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Abstract. The spectral radius of connected non-regular graphs is considered. Let λ1 be the

largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree ∆.

By studying the λ1-extremal graphs, it is proved that if G is non-regular and connected, then

∆− λ1 >
∆+ 1

n(3n+∆− 8) . This improves the recent results by B.L. Liu et al.
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1. Introduction. Let G = (V,E) be a simple graph on vertex set V and
edge set E, where |V | = n. The eigenvalues of the adjacency matrix ofG are called the
eigenvalues of G. The largest eigenvalue of G, denoted by λ1(G), is called the spectral
radius of G. Let D denote the diameter of G. We suppose throughout the paper that
G is a simple graph. For any vertex u, let Γ(u) be the set of all neighbors of u and
d(u) = |Γ(u)| be the degree of u. A nonincreasing sequence π = (d1, d2, ..., dn) of
non-negative integers is called (connected) graphic if there exits a (connected) simple
graph on n vertices, for which d1, d2, ..., dn are the degrees of its vertices. Let ∆ and
δ be the maximum and minimum degree of vertices of G, respectively. A graph is
called regular if d(u) = ∆ for any u ∈ V . It is easy to see that the spectral radius
of a regular graph is ∆ with (1, 1, ..., 1)T as a corresponding eigenvector. We will use
G− e (G + e) to denote the graph obtained from G by deleting (adding) the edge e.
For other notations in graph theory, we follow from [2].

Stevanović [8] first found a lower bound of ∆− λ1 for the connected non-regular
graphs. Then the results from [8] were improved in [9, 4, 7, 3]. In [4, 7], the authors
showed that

∆− λ1 ≥ 1
n(D + 1)

([4, 7]) (1.1)
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and

D ≤ 3n+∆− 5
∆+ 1

([7]). (1.2)

B.L. Liu et al. obtained

∆− λ1 ≥ ∆+ 1
n(3n+ 2∆− 4)

([7]). (1.3)

Recently, S.M. Cioabǎ [3] improved (1.1) as follows:

∆− λ1 >
1
nD

([3]). (1.4)

Thus combining (1.2) and (1.4), the inequality (1.3) can be improved as follows:

∆− λ1 >
∆+ 1

n(3n+∆− 5)
. (1.5)

In this note we improve the inequality (1.2) on λ1-extremal graphs. Furthermore,
we obtain the following inequality which improves (1.5).

∆− λ1 >
∆+ 1

n(3n+∆− 8)
.

2. Preparation. Firstly, we state a well-known result which is just Frobenius’s
theorem applied to graphs.

Lemma 2.1. Let G be a connected graph and λ1(G) be its spectral radius. Then
λ1(G+ uv) > λ1(G) for any uv /∈ E.

Definition 2.2. [7] Let G be a connected non-regular graph. Then the graph
G is called λ1-extremal if λ1(G) ≥ λ1(G′) for any other connected non-regular graph
G′ with the same number of vertices and maximum degree as G.

Theorem 2.3. Let G be a λ1-extremal graph on n vertices with maximum degree
∆. Define

V<∆ = {u : u ∈ V and d(u) < ∆}.
Then G must have one of the following properties:
(1) |V<∆| ≥ 2 and V<∆ induces a complete graph.
(2) |V<∆| = 1.
(3) V<∆ = {u, v}, uv /∈ E(G) and d(u) = d(v) = ∆− 1.

Proof. By contradiction, suppose thatG is a λ1-extremal graph without properties
(1), (2) and (3). It follows that |V<∆| ≥ 2. Then there are two cases.
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Case 1: V<∆ = {u, v}, uv /∈ E(G), d(u) < ∆ − 1 and d(v) ≤ ∆ − 1. Then
the graph G + uv has the same maximum degree as G. By Lemma 2.1, we obtain
λ1(G+ uv) > λ1(G), contradicting the choice of G.

