
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 309-317, June 2020.

THE ENERGY CHANGE OF THE COMPLETE MULTIPARTITE GRAPH∗
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Abstract. The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. Akbari et al.

[S. Akbari, E. Ghorbani, and M. Oboudi. Edge addition, singular values, and energy of graphs and matrices. Linear Algebra

Appl., 430:2192–2199, 2009.] proved that for a complete multipartite graph Kt1,...,tk , if ti ≥ 2 (i = 1, . . . , k), then deleting any

edge will increase the energy. A natural question is how the energy changes when min{t1, . . . , tk} = 1. In this paper, a new

method to study the energy of graph is explored. As an application of this new method, the above natural question is answered

and it is completely determined how the energy of a complete multipartite graph changes when one edge is removed.
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1. Introduction. Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn}
and edge set E. The adjacency matrix of G, A(G) = (aij), is an n×n matrix, where aij = 1 if vi and vj are

adjacent and aij = 0, otherwise. Thus, A(G) is a real symmetric matrix with zeros on the diagonal, and all

eigenvalues of A(G) are real. The characteristic polynomial det(xI−A(G)) of the adjacency matrix A(G) of

a graph G is also called the characteristic polynomial of G, denoted by Φ(G, x) or Φ(G). The eigenvalues of

graph G are the eigenvalues of A(G), written as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). The energy of G, denoted

by E(G), is defined [4, 5] as E(G) =
n∑
i=1

|λi(G)|.

For the polynomial f(x), if all the roots of f(x) = 0 are real, we also define the energy of f(x) as the

sum of the absolute values of its roots, denoted by E(f).

We denote a complete multipartite graph with k ≥ 2 parts by Kt1,...,tk , where ti (i = 1, . . . , k) is the

number of vertices in the i-th part of the graph, and we write the i-th part as ti-part.

One area in the study of graph energy, called graph energy change is to understand how graph energy

changes when a subgraph is deleted. It becomes especially interesting when the subgraph is just an edge.

As we know the energy of a graph may increase, decrease, or remain the same when an edge is deleted. For

more details see [3] and the references therein.

Akbari, Ghorbani and Oboudi [1] (see Theorem 4) proved that for any complete multipartite graph

Kt1,...,tk with k ≥ 2, ti ≥ 2, then E(Kt1,...,tk − e) > E(Kt1,...,tk) for any edge e. Then a natural question is

how the energy changes when min{t1, . . . , tk} = 1. In this paper, we will answer this question and completely

determine how the energy of a complete multipartite graph changes when one edge is deleted. Our main

result is
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Theorem 1.1. Let e be an edge between the ti-part and tj-part of Kt1,...,tk . Then

(1) For k ≥ 4, if ti = tj = 1, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) > E(Kt1,...,tk).

(2) For k = 3, if ti + tj ≤ 3, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) > E(Kt1,...,tk).

(3) For k = 2, if min{ti, tj} = 1, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) >

E(Kt1,...,tk).

This paper is organized as follows. In Section 2, we will give a generalization of Theorem 4 in [1] and

some results which will be needed in the next two sections. In the third section, we will determine how the

energy of a complete multipartite graph, with at least four parts, changes when an edge is removed. In the

last section, we will characterize how the energy of a complete tripartite graph changes when an edge is

deleted.

2. Preliminaries. We begin this section with the Interlacing Theorem. By Perron-Frobenius theory,

the largest eigenvalue of a connected graph goes down when one removes an edge or a vertex. Interlacing

also gives more information about what happens with the i-th largest eigenvalues.

Lemma 2.1. (Interlacing) If G is a graph on n vertices with eigenvalues λ1(G) ≥ · · · ≥ λn(G) and H is

an induced subgraph on m vertices with eigenvalues λ1(H) ≥ · · · ≥ λm(H), then for i = 1, . . . ,m,

λi(G) ≥ λi(H) ≥ λn−m+i(G).

In the next two sections, we will use λ2(G) ≥ λ2(H) (where H is an induced subgraph of G) many times.

