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GENERALIZED COMMUTATORS AND THE MOORE–PENROSE INVERSE∗

IRWIN S. PRESSMAN†

Abstract. This work studies the kernel of a linear operator associated with the generalized k-fold commutator. Given a set

A = {A1, . . . , Ak} of real n×n matrices, the commutator is denoted by [A1| . . . |Ak]. For a fixed set of matrices A we introduce

a multilinear skew-symmetric linear operator TA(X) = T (A1, . . . , Ak)[X] = [A1| . . . |Ak|X]. For fixed n and k ≥ 2n−1, TA ≡ 0

by the Amitsur–Levitski Theorem [2], which motivated this work. The matrix representation M of the linear transformation

T is called the k-commutator matrix. M has interesting properties, e.g., it is a commutator; for k odd, there is a permutation

of the rows of M that makes it skew-symmetric. For both k and n odd, a provocative matrix S appears in the kernel of

T . By using the Moore–Penrose inverse and introducing a conjecture about the rank of M , the entries of S are shown to be

quotients of polynomials in the entries of the matrices in A. One case of the conjecture has been recently proven by Brassil.

The Moore–Penrose inverse provides a full rank decomposition of M .
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1. The generalized commutator [A1|A2| . . . |Ak]. We denote the space of n × n matrices over the

real numbers by Mn(R) or Mn. Define the generalized commutator [10]1 inductively as follows. Choose

Ai εMn, i = 1, 2, . . . , k, and let A denote the set {A1, A2, . . . , Ak}. For k = 0, [] := I, for k = 1 [A1] := A1.

In general for k ≥ 1 we have

(1.1) [A1| . . . |Ak] =

k∑
i=1

(−1)i+1AiCi,

where Ci := [A1| . . . |Âi| . . . |Ak] is the generalized commutator of k − 1 matrices (where the “hat” symbol

indicates omitting Ai from the list of inputs). Induction shows that

(1.2) [A1| . . . |Ak] =
∑
π

sgn(π)Aπ(1) . . . Aπ(k),

where the sum is over all permutations π of [1, 2, . . . , k], and (1.2) is called the standard polynomial [17, 2].

Studies of identities relating to this commutator have been made in Algebra [2, 3, 8] , Lie Algebras [12], and

Physics [9].
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1These commutators were called N-commutators by Dzhumadil′daev [12] in studies of Lie Algebras. They were called

higher order brackets or multibrackets and used to study Generalized Lie algebras and n-ary Algebras in [4]. In the case n = 3

they are called ternary commutators [8], or ternutators [9].
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Remark 1.1.

(i) The generalized commutator is linear in each of its arguments and is an alternating function

(Amitsur-Levitski, [2]).

(ii) [A1| . . . |Ak] is the zero matrix if any two arguments are equal.

Proposition 1.2. Let r and n be positive integers with 1 ≤ r ≤ n, and let A1, . . . , An be n×n matrices

with Ar = I. Then

[A1|A2| · · · |An] =

{
0 if n is even,

(−1)r−1[A1|A2| · · · |Âr| · · · |An] if n is odd.

Proof. Consider the case where n is even. Pair the entries of each term of the commutator. Take Ã a

particular matrix other than I in the set A. Every occurrence in the expansion (1.1) of the commutator

where the “twosome” •In Ã• are together, can be matched with a unique term •Ã In•, where all other entries

are identical. These occur with opposite signature, so all product terms cancel in pairs. [• •
... • •

... . . .
...InÃ

... •

•
... . . .] cancels [• •

... • •
... . . .

...ÃIn
... • •

... . . .].

Consider the case where n is odd, and let Ar = I. By the above result, each term Ci = 0 in equation

(1.1) unless i = r, since Ci would otherwise have an identity matrix entry. The result follows at once.

We next observe that a similar set of input matrices produces a similar commutator.

Proposition 1.3. For Q nonsingular and matrices {A1, A2, . . . , Ak} all in Mn and C = [A1| . . . |Ak],

then [Q−1A1Q|Q−1A2Q| . . . |Q−1AkQ] = Q−1CQ.

Proof. [Q−1A1Q| . . . |Q−1AkQ] =
∑
π sgn(π)Q−1Aπ(1)QQ

−1Aπ(2)QQ
−1Aπ(3)Q . . .Q

−1Aπ(k)Q

=
∑
π sgn(π)Q−1Aπ(1)Aπ(2)Aπ(3) . . . Aπ(k)Q = Q−1CQ.

A complete directed graph ∆n has vertices {1, 2, . . . , n} and to every ordered pair of vertices i, j there

is a unique directed arc i→ j. There are loops i→ i.

Definition 1.4. A trail is a walk in ∆n without repeated edges. We omit the n subscript on ∆ when

the size is clear.

Trails are instrumental in Swan’s proof of the Amitsur–Levitski Theorem [18]. A non-zero element in the

(i, j) position of the commutator C = [A1| . . . |Ak] consists of the sum of all expressions of the form

(1.3) sgn(π)aπ1
i,i2
aπ2
i2,i3

. . . aπk
ik−1,j

,

where aπt
it,it+1

is in the πtht matrix, for each permutation π of 1, . . . , k and corresponding to a trail in ∆ of

length k from i to j. For example, given four 3×3 matrices F4 = {A,B,C,D} the trail 2→ 3→ 2→ 1→ 1

produces 24 elements in the (2, 1) position of the commutator [A|B|C|D].

