edges from the graph G, therefore for any pair of sets of vertices

{R,S} we have E∗(R,S) ≥ E(R,S). That together with equation (2.5), implies

E∗(R,S) ≥ E(R,S) > E∗(A,B).

The last strict inequality tells us that {A,B} is a unique minimum cut for G∗. By Theorem 2.1 and Corollary

2.5, this minimum cut satisfies D∗C > 0. This contradicts D∗C = 0. Therefore, E(R,S) ≤ DC + E(A,B),

which finishes the proof.
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3. Integer program formulation. This section is dedicated to relating organized partitions with

spectral properties of the graph. We prove bounds on the minimum cut in terms of these properties. In the

next theorem, we show how to construct the organized partition of given cut. It turns out it suffices to solve

an integer program in terms of the Laplacian matrix of the graph.

Theorem 3.1. Let G = (V,E) be a connected graph with n = 4N vertices. Let {A,B} be any bisection

of a graph G and denote by y be the vector with entries

yi =

{
1/
√
n if i ∈ A

−1/
√
n if i ∈ B.

Let L be the Laplacian matrix of the G. Then

(3.6)
4

n
(E(A,B) +DC) = min

xT 1=0
‖x‖=1

yT x=0

xi∈{1/√n,−1/
√
n}

xTLx.

Furthermore, each solution x̄ of (3.6) prescribes an organized partition for {A,B} as follows

x̄i =

{
1/
√
n i ∈ A1 ∪B1

−1/
√
n i ∈ A2 ∪B2.

Proof. Let A1, A2, B1 and B2 be disjoint sets such that A1∪A2 = A and B1∪B2 = B, with |A1| = |A2|
and |B1| = |B2|. Define the vector x with entries

xi =

{
1/
√
n i ∈ A1 ∪B1

−1/
√
n i ∈ A2 ∪B2

.

Clearly, xT1 = 0, ‖x‖ = 1, and yTx = 0.

Now, we can write xTLx in terms of the partition {A1, A2, B1, B2} as

xTLx =
∑

(i,j)∈E

(xi − xj)2

=
∑

(i,j)∈E
i∈A1,j∈B1

(xi − xj)2
+

∑
(i,j)∈E

i∈A2,j∈B2

(xi − xj)2
+

∑
(i,j)∈E

i∈A1,j∈B2

(xi − xj)2

+
∑

(i,j)∈E
i∈A2,j∈B2

(xi − xj)2
+

∑
(i,j)∈E

i∈A1,j∈A2

(xi − xj)2
+

∑
(i,j)∈E

i∈B1,j∈B2

(xi − xj)2

=
4

n
(E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2)) ,

since the first two sums are zero. That gives us

n

4
xTLx = E(A,B) + E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2),

for each choice of partition {A1, A2, B1, B2}. Therefore, in view of the definition of DC , we have
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min
xT 1=0
‖x‖=1

yT x=0

xi∈{1/√n,−1/
√
n}

xTLx =
4

n
(E(A,B) +DC) .

By the construction of the feasible set of solutions, x̄ indicates the organized partition of {A,B}. That

finishes the proof.

Thus, whenever {A,B} is a minimum cut, the minimum of (3.6) reduces to 4
n (MinCut(G) +DC).

In the work of [9] the authors proved the inequality

(3.7) MinCut(G) ≥ n

4
λ2.

In light of the concept of organized partitions we can relate minimum cuts and eigenvalues of the Laplacian

matrix and prove the next result. For a partition {A,B} we call the vector with entries

zi =

{
1/
√
n if i ∈ A

−1/
√
n if i ∈ B

the descriptor of the partition.

Theorem 3.2. Let G = (V,E) be a connected graph with n = 4N vertices. Let C be an organized

partition of a minimum bisection with descriptor z. Then, we have

MinCut(G) ≥ n

8

λ2 + min
xT 1=0
‖x‖=1

zT x=0

xTLx

− DC
2
.

Proof. Define the vector y with entries

(3.8) yi =

{
1/
√
n i ∈ A

−1/
√
n i ∈ B.