As known, equitable partition represents a powerful tool in spectral graph theory. In this paper, we also

use this powerful tool to simplify our calculation.

Given a graph G, the partition V (G) = V1∪̇V2∪̇ · · · ∪̇Vk is an equitable partition if every vertex in Vi
has the same number of neighbours in Vj , for all i, j ∈ {1, 2, . . . , k}. Suppose Π is an equitable partition

V (G) = V1∪̇V2∪̇ · · · ∪̇Vk and that each vertex in Vi has bij neighbours in Vj (i, j ∈ {1, 2, . . . , k}). The matrix

(bij) is called the quotient matrix of Π, denoted by BΠ. The largest eigenvalue of BΠ is also the spectral

radius of G (see [2], Corollary 3.9). In order to determine the spectral radius of graph G, we can calculate

the largest root of the characteristic polynomial of one of its quotient matrices, which has a lower degree.

For convenience, in this paper, we use λ(G) and x, respectively, to denote the spectral radius and the

corresponding unit eigenvector of the adjacency matrix of G. Suppose Vi is the ti-part of Kt1,t2...,tk , then

V1 ∪ V2 ∪ · · · ∪ Vk is an equitable partition. Unless otherwise specified, the cells of equitable partition of

Kt1,t2,...,tk are V1, V2, . . . , Vk. Obviously, vertices in the same part Vi have equal x-components, denoted by

xi.

Akbari, Ghorbani and Oboudi (see Theorem 4 in [1]) proved that for any complete multipartite graph

Kt1,...,tk with k ≥ 2, ti ≥ 2, then E(Kt1,...,tk − e) > E(Kt1,...,tk) for any edge e. Using the idea of Akbari,

Ghorbani and Oboudi, we get a generalization of this result.

Theorem 2.2. Let S be a non-empty edge subset of the complete multipartite graph G = Kt1,...,tk and

H be the corresponding subgraph induced by S. Let Vi be the i-th part of G, and Ui = V (H)∩Vi (1 ≤ i ≤ k).

If |Vi| ≥ 2λ(H)|Ui| holds for any i, then we have E(G− S) > E(G).
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Proof. Let A and B be the adjacency matrices of G and G − S, respectively. We may assume that

B = A−C, where C is the adjacency matrix of the spanning subgraph of G with only edges in S. Let x be

the Perron vector of A.

Since each part of G is a cell of an equitable partition of G, the vertices of each part have the same

corresponding entries in x. By the Rayleigh-Ritz theorem and |Vi| ≥ 2λ(H)|Ui| for 1 ≤ i ≤ k, we have

xTCx = yTA(H)y ≤ λ(H)yTy ≤ 1

2
xTx =

1

2
,

where y is the subvector of x indexed by vertices in H.

Thus,

λ(B) ≥ xTBx = xTAx− xTCx ≥ λ(A)− 1

2
.

Suppose e = (u, v) ∈ S and u ∈ Ui, v ∈ Uj . Since S is nonempty, λ(H) ≥ 1. So |Vi| ≥ 2|Ui| > |Ui|,|Vj | ≥
2|Uj | > |Uj |. Let u′ ∈ Vi−Ui and v′ ∈ Vj −Uj . Then P4 = uv′u′v is an induced subgraph of Ge. Therefore,

by the Interlacing theorem,

λ2(B) ≥ λ2(P4) ≈ 0.618.

Thus,

E(G− S) ≥ 2(λ(B) + λ2(B)) > 2λ(A) = E(G).

Obviously, Theorem 2.2 generalizes Theorem 4 in [1]. Observe that if Ui = ∅, the condition |Vi| ≥
2λ(H)|Ui| = 0 holds trivially whether |Vi| is 1 or not, so the complete multipartite graph in the above

theorem needs not be 1-part free.

Theorem 2.2 immediately implies that deleting any edge between non-1-parts of the complete multipartite

graph will increase the energy.

However, deleting one edge between two 1-parts of complete multipartite graph will decrease the energy.