Case 2: |V<∆| > 2 and V<∆ does not induce a complete graph. Then there
exist two vertices u, v ∈ V<∆ and uv /∈ E(G). Similarly arguing to case 1, we obtain
λ1(G+ uv) > λ1(G), contradicting the choice of G.

Combining the above two cases, the proof follows.

Using the properties mentioned in Theorem 2.3, we give the following definition.

Definition 2.4. Let G be a connected non-regular graph on n vertices with
maximum degree ∆. Then

the graph G is called type-I if it has property (1),
the graph G is called type-II if it has property (2),
the graph G is called type-III if it has property (3).

Lemma 2.5. [6] Let G be a simple connected graph with n vertices, m edges and
spectral radius λ1(G). Then

λ1(G) ≤ δ − 1 +
√
(δ + 1)2 + 4(2m− δn)

2
and equality holds if and only if G is either a regular graph or a graph in which each
vertex has degree either δ or n− 1.

We first consider the λ1-extremal graphs with ∆ = 2 or ∆ = n−1. When ∆ = 2,
the λ1-extremal graph is the path with λ1(Pn) = 2cos( π

n+1 ). When ∆ = n − 1,
similarly arguing to Theorem 2.3, we know that the λ1-extremal graph is Kn − e. By
Lemma 2.5, we obtain

λ1(Kn − e) = n− 3 +
√
(n+ 1)2 − 8
2

. (2.1)

Theorem 2.3 shows that the λ1-extremal graphs must be type-I, type-II or type-III,
but in what follows, we will prove that when 2 < ∆ < n − 1, any type-III graph is
not λ1-extremal.

Lemma 2.6. [5] Let π = (d1, d2, ..., dn) be a nonincreasing sequence of non-
negative integers. Then π is graphic if and only if

n∑
i=1

di is even and
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, for all k = 1, 2, ..., n− 1.

(2.2)

Lemma 2.7. Let π = (d1, d2, ..., dn) be a nonincreasing sequence of positive
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integers and dn−1 ≥ 2, dn ≥ 1. Then π is graphic if and only if it is connected
graphic.

Proof. If π is connected graphic, then it is obviously graphic. Conversely, suppose
that π is graphic and G is a disconnected graph with the degree sequence π. Without
loss of generality, suppose that G has two components G1 and G2. Noticing dn−1 ≥ 2
and dn ≥ 1, we suppose that any vertex in G1 has degree at least two and any edge
u2v2 ∈ E(G2). Then it follows that there exists one edge u1v1 in G1 which is not the
cut edge, i.e. G1 − u1v1 is still connected. Otherwise, G1 is a tree, a contradiction.
Consider G′ = G− u1v1 −u2v2+ u1u2+ v1v2. It is easy to see that G′ is a connected
graph with the degree sequence π.

Lemma 2.8. Let π = (d1, d2, ..., dn) = (∆,∆, ...,∆,∆ − 1,∆ − 1) and π′ =
(d′1, d

′
2, ..., d

′
n) = (∆,∆, ...,∆,∆ − 2) with 2 < ∆ < n − 1. If π is connected graphic,

then π′ is connected graphic.

Proof. Since 2 < ∆ < n − 1, we obtain d′n−1 ≥ 3 and d′n ≥ 1. Then by Lemma
2.7, we need only to prove that π′ is graphic. Let G be a connected graph with the
degree sequence π. Since π is graphic, by Lemma 2.6, we obtain

n∑
i=1

di is even and
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, for all k = 1, 2, ..., n− 1.

For π′ we will prove that (2.2) is still true. Obviously,
∑n

i=1 d
′
i =

∑n
i=1 di is even.

Then we need only to prove that the inequality is true. We split our proof into four
cases.

Case 1: 1 ≤ k ≤ ∆− 2, then k ≤ n− 4 and

k∑
i=1

d′i =
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}

= k(k − 1) + k(n− k)

= k(k − 1) +
n∑

i=k+1

min{k, d′i}.