Clearly, yT1 = 0 and ‖y‖ = 1. Thus, we can write

yTLy =
∑

(i,j)∈E

(yi − yj)2
=

∑
(i,j)∈E
i∈A,j∈B

(yi − yj)2
+

∑
(i,j)∈E
i∈A,j∈A

(yi − yj)2
+

∑
(i,j)∈E
i∈B,j∈B

(yi − yj)2
.

Notice the sum over the edges with both endpoints in the same set vanishes. Thus, we have

yTLy =
∑

(i,j)∈E
i∈A,j∈B

(
1/
√
n− (−1/

√
n)
)2

=
4

n
E(A,B).

An important idea here is that a minimum cut is achieved if we take the minimum over all prescribed vectors,

i.e.,

(3.9) MinCut(G) =
n

4
min

yT 1=0,‖y‖=1

yi∈{1/√n,−1/
√
n}

yTLy.
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Now, we apply Theorem 3.1 for the vector descriptor z that solves the minimization problem (3.9).

Thus, we can write the sum of the following minimization problems as

min
yT 1=0,‖y‖=1

yi∈{1/√n,−1/
√
n}

yTLy + min
xT 1=0
‖x‖=1

zT x=0
xi∈{1/√n,−1/

√
n}

xTLx =
4

n
(2MinCut(G) +DC) .

Equivalently, we can write

MinCut(G) =
n

8
min

yT 1=0,‖y‖=1

yi∈{1/√n,−1/
√
n}

yTLy + min
xT 1=0
‖x‖=1

zT x=0
xi∈{1/√n,−1/

√
n}

xTLx− DC
2
.

Thus, if we drop the constraint yi, xi ∈ {1/
√
n,−1/

√
n} and consider all unitary vectors x, y ∈ Rn, we find

the inequality

MinCut(G) ≥ n

8
min

yT 1=0
‖y‖=1

yTLy + min
xT 1=0
‖x‖=1

zT x=0

xTLx− DC
2

=
n

8

λ2 + min
xT 1=0
‖x‖=1

zT x=0

xTLx

− DC
2
.

That finishes the proof.

It is worth mentioning that if we drop the constraint yi ∈ {1/
√
n,−1/

√
n} in the minimization problem

(3.9), then we precisely obtain the lower bound (3.7) as the authors in [9].

Corollary 3.3. If minxT 1=0
‖x‖=1

zT x=0

xTLx ≥ λ3, then

MinCut(G) ≥ n

8
(λ2 + λ3)− DC

2
.

Notice that an eigenvector y for λ2 is an approximation for the descriptor vector z that corresponds to

a minimum bisection, since it is the solution of the relaxed problem. Therefore the constraint zTx = 0 in

min
xT 1=0
‖x‖=1

zT x=0

xTLx

is an approximation to the constraint yTx = 0, i.e,

λ3 = min
xT 1=0
‖x‖=1

yT x=0

xTLx u min
xT 1=0
‖x‖=1

zT x=0

xTLx.
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Besides, whenever

DC <
n

4
(λ3 − λ2) and min

xT 1=0
‖x‖=1

zT x=0

xTLx ≥ λ3,

Theorem 3.2 provides a tighter lower bound than (3.7). Intuitively, it means that an optimization problem

that considers both λ2 and λ3 is more likely to reveal a minimum cut than a problem that considers only

λ2.

Next, we relate the Laplacian eigenvalues with a the number of edges between the partitions of interest,

which further relates to organized partitions as well.

Theorem 3.4. Let G = (V,E) be a connected graph with n = 4N vertices. Consider the minimum over

all partitions {A1, A2, B1, B2} as follow

D = min
A,B⊂V,|A|=|B|

A=A1∪A2,
B=B1∪B2

|A1|=|A2|
|B1|=|B2|

E(A,B) + E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2).

Then
n

4
(λ3 + λ2) ≤ D.

Proof. Define the vector y with entries

(3.10) yi =

{
1/
√
n i ∈ A

−1/
√
n i ∈ B.

Let A1, A2, B1 and B2 be disjoint sets such that A1 ∪ A2 = A and B1 ∪ B2 = B, with |A1| = |A2| and

|B1| = |B2|. Define the vector x with entries

xi =

{
1/
√
n i ∈ A1 ∪B1

−1/
√
n i ∈ A2 ∪B2.