If Kt1,...,tk has two 1-parts, without loss of generality, we assume t1 = t2 = 1, and e is the edge between

these 1-parts, then

E(K1,1,t3,...,tk − e) = E(K2,t3,...,tk) = 2λ(K2,t3,...,tk) < 2λ(K1,1,t3,...,tk) = E(K1,1,t3,...,tk).

In order to completely determine how the energy of complete multipartite graph changes when one edge

is removed, we only need to consider the deleted edge is between a 1-part and a non-1-part. So in the next

we assume that the considered complete multipartite graph is K1,i,t3,...,tk (where i ≥ 2) and the deleted edge

is between 1-part and i-part.

Without loss of generality, we assume that x-components of the ends of the deleted edge are x1 and x2,

respectively.

The following lemma is a starting point of our discussions.

Lemma 2.3. Let x be a perron vector of complete multipartite graph G. Let e = uv be an edge of G

and the corresponding entries in x be x1 and x2, respectively. If there exists some constant a such that

λ2(G− e) > a and x2
1 + x2

2 ≤ a, then E(G− e) > E(G).
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Proof. Let A(G− e) = A(G)−C, where C is the adjacency matrix of the spanning subgraph of G with

only one edge e. Then

xTCx = 2x1x2 ≤ x2
1 + x2

2 ≤ a.

By the Rayleigh-Ritz theorem,

λ(G− e) ≥ xTA(G− e)x = xTA(G)x− xTCx ≥ λ(G)− a.

Because λ2(G− e) > a, we arrive at

E(G− e) ≥ 2(λ(G− e) + λ2(G− e)) > 2λ(G) = E(G).

Next we will give a lower bound on the spectral radius of complete multipartite graph K1,i,t3,...,tk which

will be used in the calculation in the subsequent sections.

Lemma 2.4. Let G = K1,i,t3,...,tk be a complete multipartite graph with order n. We have:

(1) If k ≥ 3, then λ(G) >
√

(n− i)(i+ 1).

(2) In particular, if 2 ≤ i ≤ n− 5 and max{t3, . . . , tk} = 1, then λ(G) > n− i+ 0.67 holds.

Proof. (1) The characteristic polynomial of the quotient matrix of K1,i,n−i−1 is

f(x) = x3 −
(
(n− i)(i+ 1)− 1

)
x− 2(n− i− 1)i.

It is easy to see that λ(K1,i,n−i−1) >
√

(n− i)(i+ 1). Note that K1,i,n−i−1 is a subgraph of G, so that,

λ(G) ≥ λ(K1,i,n−i−1) >
√

(n− i)(i+ 1).

(2) If max{t3, . . . , tk} = 1, then

Q =

(
0 n− i
i n− i− 1

)
is a quotient matrix of G, so λ(G) is the largest root of φ(Q, x) = x2 − (n− i− 1)x− i(n− i).

If 2 ≤ i ≤ n− 5, then we have

φ(Q,n− i+ 0.67) = i2 − (i− 1.67)n− 1.67 i+ 1.1189

≤ i2 − (i− 1.67)(i+ 5)− 1.67 i+ 1.1189

= 9.4689− 5i < 0.

Therefore, λ(G) > n− i+ 0.67.

The following lemma provides some sufficient (but not necessary) conditions for E(G− e) > E(G), and

is also a key tool which will be widely used in the sequel proofs.

Lemma 2.5. Let G = K1,i,t3,...,tk be a complete k-partite graph (k ≥ 3) with order n, and e be an edge

between 1-part and i-part. Suppose that a is a positive constant and λ2(G − e) > a. If one of the following

holds:

(1) 2i+1
i(i+2) < a < 1 and fa(n, i) = n

(
ai2 − 2(1− a)i− 1

)
− ai3 + (1− a)i2 − (a− 2)i > 0,

(2) 2(n−1)
λ2+n−1 < a, where λ = λ(G),

then E(G− e) > E(G).
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Proof. By Lemma 2.3, it suffices to prove x2
1 + x2

2 ≤ a.