Case 2: 1 < k = ∆− 1, then k ≤ n− 3 and

k(k − 1) + k(n− k)−
k∑

i=1

di = k(k − 1) + k(n− k)− k∆ = k(n− k − 2) ≥ k > 1.

Thus

k∑
i=1

d′i =
k∑

i=1

di < k(k − 1) + k(n− k)− 1 = k(k − 1) +
n∑

i=k+1

min{k, d′i}.
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Case 3: ∆ ≤ k ≤ n− 2, then

k∑
i=1

d′i =
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}

= k(k − 1) + (n− k − 2)∆ + 2∆− 2

= k(k − 1) +
n∑

i=k+1

min{k, d′i}.

Case 4: k = n− 1, then

k(k − 1) + ∆−
k∑

i=1

di = (n− 1)(n− 2) + ∆− [(n− 1)∆− 1]

= (n− 2)(n− 1−∆) + 1 ≥ 4,

where the last inequality holds since 2 < ∆ < n− 1. Hence

k∑
i=1

d′i =
k∑

i=1

di + 1 < k(k + 1) + ∆− 2

= k(k − 1) +
n∑

i=k+1

min{k, d′i}.

Combining the above four cases, the inequality is true. Then by Lemma 2.6, the π′

is graphic. This completes the proof.

As we know, majorization on degree sequences is defined as follows: for two
sequences π = (d1, d2, ..., dn), π′ = (d′1, d

′
2, ..., d

′
n) we write π ✂ π′ if and only if∑n

i=1 di =
∑n

i=1 d
′
i and

∑j
i=1 di ≤ ∑j

i=1 d
′
i for all j = 1, 2, ..., n. We claim that G

has the greatest maximum eigenvalue if λ1(G) ≥ λ1(G′) for any other graph G′ in the
class Cπ, where Cπ={G : G is a connected graph with the degree sequence π}.

Lemma 2.9. [1] Let π and π′ be two distinct degree sequences with π ✂ π′. Let
G and G′ be graphs with the greatest maximum eigenvalues in classes Cπ and Cπ′ ,
respectively. Then λ1(G) < λ1(G′).

Theorem 2.10. Let G be a connected graph with degree sequence

π = (∆,∆, ...,∆,∆− 1,∆− 1)

and 2 < ∆ < n − 1. Then there exists a connected graph G′ with degree sequence
π′ = (∆,∆, ...,∆,∆ − 2) such that λ1(G) < λ1(G′).

Proof. By Lemma 2.8, there exists a connected graph G′ with degree sequence
π′ = (∆,∆, ...,∆,∆ − 2). We suppose that G (G′) is the graph with the greatest
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maximum eigenvalue in Cπ (Cπ′). It is obvious that π✂π′. By Lemma 2.9, we obtain
λ1(G) < λ1(G′).

Theorem 2.11. Let G be a λ1-extremal graph on n vertices with the maximum
degree ∆ and 2 < ∆ < n− 1. Then G must be either type-I or type-II.

Proof. Suppose that G is a type-III graph with the greatest maximum eigenvalue
in class Cπ, where π = (∆,∆, ...,∆,∆ − 1,∆ − 1). By Theorem 2.10, there exists
a graph G′ with degree sequence π′ = (∆,∆, ...,∆,∆ − 2) and greatest maximum
eigenvalue in class C′

π such that λ1(G′) > λ1(G). It follows that G is not λ1-extremal.

Remark. Although Theorem 2.11 shows that the λ1-extremal graph with 2 <
∆ < n− 1 must be type-I or type-II, there exist some graphs with property (1) or (2)
which are not λ1-extremal. Let G1, G2 be connected graphs with degree sequences
(3, 3, 3, 3, 2, 2), (5, 5, 5, 5, 5, 5, 2), respectively. Clearly G1 (G2) is a type-I
(type-II) graph. However, by checking the Table 1 of [7], we know they are not the
λ1-extremal graphs. After some computer experiments, we give a conjecture about
the λ1-extremal graphs as follows:

Conjecture 2.12. Let G be a connected non-regular graph on n vertices and
2 < ∆ < n − 1. Then G is λ1-extremal if and only if G is a graph with the greatest
maximum eigenvalue in classes Cπ and π = (∆,∆, ...,∆, δ), where

δ =
{
(∆− 1), when n∆ is odd,
(∆− 2), when n∆ is even.