As in the proofs of Theorems 3.1 and 3.2, we obtain

n

4
yTLy = E(A,B) and

n

4
xTLx = E(A,B) + E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2).

From the identity

E(A,B) + E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2)

= E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2),

we obtain

n

4

(
yTLy + xTLx

)
= E(A,B) + E(A1, B2) + E(A2, B1) + E(A1, A2) + E(B1, B2).

This implies
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n

4
min

yT 1=0,xT 1=0,yT x=0
‖x‖=‖y‖=1

yi∈{1/√n,−1/
√
n}

xi∈{1/√n,−1/
√
n}

xTLx+ yTLy = D.

Therefore, when we remove the constraints yi, xi ∈ {1/
√
n,−1/

√
n} and consider all unitary vectors x, y ∈

Rn, we find the inequality
n

4
min

yT 1=0,xT 1=0,yT x=0
‖x‖=‖y‖=1

xTLx+ yTLy ≤ D,

which implies the result.

Corollary 3.5. If D ≤ 2MinCut(G) +DC, then

MinCut(G) ≥ n

8
(λ2 + λ3)− DC

2
.

Proof. From Theorem 3.4 we obtain

n

4
(λ3 + λ2) ≤ D ≤ 2MinCut(G) +DC ,

which implies the stated bound.

We notice that as an integer program, the problem of finding an organized partition is NP-hard. That

gives rise to the heuristic developed in the next section. We finish this section with a result that summarizes

all its underlying ideas.

Theorem 3.6. Let G = (V,E) be a connected graph with n = 4N vertices and with Laplacian matrix L.

Then, the solution (x̄, ȳ) of the problem

min
yT 1=0,‖y‖=1

yi∈{1/√n,−1/
√
n}

yTLy + min
xT 1=0
‖x‖=1

ȳT x=0

xi∈{1/√n,−1/
√
n}

xTLx

constructs a minimum cut {A,B} together with its organized partition

C = {A1, A2, B1, B2}, as follows:

ȳi =

{
1/
√
n i ∈ A

−1/
√
n i ∈ B

and x̄i =

{
1/
√
n if i ∈ A1 ∪B1

−1/
√
n if i ∈ A2 ∪B2.

Proof. Follows from equation (3.9) and Theorem 3.1.

4. Derivation of the algorithms. In this section, we provide an intuitive description of the main

ideas behind our new algorithms, which arise from the theoretical background developed in the previous

sections. We do that by showing how to improve the bisection provided by the traditional SB algorithm

by means of properties of organized partitions. We will prove that there are infinitely many solutions for

the minimization problem that finds the organized partition of a cut, if we apply relaxation. Thus, these

solutions construct better candidates for a minimum cut. First, we consider some examples where SB fails

to approximate a good bisection.
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As an approximation algorithm, SB sometimes provides a cut that is too far from optimal. There are

investigations about this phenomenon, and the best known example where SB fails is given by the roach

graph, due to Guattery and Miller [14]. The roach graph consists of two path graphs with the same even

size connected by a few edges, as illustrated in Figure 2.

Figure 2: Roach graph on 16 vertices.

This is a very good example which seems to be tailor made to defeat SB. The roach graph is an important

example not only because SB provides a cut that is far from optimal, in fact it is the prototype of many cases

where this algorithm gives a very bad result. Let us look closer to what is happening with the algorithm on

this kind of graph.

For a roach graph the minimum bisection consists of two edges separating the antennae - the pendant
paths on the right side of Figure 2. But that is not what SB returns. Taking a roach graph on 16 vertices,
we label the upper and lower path from 1 to 8 and 9 to 16, respectively. For this ordering, its eigenvector
associated with λ2 is approximately given by

y = [−0.0028− 0.0083− 0.0295− 0.1068− 0.3869796− 0.6270− 0.8024− 0.8948

0.0028 0.0083 0.0295 0.1068 0.3869 0.6270 0.8024 0.8948]T .

Now, we can plot the entries of y displayed in Figure 3. The upper path corresponds to the points above the

origin and the lower path bellow it. SB will split the graph in two paths, which provides a cut with 4 edges,

which is not a minimum cut. In [14] the authors showed this is true for the whole class of roach graphs,

therefore showing a class of graphs where the resulting bisection from SB is far from optimal, i.e., with a

bisection of order O(n).