(1.4)

+a23b32c21d11 − a23b32d21c11 + a23c32d21b11 − a23d32c21b11

+a23d32b21c11 − a23d32c21b11 + b23a32d21c11 − b23a32c21d11

+b23c32a21d11 − b23c32d21a11 + b23d32c21a11 − b23d32a21c11

+c23a32b21d11 − c23a32d21b11 + c23b32d21a11 − c23d32b21a11

+c23d32a21b11 − c23d32b21a11 + d23b32a21c11 − d23b32c21a11

+d23a32c21b11 − d23c32a21b11 + d23c32b21a11 − d23c32a21b11

.
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By exhaustive search, we find 40 trails from 2 to 1 of length 4 that contribute to the (2, 1) position of the

commutator [A|B|C|D]. We consistently denote the transpose of a matrix B ∈Mn by B′.

Definition 1.5. For an n× n matrix H define vec(H) to be the n2-column vector obtained by stacking

successive columns H1, . . . ,Hn of H. For a 3× 3 matrix H = {hi,j}, the transpose vec(H)′ = [h11, h21, h31,

h12, h22, h32, h13, h23, h33], is called a canonical row. Following MATLAB c© notation, the operation inverse

to the vec operation is reshape.

Use the set F4 to construct the 4× n2 matrix V4 =


vec(A)′

vec(B)′

vec(C)′

vec(D)′

 .
The above term (1.4) is the determinant of the submatrix of V4 using the 8th, 6th, 2nd, 1st columns of the

4 × 9 V4 matrix, in the given order, corresponding to the trail 2 → 3 → 2 → 1 → 1. Each element of the

commutator is given by sums of determinants corresponding to trails!

Lemma 1.6. Each of the following is a sufficient condition for [A1| . . . |Ak] to be 0

(i) Two of the matrices A1, . . . , Ak are equal.

(ii) The matrices A1, . . . , Ak are linearly dependent over R.

(iii) k is even and the matrices A1, . . . , Ak, In are linearly dependent over R.
(iv) A = {A1, . . . , Ak} is a commuting set of matrices.

Proof.

(i) Since each of the matrices in question has a pair of equal rows, the determinants are 0 for each

trail. See also Remark 1.1 and [2].

(ii) If Ai is a linear combination of A1, . . . , Ai−1 then use multilinearity to expand [A1| . . . |Ak] and ob-

tain a linear combination of generalized commutators in which the ith entry is replaced by a linear

combination of the previous matrices. The result follows by (i). In particular, [A1| . . . |Ak|Aj ] = 0

for every j, 1 ≤ j ≤ k.
(iii) This follows from the linearity of the generalized commutator, (ii) and Proposition 1.2.

(iv) Every term in the expansion (1.2) of the commutator is equal except for the sign of the permuta-

tion. These cancel in pairs.

2. The operator T : X 7−→ [A1| . . . |Ak|X] and the k-commutator matrix M for T . Choose a set

A = {A1, A2, . . . , Ak}. The set of all elementary matrices Ei,j with a 1 in the (i, j) position and 0 elsewhere

give the standard basis of the vector space Mn(R). A canonical ordering for the standard basis is given by

(2.5) E1,1, E2,1, E3,1, . . . , En,1, E1,2, E2,2, E3,2 . . . , En,2, E1,3, . . . E1,n, . . . , En,n.

Given A1, . . . , Ak, X ∈Mn, X =
∑n
i=1

∑n
j=1 xi,jEi,j define the linear operator

T : X 7−→ [A1| . . . |Ak|X].

The generalized commutator is linear in xi,j so

vec([A1| . . . |Ak|X]) = vec([A1| . . . |Ak|
n∑
i=1

n∑
j=1

xi,jEi,j ])

=

n∑
i=1

n∑
j=1

xi,jvec([A1| . . . |Ak|Ei,j ]) = Mvec(X)

(2.6)
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where M = MA is the matrix generated by A with columns vec([A1| . . . |Ak|Ei,j ]) in the canonical order

(2.5), and is called the k-commutator matrix for T with respect to the standard basis.2

Remark 2.1. By Remark 1.1, for 1 ≤ j ≤ k, T (Aj) = On, the n × n zero matrix, and Mvec(Aj) =

0n2 , the n2 × 1 zero vector. By Proposition 1.2, for k odd, T (In) = On and Mvec(In) = 0n2 . Let U =

{A1, . . . , A2m+1} and U∗ = {A1, . . . , A2m+1, I}. Proposition 1.2 indicates that MU = MU∗ . By the Amitsur–

Levitski Theorem [2, 13] , T ≡ O if k ≥ 2n− 1 and k = 2n is the degree of the minimal (non-commutative)

polynomial (1.2).

The (i+ (n− 1)j)th column of M is vec([A1| . . . |Ak|Ei,j ]).

2.1. The Null Space of M . The properties of the matrix M of the linear transformation T are

explained, for n odd, by permutations P � introduced here. An example is given here.

Example 2.2.

P �4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

Since P �4 satisfies P �4 = (P �4 )′ = (P �4 )−1, it is both an involution and a permutation matrix. P �4 is the

permutation matrix corresponding to transposing a 4× 4 matrix A, e.g., reshape(P �4 vec(A), 4, 4) = A′. We

generalize this to an arbitrary size.

We introduce the function ψ and verify that it is an involution that explains the action of the P �

matrices.

Definition 2.3. For 1 ≤ s < n2, ψn(s) = (ds/ne+ n(s− 1)) mod(n2). We define ψn(n2) = n2. Denote

ψn(s) by s̃.

If the permutation action of P �4 is viewed as the product of transpositions

(1)(2, 5)(3, 9)(4, 13)(6)(7, 10)(8, 14)(11)(12, 15)(16) then 1̃ = 1; 2̃ = 5; 3̃ = 9; . . ..