3. Main Results.

Theorem 3.1. Let G be a type-I or type-II graph on n vertices with diameter D.
Then

D ≤ 3n+∆− 8
∆+ 1

. (3.1)

Proof. Since G is a type-I or type-II graph, we have ∆ ≥ 3. Let u, v be two
vertices at distance D and P : u = u0 ↔ u1 ↔ ... ↔ uD = v be the shortest path
connecting u and v. We first claim that |V<∆ ∩ V (P )| ≤ 2. Otherwise, G must be
a type-I graph and suppose {up, uq, ur} ⊆ V (P )

⋂
V<∆ with p < q < r. Then by

definition of type-I graph, we obtain that upuq, uqur and upur ∈ E(G). Therefore,
P is not the shortest path connecting u and v, a contradiction.

Then there are two cases.
Case 1: V<∆ ∩ V (P ) = ∅. Define T = {i : i ≡ 0 mod 3 and i ≤ (D− 3)}⋃{D}.

Thus | T |= D+1
3 �. Let d(ui, uj) denote the distance between ui and uj . Since P is
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the shortest path connecting u and v, we have d(ui, uj) ≥ 3 and Γ(ui) ∩ Γ(uj) = ∅

for any distinct i, j ∈ T . Notice that ui ∈ V (P ) for any i ∈ T . We obtain

| Γ(ui)− V (P ) |=
{
∆− 1, if i ∈ {0,D},
∆− 2, otherwise.

Then

n ≥ |V (P )|+
∑
i∈T

|Γ(ui)− V (P )|

≥ D + 1 + (|T | − 2)(∆− 2) + 2(∆− 1)

≥ D + 1 + (
D + 1
3

− 2)(∆− 2) + 2(∆− 1).

Thus

D ≤ 3n−∆− 7
∆+ 1

.

Case 2: Either V<∆ ∩ V (P ) = {up, uq} with q = p + 1 or V<∆ ∩ V (P ) = {up}.
The proof is similar to the proof of [7]. We obtain the same result

D ≤ 3n+∆− 8
∆+ 1

.

Combining the above two cases, the proof follows.

Lemma 3.2. [3] Let G be a connected non-regular graph on n vertices with max-
imum degree ∆ and diameter D. Then

∆− λ1 >
1
nD
.

Theorem 3.3. Let G be a connected non-regular graph on n vertices with maxi-
mum degree ∆. Then

∆− λ1 >
∆+ 1

n(3n+∆− 8)
.

Proof. Without loss of generality, we suppose that G is a λ1-extremal graph.
Since G is connected and non-regular, then n ≥ 3 and ∆ ≥ 2. When ∆ = n− 1 and
n ≥ 5, the λ1-extremal graph is Kn − e with D = 2. Then by Lemma 3.2, we obtain

λ1(Kn − e) < ∆− 1
2n
< ∆− ∆+ 1

n(3n+∆− 8)
.
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When ∆ = n− 1 and n = 3, the λ1-extremal graph is P3 with λ1(P3)=1.4142. When
∆ = n − 1 and n = 4, the λ1-extremal graph is K4 − e with λ1(K4 − e)=2.5616.
By direct calculation, we know that the inequality is true. When 2 < ∆ < n − 1,
applying Theorem 3.1 and Lemma 3.2, we obtain the result. When ∆ = 2 and n > 3,
the λ1-extremal graph is Pn. By adding some edges to Pn, we can attain Kn − e.
Then following the Lemma 2.1, we obtain λ1(Pn) < λ1(Kn − e). This completes the
proof.
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