Figure 3: The y eigenvector for the roach graph.

This is the prototype of what happens with SB when it returns a wrong bisection. In view of this

problem, it is natural to ask how to overcome this pathology for the SB algorithm. Here we show how that
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can be done using the concept of organized partitions. In light of Corollary 2.2 if a cut has DC < 0, then its

organized partition can be used to construct a smaller cut. Thus, it would be useful to have an algorithm

that approximates a minimum cut and which computes its organized partition as well. That means if we

could solve both problems simultaneously, then we can obtain a better cut than the original algorithm,

whenever this cut has DC < 0.

That is the case of the roach graph and many examples of this nature. Notice that the cut provided by

SB for the roach graph on 16 vertices is C = {A1, A2, B1, B2}, where

A1 = {v1, . . . , v4}, A2 = {v5, . . . , v8}, B1 = {v9, . . . , v12}, and B2 = {v13, . . . , v16}. Therefore, we have

DC = E(A1, A2) + E(B1, B2)− E(A1, B1)− E(A2, B2) = 1 + 1− 4− 0,

which gives us the desired property DC < 0. For this reason, the organized partition of this cut will provide

a smaller bisection.

Now, let us see what the eigenvector of λ3 tells about the organized partition. Theorem 3.6 constructs

the organized partition based on the solution of an integer program. Theorem 3.2 and its proof suggest that

the eigenvectors of λ2 and λ3 can be used to approximate the solution. Thus, if we drop the constraints on

x and y putting x, y ∈ Rn, it is expected that the solution of the new program

(4.11) min
yT 1=xT 1=0
‖y‖=‖x‖=1

yT x=0

yTLy + xTLx

approximates the minimum cut and its organized partition by the eigenvector x associated with λ3.

For the same roach graph, that eigenvector is approximately

x = [−0.6935 − 0.5879 − 0.3928 − 0.1379 0.1379 0.3928 0.5879 0.6935

−0.6935 − 0.5879− 0.3928 − 0.1379 0.1379497 0.3928475 0.5879 0.6935]T .

Notice that if we use x as an approximation for the integer solution of the program in Theorem 3.6, then

x induces the correct organized partition

C = {A1, A2, B1, B2} as described above. Here we simply used the entries of x as an approximation for the

integer solution

x̄i =

{
1/
√
n if i ∈ A1 ∪B1

−1/
√
n if i ∈ A2 ∪B2.

Since DC < 0, this implies that we can construct a smaller bisection than the one provided by SB by

using the eigenvector x. More precise, by Corollary 2.2 the partition {A1 ∪B1, A2 ∪B2} gives a smaller

bisection. In fact, this is the minimum bisection for the roach graph.
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Figure 4: Roach graph with x and y as embedding.

Figure 4 depicts the underlying idea behind the proof of Theorem 3.2. We plotted points using the

entries of both eigenvectors of the roach graph x and y as coordinates. There, each point corresponds to a

vertex. It is clear to see that if we separate the vertices by the signs of the coordinates in x, then we would

get the minimum cut.

The previous discussion suggests to consider both eigenvectors in a new algorithm, in the sense either

x or y will approximate a minimum cut. Essentially, when y gives a cut with DC < 0, we can appeal to the

cut provided by x. Thus, it would suffice to check which one gives a better cut. Actually, this neat idea can

be taken further when we look from the perspective of integer programming.

As we will see in the next Lemma, certain specific linear combinations of x and y are solutions for (4.11)

as well. Thus, those new solutions can be used to approximate a minimum bisection. The next Lemma can

be proved in different ways using results from matrix theory.

Lemma 4.1. Let x and y be a solution of (4.11). Let θ ∈ [0, 2π) and let u = cosθx + sinθy and

v = sinθx− cosθy. Then u and v is a solution of (4.11).

Proof. We proceed by showing that xTLx+ yTLy = uTLu+ vTLv. Hence, we write

uTLu = (cosθx+ sinθy)TL(cosθx+ sinθy)

= cosθxTLcosθx+ sinθyTLsinθy + 2sinθyTLcosθx.