2 This operator is a derivation denoted by adA1,...,Ak
in [ [4], p. 37]. Each column of M can be viewed as a component of

the gradient of T .
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Lemma 2.4. ψn :
{

1, 2, . . . , n2
}
−→

{
1, 2, . . . , n2

}
is an involution; that is, ψn(ψn(s)) = ˜̃s = s.

Proof. Let s = α + βn, 1 ≤ α ≤ n; 0 ≤ β ≤ n − 1. Then ψn(α + βn) = (β + 1) + (α − 1)n = s̃ and
˜̃s = s.

Remark 2.5. For any n, we can build P �n as the sum of n2 × n2 elementary matrices, P �n =
∑n2

r=1Er,r̃.

For P �n = (pi,j), pr,c = 1 ⇐⇒ r = t + (s − 1)n, c = s + (t − 1)n = r̃, for 1 ≤ r, s ≤ n. These matrices are

known [14]. Note that trace(P �n) = n. The P �n matrix is easily computed in MATLAB c©.3

Recall that for A ∈Mn and B ∈Mm the Kronecker product ([15, Sect.4.2]) A⊗B is given by

A⊗B =

 a1,1B a1,2B . . . a1,nB
...

...
...

an,1B an,2B . . . an,nB

 .
By [15, Cor. 4.3.10] there is a unique n2 × n2 permutation matrix P ∈ Mn2(R) such that P = P−1 = P ′

and P ′(A⊗B)P = B ⊗A for every pair (A,B) of n× n matrices. P is given by

(2.7) P :=

n∑
i=1

n∑
j=1

Eij ⊗ E
′

ij .

Remark 2.6. One can confirm that P = P �. For M ∈ Mn2 , PM swaps the sth row with the s̃th row;

MP swaps the tth column with the t̃th column. From this point on P will denote the permutation matrix

P � introduced above.

Proposition 2.7. Let C = [A1| . . . |Ah] and let C> = [A′1| . . . |A′h] denote the generalized commutator

of the set of transposes. Then C> = (−1)d
h−1
2 eC ′.

Proof. Denote the reverse of the permutation π = {π(1)π(2) . . . π(h− 1)π(h)} by←−π = {π(h)π(h− 1) . . .

π(2)π(1)} = {←−π (1)←−π (2) . . .←−π (h− 1)←−π (h)}. Since sgn(π) = (−1)d
h−1
2 esgn(←−π ), we have C>=[A′1| . . . |A′h] =∑

π sgn(π)A′π(1) . . . A
′
π(h) = (

∑
π sgn(π)Aπ(h)Aπ(h−1) . . . Aπ(1))

′ = (
∑
π sgn(π)A←−π (1)A←−π (2) . . . A←−π (h))

′ =

(
∑
←−π (−1)d

h−1
2 esgn(←−π )A←−π (1)A←−π (2) . . . A←−π (h))

′ = (−1)d
h−1
2 eC ′.

Lemma 2.8. For k odd , PMP = −M ′ and mi,j = −mj̃,̃i.

Proof. PMP = −M ′ follows from [[10],(4)]. By Remark 2.6, mi,j = −mj̃,̃i.

Theorem 2.9. Let k > 2 be an odd positive integer. Assume that W = {A1, . . . , Ak, In} is linearly

independent, and {A1, . . . , Ak} generate T and M as above.

(i) The matrices PM and MP are skew-symmetric and normal.

(ii) For n odd, the nullity of T is greater than or equal to k + 2.

Proof.

(i) By Lemma 2.8 PM = −M ′P = −M ′P ′ so PM (and similarly MP ) are skew-symmetric. To check

normality, (PM)′(PM) = M ′P ′PM = M ′M = (−PMP )(−PM ′P ′) = PMM ′P ′ = (PM)(PM)′.

3f = [1 : (k2)]; f = (reshape(f, k, k))′; f = f(:); Pmat = zeros(k2); for j = 1 : (k2); i = find(f(:) == j); Pmat(i, j) =

1; end
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(ii) If W is linearly dependent, then we could replace one of the Aj by I. We would then be in the case

of Lemma 1.6(c) where M ≡ 0. This case is excluded. The eigenvalues of a skew-symmetric matrix

are purely imaginary and occur in conjugate pairs. Hence, the rank of PM is even. PPM = M is

a permutation of the rows of PM so M has even rank. For n odd, the identity matrix I is in the

null space of T by Remark 2.1. The null space of T also contains the k vectors from the generating

matrices. Consequently, there is a supplementary matrix S that makes the dimension of the null

space odd, since rank + nullity =n.

Example 2.10. For M generated by the five matrices in Figure 1, A6 in Figure 2 is an instance of a

supplementary matrix. The generalized commutator [A1|A2|A3|A4|A5|A6] = 0, e.g., Mvec(A6) = 0, but

[A1|A2|A3|A4|A6] 6= 0.

A1=



0 1 0 1 0

0 0 −1 0 0

−1 0 0 0 0

0 −1 0 0 0

0 0 0 −1 0


A2=



−1 0 1 0 −1

0 1 0 0 0

0 0 0 1 0

−1 0 −1 0 0

0 1 0 0 0



A3=



1 −1 1 2 0

1 0 1 1 −1

1 0 −1 1 0

0 0 0 0 0

0 1 1 0 0



A4=



−3 0 1 0 0

1 0 0 −1 0

1 0 −1 1 −1

1 −1 1 0 0

1 0 0 0 0


A5=



0 −1 0 1 0

0 0 −1 0 0

0 1 0 0 0

−1 2 0 0 −1

0 0 0 0 0



Figure 1. M is the matrix of T generated by A1, . . . , A5.