Also, we can write

vTLv = (sinθx− cosθy)TL(sinθx− cosθy)

= sinθxTLsinθx+ cosθyTLcosθy − 2sinθyTLcosθx.
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Therefore, we obtain

uTLu+ vTLv = cosθxTLcosθx+ sinθyTLsinθy + 2sinθyTLcosθx

+ sinθxTLsinθx+ cosθyTLcosθy − 2sinθyTLcosθx

= cos2θxTLx+ sin2θyTLy + sin2θxTLx+ cos2θyTLy

= (cos2θ + sin2θ)(xTLx+ yTLy)

= xTLx+ yTLy.

It follows that u and v is also a minimizer of (4.11).

It remains to verify that u and v satisfy the constraints uT1 = 0, vT1 = 0, ‖u‖ = ‖v‖ = 1 and uT v = 0.

To see that uT1 = 0, we notice that uT1 = cosθxT1 + sinθyT1 = 0. Now, using the fact that xTx =

yT y = 1 and yTx = 0, we can write

uTu = (cosθx+ sinθy)T (cosθx+ sinθy)

= cos2θxTx+ sin2θyT y + 2sinθcosθyTx

= cos2θ + sin2θ = 1,

which implies ‖u‖ = 1. Similarly, we obtain vT1 = 0 and ‖v‖ = 1.

To show uT v = 0, again we use the fact that xTx = yT y = 1 and yTx = 0

uT v = (cosθx+ sinθy)T (sinθx− cosθy)

= cosθsinθxTx− cos2θxT y + sin2θxT y − sinθcosθyT y

= cosθsinθxTx− sinθcosθyT y = 0.

This concludes the proof.

The solutions described by Lemma 4.1 are related to the work with random hyperplane rounding of the

eigenvectors [17]. This relates back to the vector partitioning problem as well.

By constructing a infinite set of solutions for the problem (4.11), the last Theorem introduces a degree

of freedom in the solutions of (4.11). We can explore this degree of freedom in order to create different

bisections. As discussed before, solutions of (4.11) can be used to approximate a minimum bisection and its

organized partition. However, there are infinitely many u and v described in the last theorem. Naturally,

all of them can be used to approximate a minimum bisection. That is a key idea in the next algorithm. The

next theorem shows how to construct n different bisections based on the solutions of (4.11).

Theorem 4.2. Let x and y be solutions of (4.11). For each pair xi and yi, i = 1, . . . , n = 4N , define

the vector u = xi√
x2
i +y2

i

x+ yi√
x2
i +y2

i

y. Then u induces a bisection that approximates the vector ūi with entries

ūi =

{
1/
√
n i ∈ A

−1/
√
n i ∈ B.

Proof. In order to construct different bisections using Lemma 4.1, we need to choose θ ∈ [0, 2π), then

define u and v, and finally define a new partition {A,B} based on u and v. To this end, consider the set

of euclidean points (xi, yi) given by the corresponding entries of the eigenvectors x and y. Choose a point



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 857-877, December 2020.

Israel de Souza Rocha 872

(xi, yi), and let θi be the angle between the point (xi, yi) and the abscissa. Now define u and v as in Theorem

4.1, and let (ui, vi) be points defined by the corresponding entries of u and v. The point (ui, vi) is simply a

rotation of angle θi for the point (xi, yi).

Now using the solution of (4.11), we can approximate the solution of the integer program in Theorem

3.6. By Theorem 3.6, its solution defines a minimum cut, and we can define the cut {A,B} using the entries

of u as an approximation for

ūi =

{
1/
√
n i ∈ A

−1/
√
n i ∈ B.

Finally, to simplify the computation of u we can calculate cosθ and sinθ instead of θ. That follows

straightforward from

cosθ =
xi√

x2
i + y2

i

and sinθ =
yi√

x2
i + y2

i

.

That finishes the proof.

4.0.1. Spectral bisection with three eigenvectors. Now we are ready to give the complete algo-

rithm that approximates a minimum bisection of a graph.

Algorithm 1 Graph bisection.

Require: G=(V,E)

Compute eigenvectors y and x corresponding to the second and third smallest eigenvalues of L.

Set A with the n/2 vertices with largest entries of the vector y and B with the remaining vertices.

for i = 1, . . . , n do

u = xi√
x2
i +y2

i

x+ yi√
x2
i +y2

i

y

Set R with the n/2 vertices with largest uj and S with the remaining vertices.

if E(R,S) < E(A,B) then

A = R

B = S

end if

end for

return {A,B}

As an illustration of Algorithm 1, Figures 5a and 5 show the same graph embedded on the coordinates

given by the second and the third eigenvalue. Figure 5a depicts the SB algorithm choosing a set of vertices

based on a Fiedler vector only. The straight line has the same direction of the Fiedler vector. Since SB sorts

the vertices based on the this vector and chooses the top largest to construct the bisection, it is clear that

it is simply a projection of points along the straight line. As more linear combinations of the Fiedler vector

and the third eigenvector are considered, different cuts are created. Figure 5 depicts the optimal choice of

vertices induced by one of those linear combinations.

Notice that the cut induced by x, the standard spectral bisection solution, is among the possible cuts

{R,S} constructed by Algorithm 1. Therefore, the number of edges in the partition provided by Algorithm

1 is not larger than the one in the partition returned by SB, which leads us to the next theorem.
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(a) SB chooses vertices from a Fiedler vector.

(b) Algorithm 1 considers both, the Fiedler

vector and the third eigenvector to choose ver-

tices.

Figure 5: Algorithm 1 considers both, the Fiedler vector and the third eigenvector to choose vertices.

Theorem 4.3. The cut returned by Algorithm 1 is not larger than that in the SB partition.

For any roach graph, its eigenvectors have the same shape of the previous example with 16 vertices.

That leads us to the next theorem.

Theorem 4.4. For any roach graph, Algorithm 1 returns a minimum cut.

Proof. By Lemma 5.1 of [14], the third eigenvector of a roach graph induces a cut separating the

pending paths of the roach graph, which is a minimum cut. This cut is among the possible cuts constructed

by Algorithm 1. That finishes the proof.

4.0.2. Spectral refinement. Now we will turn our attention to the derivation of an algorithm that

refines a given bisection. Since an organized partition can be used to construct a better bisection, the next

algorithm constructs an approximation for an organized partition of a given bisection. In the same fashion

as in Algorithm 1, these approximations are candidates for a smaller cut.

Theorem 3.1, provide us with a way to construct the organized partition of a given cut. If {A,B} is the

cut in question, we can denote by y be the vector with entries

yi =

{
1/
√
n if i ∈ A

−1/
√
n if i ∈ B.

Now, if we use relaxation on the set of solutions of the integer program (3.6) and drop the constraint

xi ∈ {1/
√
n,−1/

√
n}, we obtain the following program
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(4.12) min
xT 1=0
‖x‖=1

yT x=0

xTLx.

The minimization problem (4.12) is not an eigenvalue problem anymore, because the vector y is not

necessarily an eigenvector of the matrix L. However, it is easy to transform problem (4.12) into a standard

eigenvalue problem, as shown in [11] by Gene and Golub. Therefore, the solution of the program (4.12) can

be used as an approximation for the organized partition: the half largest entries of x indicate the vertices

in the set A1 ∪ B1 of the organized partition, and the other half indicates the remaining vertices in the

organized partition. Again, we can use linear combinations of x and y to construct different approximations

for the organized partition. The algorithm can be described as follows.

Algorithm 2 Spectral bisection refinement.

Require: G = (V,E), y

Set A with the n/2 vertices with largest entries in y and B with the remaining vertices.

Compute x, the solution of minxT 1=0
‖x‖=1

yT x=0

xTLx

for i = 1, . . . , n do

u = xi√
x2
i +y2

i

x+ yi√
x2
i +y2

i

y

Set R with the n/2 vertices with largest uj and S with the remaining vertices.

if E(R,S) < E(A,B) then

A = R

B = S

end if

end for

return {A,B}

5. Experimental results. We would like to emphasize that the purpose of this paper is theoretical

and not to create an extensive empirical investigation relating different algorithms to the new one. This is

reasonable since the new algorithm is guaranteed to return a cut that is no worse than the one of SB, at

a cost of a rather small running time, and there exists a vast literature comparing SB with other methods.

Therefore, we restrict ourselves to compare Algorithm 1 only with the classic SB method.