(2.8) A6 =



− 292128568702912
12488555496161

140407041867250
12488555496161 − 263825041570917

12488555496161 − 309160140450028
12488555496161 0

− 114784566941231
12488555496161 − 110217311028693

12488555496161 − 105071130066293
12488555496161 − 350777822785063

12488555496161 0

10016948426257
12488555496161

95397472465553
12488555496161

23231187730969
12488555496161 − 159185844235095

12488555496161 0

235605212351546
12488555496161

111091602885820
12488555496161

206801007724587
12488555496161 −1 0

79564547818052
12488555496161 − 225428073198379

12488555496161 − 133611977232428
12488555496161 0 0



Figure 2. A6 is a supplementary matrix to M generated by A1, . . . , A5.
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Remark 2.11. Clearly A6 is not unique since we could add any matrix in the subspace Span {A1, A2, A3 ,

A4, A5, I} to it. We demonstrate how A6 may be calculated in Example 5.8 at the end of the paper.4

The characteristic polynomial pM (x) of M5 indicates there are seven 0 roots.

pM (x) = x25 − 11192x23 − 129557126x21 + 1606981737331x19 + 3245345543237967x17 +

−15545624559675809792x15 + 33497503032394899259392x13 + 267082033922488499898941440x11

+18200726156769208931184541696x9 − 216569661866754313885193003335680x7.

3. M is a commutator. The Kronecker (tensor) product ([15, Sect. 4.3]) provides

(3.9) vec(AXB) = (B′ ⊗A)vec(X).

For a sublist Υ = i1 < . . . < is of [1, 2, . . . , k] let c(Υ) := [Ai1 | . . . |Ais ], and c([]) = I. Denote the comple-

mentary sublist of Υ by Ῡ. Let σ(Υ) be the sign of the permutation λ : [1, 2, . . . , k + 1] 7−→ [Ῡ, (k + 1),Υ].

By [[10], 3.3 ]we can write M as

M :=
∑
Υ

σ(Υ)c(Υ)′ ⊗ c(Ῡ).

We demonstrate this formula here for k = 1, 2, 3

k=1: M1 = I ⊗A1 −A′1 ⊗ I
k=2: M2 = I ⊗ [A1, A2] + [A1, A2]′ ⊗ I +A′1 ⊗A2 −A′2 ⊗A1

k=3: M3 = I ⊗ [A1, A2, A3]− [A1, A2, A3]′⊗ I +A′1⊗ [A3, A2]− [A3, A2]′⊗A1 +A′2⊗ [A1, A3]− [A1, A3]′⊗
A2 +A′3 ⊗ [A2, A1]− [A2, A1]′ ⊗A3.

Lemma 3.1. If k is even, the k-fold commutator has trace zero.

Proof. Let Bj be matrices in Mn. Let C = [B1|B2| . . . |Bk]. Consider the bijection of the symmetric

group Sk onto itself given by π 7−→ π′ where π′ = π · (1 2 . . . k). Note that (1 2 . . . k) is an odd permutation

(using cyclic notation) for even k, so sgnπ′ = − sgnπ. Applying (1 2 . . . k)

(sgnπ′)Bπ′(1) . . . Bπ′(k−1)Bπ′(k) = (− sgnπ)Bπ(2) . . . Bπ(k)Bπ(1).

Since tr (BiBj) = tr (BjBi) we conclude that

tr
{

(sgnπ′)Bπ′(1) . . . Bπ′(k−1)Bπ′(k) + (sgnπ)Bπ(1)Bπ(2) . . . Bπ(k)

}
= 0.

The terms of the polynomial (1.2) cancel each other in pairs. Hence, tr(C) = 0.

We recall some facts [[15],p. 250] about Kronecker (tensor) products:

• tr(A⊗B) = tr(A)× tr(B).

• (B ⊗ C)′ = B′ ⊗ C ′.
• tr B = tr B′.

• tr (B′ ⊗ C) = tr(B′)tr(C) = tr(B)tr(C).

4In this instance, the denominator 12488555496161 in A6 is the square root of the determinant of the principal submatrix

of the first 18 rows and columns of the matrix M5 generated by A5 = {A1, . . . , A5}. The role of this submatrix will be discussed

in Section 5.2.
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Theorem 3.2. If M is the matrix of T : X → [A1| . . . |Ak|X] where Ai and X are in Mn, then its trace

is 0, and M is a commutator.

Proof. For k odd, PMP−1 = −M ′ and tr PMP−1 = tr MPP−1 = tr M = −tr M ′ = −tr M . Hence,

tr M = 0.

For k even tr c(Υ)′⊗c(Ῡ) = 0 by Lemma 3.1 whenever one of |Υ| or
∣∣Ῡ∣∣ is even. The remaining terms in

M :=
∑

Υ σ(Υ)c(Υ)′⊗ c(Ῡ) are instances where Υ and Ῡ are both of odd size, in which case σ(Υ) = −σ(Ῡ).

Hence,

tr
[
σ(Ῡ)c(Ῡ)′ ⊗ c(Υ)

]
= tr

[
−σ(Υ)Pc(Υ)′ ⊗ c(Ῡ)P−1

]
= tr

[
−σ(Υ)c(Υ)′ ⊗ c(Ῡ)

]
.

Thus, the trace of each pair
[
σ(Υ)c(Υ)′ ⊗ c(Ῡ) + σ(Ῡ)c(Ῡ)′ ⊗ c(Υ)

]
= 0. Hence, trM = 0, so by the result

of Albert and Muckenhoupt [1] M is a commutator.

All odd powers of a skew-symmetric matrix are skew-symmetric. Their traces are all zero. We generalize

this here.

Theorem 3.3. For k odd, the trace, tr(M2q+1) = 0, q = 1, 2, 3, . . . , and M2q+1 is a commutator.

Proof. By Lemma 2.8, a typical term in M,ms,t = −mt̃,s̃ when k is odd. A typical term hs,s in the

(s, s) location of H = M2q+1 is given by

hs,s =

n∑
i1=1

n∑
i2=1

. . .

n∑
i2q=1

ms,i1mi1,i2 . . .mi2q−1,i2qmi2q,s

= (−1)2q+1
n∑

ĩ1=1

n∑
ĩ2=1

. . .

n∑
ĩ2q=1

ms̃,ĩ2q
m
ĩ2q,ĩ2q−1

. . .mĩ1,s̃
= −hs̃,s̃.

Hence, hs,s + hs̃,s̃ = 0 for all s, and both appear in the trace. Hence, they cancel in pairs in tr(M2q+1). For

those values of s where s = s̃ the terms hs,s are zero by this argument. Thus the trace is zero and M2q+1 is

a commutator.

4. Zeros in M and Hadamard products.

Remark 4.1. Important Bookkeeping:

(i) The unique 1 in vec(Ei,j) is the s = i + (j − 1)nth coefficient, and Ei,j is the sth matrix in the

canonical order. Mvec(Ei,j) = vec([A1| . . . |Ak|Ei,j ]) = the sth column of M . If Ei,j is the rth

matrix in the order, r = α+ βn, 1 ≤ α ≤ n, 0 ≤ β ≤ n− 1, then i = α and j = β + 1.

(ii) The column of M corresponding to Ei,j is composed of entries with terms corresponding to trails

each containing a segment εi,j = ε : i → j. The rth coefficient of this column, where r = α + βn, is

given by trails α 7−→ β + 1. For example, if n > 2, the entries in the 3rd row 1st column of M are

trails 3 7−→ 1. Equation (1.3) gives the form of these trails.

For two 4 × 4 matrices A,B, A = {A,B}, the 2nd column of MA is given by Figure 3. We interpret this

column of data by including the element ε21 from E2,1, the second matrix in the canonical ordering. The

last term becomes (a14b42 − a42b14)ε21 = b42ε2,1a14 − a42ε2,1b14 which represent two trails 4 → 2 → 1 → 4.

Similarly, the term in the 2nd last position represents two trails 3 → 2 → 1 → 4 with the help of the ε2,1.

Henceforth, we consider entries of M as a sum of terms with associated trails with the ε included. We explain

the reason for a zero in the fifth position here.
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

2a11b12−2a12b11+a12b22−a22b12+a13b32−a32b13+a14b42−a42b14

a13b31−a31b13+a14b41+a23b32−a32b23−a41b14+a24b42−a42b24+b11(a11−a22)−a11(b11−b22)

a11b32−a12b31+a31b12−a32b11−a22b32+a32b22−a32b33+a33b32+a34b42−a42b34

a11b42−a12b41+a41b12−a42b11−a22b42+a42b22−a32b43+a43b32−a42b44+a44b42

0

a12b22−a22b12+a13b32−a32b13+a14b42−a42b14+b12(a11−a22)−a12(b11−b22)

a12b32−a32b12

a12b42−a42b12

a13b12−a12b13

a12b23−a23b12+a13b33−a33b13+a14b43−a43b14+b13(a11−a22)−a13(b11−b22)

a13b32−a32b13

a13b42−a42b13

a14b12−a12b14

a12b24−a24b12+a13b34−a34b13+a14b44−a44b14+b14(a11−a22)−a14(b11−b22)

a14b32−a32b14

a14b42−a42b14



Figure 3. The 2nd column of MA.

Lemma 4.2. Let M be the matrix of the linear operator TA,B generated by two matrices. For any s such

that s 6= s̃ the [s, s̃] entries of M, ms,s̃ = 0.

Proof. Using the notation of Lemma 2.4, s = α + βn, 0 ≤ α ≤ n − 1; 0 ≤ β ≤ n − 1. By Remark 4.1

(ii), every ms,s̃ term has one of two forms: aα,β+1εβ+1,αbα,β+1 or bα,β+1εβ+1,αaα,β+1. These have opposite

parity and cancel in pairs.

The following Lemma is easily verified.

Lemma 4.3. Given a permutation matrix P, and H1, H2 all inMn, then the Hadamard product H1◦H2 =

0 ⇐⇒ H1P ◦H2P = 0 ⇐⇒ PH1 ◦ PH2 = 0.

Theorem 4.4. Let M be the matrix of T for k odd. Then, the Hadamard product M2q+1 ◦P � = O, q =

0, 1, 2, 3 . . . , where P �is defined by (2.7). Hence, the entries of M2q+1 corresponding to the ones of P � are

zero.

Proof. Case q=0: Since P �M is skew symmetric, it has zeros down the diagonal. Hence, P �M ◦ I = 0.

By Lemma 4.3 above, P �P �M ◦ P �I = 0⇒M ◦ P � = 0.

Case q > 0: By Lemma 2.8, mi,j = −mj̃,̃i. A typical term hs,s̃ in the (s, s̃) location of H = M2q+1 is

given by

hs,s̃ =

n∑
i1=1

n∑
i2=1

. . .

n∑
i2q=1

ms,i1mi1,i2 . . .mi2q,s̃

= (−1)2q+1
n∑

ĩ1=1

n∑
ĩ2=1

. . .

n∑
ĩ2q=1

ms,ĩ2q
m
ĩ2q,ĩ2q−1

. . .mĩ1,s̃
= −hs,s̃.

Hence, hs,s̃ = 0 for all s, so M2q+1 ◦ P � = O since every nonzero element of P � is found at the (s, s̃)

location by Remark (2.5).
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Denote the Moore–Penrose inverse of M by M+. Based on experimental evidence, we conjecture that

(M+)2q+1 ◦ P � = O for q = 1, . . ..