Here we examine the quality of partitions returned by SB and Algorithm 1 on a wide range of graph

matrices. The matrices represents graphs arising in different application domains found in Matrix Mar-

ket. Table 1 describes the characteristics of these matrices and the comparison between cut sizes of both

algorithms.

The last column of Table 1 indicates percentage of improvement of Algorithm 1 over SB. We highlight

the best results

Next, we compared the quality of partitions for several random graphs by computing the average gain
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Matrix Description Order
SB Algorithm 1

Cut Cut Improv

cegb3306 Structural engineering 3306 18281 2421 86%

cegb3024 Structural engineering 3024 19660 19534 0.6%

dwt 1242 Structural engineering 1242 101 72 28%

dwt 2680 Structural engineering 2680 85 85 0%

dwt 918 Structural engineering 918 71 61 14%

eris1176 Electrical network 1176 313 202 35%

bcspwr10 Power network 5300 44 31 29%

jagmesh1 Finite element model 936s 50 50 0%

jagmesh7 Finite element model 1138 29 28 3.4%

lock2232 Structural engineering 2232 1008 977 3%

lshp1270 Finite element model 1270 73 73 0%

lshp1882 Finite element model 1882 89 89 0%

commanche dual Structural engineering 7920 46 42 8.6%

lshp2614 Finite element model 2614 105 105 0%

lshp3466 Finite element model 3466 121 121 0%

man 5976 Structural engineering 5976 55682 55391 0.5%

Table 1: Comparative analysis between SB and Algorithm 1.

of Algorithm 1 over SB. Here, random graphs on n vertices are constructed via Erdős–Rnyi model, where an

edge is present between two vertices uniformly with probability p. For different combinations of probabilities

and number of vertices, we sampled 1000 random graphs and calculated the average gain. The experiments

discarded graphs that are disconnected. Table 2 shows the resulting ratio of improvement, where each column

corresponds to a given number of vertices n and each row to a given probability p.

p\n 100 500 1000

0.1 7.68% 1.87% 1.01%

0.2 4.67% 0.90% 0.46%

0.3 3.29% 0.61% 0.30%

0.4 2.73% 0.64% 0.32%

0.5 2.62% 1.10% 0.82%

0.6 2.91% 1.20% 0.68%

0.7 1.98% 0.39% 0.19%

0.8 1.00% 0.19% 0.09%

0.9 0.57% 0.15% 0.07%

Table 2: Average gain for 1000 random graphs.

The expected number of edges of these random graphs is pn(n − 1)/2. Thus, Table 2 indicates that
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Algorithm 1 performs better for sparse graphs than for dense graphs. We highlighted three best results for

each column of Table 2. We notice that in multilevel algorithms, the coarsest graph is usually small, with

100 vertices or less. Putting p = 0.1 we obtain on the average 495 edges for random graphs with 100 vertices.

Table 2 indicates a good improvement ratio for those graphs, with average of 7.6%. That suggests that very

often the new algorithm provides better cuts for the initial partition in multilevel algorithms.

6. Open questions. Naturally, one would expect that more eigenvectors can lead to an improvement

on the bisection problem. The what extent can this idea be used? Is the improvement related to the largest

eigengap, as in the multi-way partitioning problem?

Let C be an organized partition of a minimum bisection with descriptor vector z. Theorem 3.2 provides

a tighter lower bound than (3.7) whenever

(6.13) DC <
n

4
(λ3 − λ2) and min

xT 1=0
‖x‖=1

zT x=0

xTLx ≥ λ3.

This is related to finding conditions such that the third eigenvector improves SB. It is easy to find graphs

with this property. However, it remains an open question to characterize graphs such that (6.13) holds.

Is there a better way to construct an organized partition without the use of an integer program? The

solution to this question can provide new methods to construct or refine a bisection.

Barnard and Simon [1] introduced a multilevel recursive spectral bisection method. It basically con-

structs a sequence of smaller and smaller graphs that retains the structure of the original one. Then given a

Fiedler vector of a coarse graph it interpolates it to provide an approximation to next Fiedler vector. Is it

possible to do the same for the third eigenvector and provide a multilevel recursive spectral bisection with

two eigenvectors?
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