5. The Dimension of the Null Space of T.

5.1. The Reduced Row Echelon Form: RREF. Given L ∈Mm of rank (m− q), let Lrref denote

its unique RREF. It can be written, up to some permutation of columns, as

(5.10) Lrref =

[
Im−q Ũ

O O

]
,

where the size of Ũ is (m − q) × q. Note that if the first m − q columns of L are linearly independent,

then no column permutations are required in the RREF. Construct the array U =

[
Ũ

−I

]
whose columns

are a basis of the null space of L. The transpose of the jth column of Urref is a row whose entries are

[u1,j , . . . , um−q,j , . . . , −1, 0 . . . 0] and the last q contain (q − 1) 0′s together with a unique −1, in some

order. Call vectors of this type right-ended. Matrices reshaped from right-ended vectors of size n2 are called

right-ended matrices. This motivates the following.

5.2. Generic Right-Ended Matrices (GREMs). A set of elements in R is called generic if it is

algebraically independent over Q. Choose matrices A = {A1, . . . , Ak} built from kn2 distinct algebraically

independent generic elements.

(5.11) For A = {A1, . . . , Ak} , let VA = [vec(A1), . . . , vec(Ak)] =

[
A[(n−k)k

A\k×k

]
.

By Remark 2.1, MVA = 0, for M generated by A. The determinant |A\| = ξ 6= 0 because it is a polynomial

of degree k in algebraically independent elements. Thus, A\ is nonsingular with inverse (A\)−1 = [γij ]. The

columns of −VA(A\)−1 are right-ended, so we reshape them into right-ended matrices AΓ
j , 1 ≤ j ≤ k.

Let AΓ =
[
vec(AΓ

1 ), . . . , vec(AΓ
k )
]

= −VA(A\)−1, where AΓ
j := −

k∑
i=1

γijAi.

By ( [10], (3)), [AΓ
1 | . . . |AΓ

k |X] = −(ξ)−1 × [A1| . . . |Ak|X], so both or neither term is 0. We note that the

entries of the AΓ
i matrices are still algebraically independent, since they are polynomials in the original set

of generic elements with a common denominator of products of ξ = |A\|.

Proposition 5.1. Let TA and TΓ denote the linear transformations generated by A = {A1, A2, . . . , Ak}
and AΓ =

{
AΓ

1 , A
Γ
2 , . . . , A

Γ
k

}
respectively. Then TΓ(X) = −(ξ)−1TA(X) and the null spaces of both operators

are the same.

Null spaces do not change when we require the generic matrices to be right-ended. From this point onward,

we constrain the input matrices to be right-ended and call them Generic Right-Ended Matrices or GREMs.

Denote the vector vec(Aj) with its right end cut off by Ăj . Denote a matrix whose columns are “cup” vectors

by a “tilde” Ã =
[
Ă1, . . . , Ăk

]
. In this case5 we write (5.11) as

(5.12) AΓ =
[
vec(AΓ

1 ), . . . , vec(AΓ
k )
]

=

[
Ã(n−k)×k
−Ik

]
.

5In MATLAB c©, AΓ = −[flipud(fliplr(rref(fliplr(A′A))))]′.
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We modify the new right-ended matrices by prescribing the right ends of the canonical rows in Definition

1.5 according to whether k is even or odd. The last end of Case1 is deleted from Case2 in order to provide

space for the identity matrix in the null space of M .

Case1 : k even: [...−1, 0, 0..., 0, 0, 0] [... 0,−1, 0..., 0, 0, 0] [... 0, 0,−1..., 0, 0, 0] . . .

[... 0, 0, 0...,−1, 0, 0] [... 0, 0, 0..., 0,−1, 0] [... 0, 0, 0..., 0, 0,−1].

Case2 : k odd: [...−1, 0, 0..., 0, 0, 0] [... 0,−1, 0..., 0, 0, 0] . . .

[...0, 0...,−1, 0, 0, 0] [...0, 0..., 0,−1, 0, 0] [...0, 0..., 0, 0,−1, 0].

Taking vec of a right-ended matrix gives a transposed right-ended vector. The dimension of the null

space of T generated by A or AΓ is denoted by ν0(n, k). Partition MΓ, the matrix of T generated by AΓ,

where the principal submatrix M1,1 is square and has the largest possible rank that the first square block

can achieve.

(5.13) MΓ =

[
M1,1 M1,2

M2,1 M2,2

]
M1 =

[
M1,1

M2,1

]
M2 =

[
M1,2

M2,2

]
.

Conjecture 1 was introduced in [10]. Matt Brassil verified, in his dissertation [6] that over a large set of

finite fields the conjecture is true in the case k even using graphical techniques. This has been refined in a

joint paper with Zinovy Reichstein [7].

Conjecture 1. For almost all choices of the generic matrices Ai 1 ≤ i ≤ k

(i) ν0(n, k) := k if k is even

(ii) ν0(n, k) := k + 1 if k is odd and n is even

(iii) ν0(n, k) := k + 2 if k is odd and n is odd.

Remark 5.2. Conjecture 1 was originally formulated on experimental evidence. Upon revisiting this

evidence and performing further corroborative trials, we introduce a new conjecture that prescribes the rank

of M1,1. With this addition, we show that supplementary matrices, which heretofore were mysterious, can be

explained using the Moore–Penrose inverse. This is a main point of this paper. It also avoids consideration

of the need to treat the permutation of RREF columns mentioned in Section 5.1.

Conjecture 2. For almost all choices of GREM’s AΓ
i 1 ≤ i ≤ k, k > 1

(i) ν0(n, k) := k if k is even. M1,1 has rank n2 − k.

(ii) ν0(n, k) := k + 1 if k is odd and n is even. M1,1 has rank n2 − (k + 1).

(iii) ν0(n, k) := k + 2 if k is odd and n is odd. M1,1 has rank n2 − (k + 2).

We justify the sizes of the null space in Conjecture 2 as follows.

(i) By Lemma 1.6, the k generating matrices are a basis of the null space of M .

(ii) By Remark 2.1, T (I) = 0 when k is odd. The last end in Case1 is absent in Case2 to leave space

for the Identity matrix in the null space of M .

(iii) By Theorem 2.9 (ii), when k and n are both odd, there must be at least one supplementary

matrix in the null space of T . Conjecture 2 indicates that for generic AΓ
j there is exactly one

supplementary matrix S, modulo addition of a matrix in the span of

(5.14) W = {A1, . . . , Ak, In} .
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Every matrix L in Mn has a full rank factorization L = FG, where the columns of F are a basis of

the range space of L, and G is uniquely determined by F . Conjecture 2 specifies that F = M1, using the

notation of (5.13).

Let Ha:b,c:d denote the submatrix of H with rows a to b and columns c to d. The submatrix of columns

c, . . . , d and all rows of H is denoted by H•,c:d. By [5, 16], for a full column rank matrix F , the Moore–Penrose

inverse is

F+ = (F ′F )−1F ′.

5.2.1. Consequences of Conjecture 2 when k is even. The elegance of the structure of M is

explained once the Moore–Penrose inverse is introduced. Using the notation of (5.13), the RREF for the

case k even can be found without the usual computation, once AΓ =
{
AΓ

1 , . . . , A
Γ
k

}
is given.

Theorem 5.3. Assume Conjecture 2 is true. For k even and M generated by AΓ, the arrangement of

the RREF Mrref and the nonsingular matrix Q such that QM = Mrref are fixed.

(5.15) Mrref =

[
I Ã

O O

]
Q =

[
M−1

1,1 O

M2,1M
−1
1,1 −I

]
Q−1 =

[
M1,1 O

M2,1 −I

]
.

Following the notation of (5.10) Ũ ≡ Ã = (M1,1)−1M1,2. A full rank factorization of M is given by

F = M1 =

[
M1,1

M1,1Ã

]
, G = [In2−k, Ã] where F+M = G and F+M2 = F+M•,(n2−k+1:n2) = Ã.

Proof. By the uniqueness of the RREF and Conjecture 2, Ũ ≡ Ã since the generating matrices AΓ are

right ended and are a basis of the k dimensional null space of M and M1,1 is invertible. Using the notation

of (5.12), MAΓ = [M1,M2]

[
Ã

−I

]
= M1Ã −M2 = O. Hence, M1Ã = M2, M1,2 = M1,1Ã ⇐⇒ Ã =

(M1,1)−1M1,2, and M2,2 = M2,1Ã = M2,1(M1,1)−1M1,2.

QM =

[
M−1

1,1 O

M2,1M
−1
1,1 −I

] [
M1,1 M1,2

M2,1 M2,2

]
=

[
M−1

1,1M1,1 M−1
1,1M1,2

M2,1 −M2,1 M2,1M
−1
1,1M1,2 −M2,2

]
=

[
In2−k Ũ

O O

]
= Mrref

Clearly M = FG and F+F = I, so F+M = F+FG = G. Thus F+M2 = Ã.

Theorem 5.4. Assume Conjecture 2 is true. If H ∈Mn2 is a matrix of rank (n2 − k) where k is even,

then H is equivalent to a k-commutator matrix.

Proof. Without loss of generality, permuting rows and columns if necessary to get an equivalent matrix,

partitionH =

[
H1,1 H1,2

H2,1 H2,2

]
so thatH1,1 is nonsingular of size n2−k. Write the unique reduced row echelon

form of H as Hrref =

[
In2−k ÃH

O Ok

]
. Use ÃH to build M?, a k-commutator matrix, as in Theorem 5.3,

where QM? = M?
rref = Hrref . Define QH =

[
H−1

1,1 O

H2,1H
−1
1,1 −I

]
; so that QHH = Hrref = QM?. Hence,

M? = Q−1QHH so H and M? are equivalent.
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5.2.2. Consequences of Conjecture 2 when k is odd and n even. As a consequence of the

Amitsur–Levitski Theorem [2], we require that k < 2n − 1 throughout the following. The AΓ
j are GREMs

with ends described by Case2 of Conjecture 2. Let Ĭ denote vec(I) minus its end, and ÃΓ the matrix given

in (5.12) obtained from the generating matrices, using the Case2 arrangement. If n < k < 2n− 1 vec(−I) is

improperly right-ended according to Case2, since it has 2 (−1)’s in its end.

We introduce the matrix C for the Theorem below to deal with the case k > n, where we define

C = −I −AΓ
n−k. This is right-ended and in the null space of M . When k ≤ n, we set C = −I.

Theorem 5.5. Assume Conjecture 2 is true. For k odd and n even and M generated by AΓ =
{
AΓ

1 , . . . ,

AΓ
k

}
then the arrangement of the RREF Mrref and the nonsingular matrix Q such that QM = Mrref are

fixed. Let Ũ =
[
ÃΓ, C̆

]
. Ũ = (M1,1)−1M1,2. A full rank factorization of M is given by F = M1, G =

[In2−(k+1), Ũ ] where F+M = G and F+M2 = F+M•,(n2−k:n2) = Ũ .

Proof. By Remark 2.1, when we extend the set AΓ by −I to give a new set AΓ
k+1 =

{
AΓ

1 , . . . , A
Γ
k ,−I

}
,

then both sets are right-ended and produce the same M . The proof follows directly from Theorem 5.3 since

(k + 1) is even.

5.2.3. Consequences of Conjecture 2 when k and n are both odd. By Conjecture 2, there is

a unique supplementary matrix S modulo matrices in span W (5.14). Let S̆ be vec(S) minus its end. A

reason for introducing Conjecture 2 was to ensure the RREF of M will find S̆ in column n2 − (k + 1). We

define 3 cases for C 
k < n C = −I
k = n C = −I − S
k > n C = −I −AΓ

n−k

.

Set U =
[
vec(S), AΓ, vec(C)

]
, and Ũ =

[
S̆, ÃΓ, C̆

]
. M1,1 is nonsingular of size n2− (k+ 2). Define B =

M2,1M
−1
1,1 . (B′B) is positive semidefinite, so (I+B′B) is positive definite. The determinant of (I−B′BB′B)

can be expressed in terms of quotients of polynomials in the generic elements introduced earlier. The

probability of this determinant being zero is 0, so we may consider (I − B′BB′B) to be nonsingular. Thus

(I −B′B)(I +B′B) = (I −B′BB′B) =⇒
(I +B′B)−1 = (I −B′BB′B)−1(I −B′B). F = M1 =⇒ M ′1 = [M ′1,1,M

′
2,1].

F+ = (M ′1M1)−1M ′1 = (M ′1,1M1,1 +M ′2,1M2,1)−1M ′1

= (M ′1,1M1,1 +M ′1,1B
′BM1,1)−1M ′1 = (M ′1,1(I +B′B)M1,1)−1[M ′1,1,M

′
2,1]

= M−1
1,1 [(I −B′BB′B)−1(I −B′B), (I −B′BB′B)−1(B′ −B′BB′)].

This gives an explicit description of F+, the Moore–Penrose inverse of F .

Theorem 5.6. Assume Conjecture 2 is true. For k odd, n odd and M generated by AΓ with Case2

ends, then F = M1 = M•,1:(n2−k−2) and G = [In2−(k+2), Ũ ] is a full rank factorization of M . Mrref =[
In2−(k+2) Ũ

O O

]
, F+M = G, F+M2 = F+M•,(n2−k−1):n2) = Ũ and F+M•,n2−(k+1) = S̆.

Proof. Since MU = 0 the proof that M = FG is identical to that of Theorem 5.3. If k = n the second

last diagonal 1 of I coincides with the −1 in the right-end of S so C̆ = −Ĭ − S̆ is the only possibility for the

final column. As in Theorem 5.3 we verify F+M = G,F+M2 = Ũ . Hence, we have S̆ = F+M•,n2−(k+1).
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Thus, we can explicitly describe a supplementary matrix S in terms of the entries of M by the description

of F+ above and the last item of the Theorem. Moreover, we have shown by Theorem 5.3 and the above,

that the entries of S are quotients of polynomials in the entries of the original Aj matrices. We provide two

final examples.

Example 5.7. The matrix M3 is generated by the three right- ended matrices: 0 −2 0

2 0 0

−4 −1 0

  4 0 −1

4 0 0

−1 0 0

  −4 3 0

5 0 −1

0 0 0

 .

M3 =



0 −24 −31 36 7 4 −65 −12 −7

−36 −36 −16 0 −4 −8 −272 −36 40

65 −112 −188 272 5 −16 0 −4 −70

24 0 −16 36 −8 −8 112 12 −16

−7 8 9 4 0 −28 −5 80 7

12 −12 −4 36 −80 −80 4 0 68

31 16 0 16 −9 0 188 4 −22

−4 8 0 8 28 0 16 80 −24

7 16 22 −40 −7 24 70 −68 0


.

The Moore–Penrose inverse is computed as in Theorem 5.6:

F+ =



− 527711
522335175 − 1732708

522335175
33646

27491325
1779316

522335175

− 6979654
6790357275 − 209532799

13580714550
396719

357387225
46793171

27161429100

− 1848148
452690485

2502901
452690485 − 152127

23825815
1234148

452690485

− 5596264
2263452425 − 15138993

9053809700 − 88746
119129075

9799093
4526904850

. . .

− 8938289
522335175

232372
20893407

4367146
522335175 − 3481512

174111725
378640

20893407

104114429
6790357275 − 36462259

1086457164
11336894

6790357275
125054539
4526904850 − 3885391

271614291

3429083
452690485

4214407
90538097

434413
452690485 − 4275158

452690485 − 316187
90538097

34896289
2263452425

5684567
362152388 − 1100696

2263452425
43542747

4526904850 − 1172001
90538097


Rank M1,1 = 4, |M1,1| = (4× 39)2, and the supplementary matrix is

S =


− 5

3 − 12
13 0

140
39 −1 0

− 53
13 0 0

 .
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Example 5.8. We return to Example 2.10. Using exact arithmetic6, we find that the particular supple-

mentary matrix A6 (2.8) is precisely equal to the reshape of M+
1 M(1 : 18, 19) =

[
(M ′1M1)−1M ′1M(1 : 18, 19)

]
with the tail [−1 0 0 0 0 0 0]′ appended, where M is the matrix generated by the 5 given matrices. Each col-

umn of M1 is equal to vec([A1|A2| . . . |A5|Ei]) for the first 18 elementary matrices. Using the Moore–Penrose

inverse, A6 is expressed algebraically by the entries of the 5 Aj matrices.

Summary. The purpose of this paper was to explore the properties of the generalized commutator and

to explain the mysterious supplementary matrix. Conjecture 2 still requires verification, but it is based on

an aggregate of experimental evidence. The role of the Moore–Penrose inverse is felicitous.
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