(1) Let a > 2i+1
i(i+2) , which means ai2 − 2(1 − a)i − 1 > 0. Combining this with fa(n, i) > 0, i.e.,

n ≥ ai3−(1−a)i2+(a−2)i
ai2−2(1−a)i−1 , we can get λ2(G) > (n− i)(i+ 1) ≥ (n−1)(1−a)i

ai−1 , which yields that

(n− 1)i

λ2(G)
<
ai− 1

1− a
.

From the eigenvalue equation of G, we have λ(G)x1 = ix2 + t3x3 + · · ·+ tkxk. Applying the Cauchy-Schwarz

inequality, we see that

λ2(G)x2
1 ≤ (i+ t3 + · · ·+ tk)(ix2

2 + t3x
2
3 + · · ·+ tkx

2
k) = (n− 1)(ix2

2 +m) = (n− 1)(1− x2
1),

where m = t3x
2
3 + · · ·+ tkx

2
k. Hence, x2

1 ≤
(n−1)
λ2(G)

(
ix2

2 +m
)
≤ ai−1

1−a x
2
2 + a

1−am. This shows that

x2
1 + x2

2 ≤
a

1− a
((i− 1)x2

2 +m) =
a

1− a
(1− x2

1 − x2
2),

which implies that x2
1 + x2

2 ≤ a holds.

(2) By considering eigenvalue equations λx1 = ix2 + t3x3 + · · ·+ tkxk and λx2 = x1 + t3x3 + · · ·+ tkxk,

we find x2 = (λ+1
λ+i )x1. From λ2x2

1 ≤ (n− 1)(1− x2
1), we have

x2
1 ≤

n− 1

λ2 + n− 1
.

Therefore,

x2
1 + x2

2 =

(
1 +

(
λ+ 1

λ+ i

)2
)
x2

1 ≤

(
1 +

(
λ+ 1

λ+ i

)2
)

n− 1

λ2 + n− 1
<

2(n− 1)

λ2 + n− 1
< a.

3. The complete multipartite graph with at least four parts. In this section, we consider how

the energy changes of the complete multipartite graph K1,i,t3,...,tk , where k ≥ 4, by deleting an edge between

1-part and i-part. We will distinguish into two cases i ≥ 4 and i ∈ {2, 3}, and will apply the two methods

in Lemma 2.5 to compare the energies of K1,i,t3,...,tk − e and K1,i,t3,...,tk . Now we consider the case of i ≥ 4

firstly.

Lemma 3.1. If k ≥ 4 and i ≥ 4, then E(K1,i,t3,...,tk − e) > E(K1,i,t3,...,tk) for any edge e between 1-part

and i-part.

Proof. As k ≥ 4, K1,4,1,1 − e is an induced subgraph of K1,i,t3,...,tk − e, by the Interlacing Theorem

λ2(K1,i,t3,...,tk − e) ≥ λ2(K1,4,1,1 − e) =
√

2− 1 > 0.4 holds.

Since 2i+1
i(i+2) is a decreasing function for i, we have 2i+1

i(i+2) ≤
3
8 < 0.4 for i ≥ 4. Now we use Lemma 2.5

by taking a = 0.4, then

5f0.4(n, i) ≥ 5f0.4(i+ 3, i) = 3(i2 − 5i− 5) > 0

holds for all i ≥ 6. Hence, E(K1,i,t3,...,tk − e) > E(K1,i,t3,...,tk) holds when i ≥ 6.

Because f0.414(n, 4) > 0 when n ≥ 12, and f0.414(n, 5) > 0 when n ≥ 9, and these show that

E(K1,i,t3,...,tk − e) > E(K1,i,t3,...,tk) holds for i = 4, 5 when n ≥ 12 and n ≥ 9, respectively. With the aid of

mathematics software “SageMath” [6], one can verify the result holds for i = 4, n ≤ 11 and i = 5, n ≤ 8.
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The next lemma offers a method to compare the spectral radius of two complete multipartite graphs

with the same order, which will be used in the proof of Lemma 3.3.

Lemma 3.2. ([7]) If ni − nj ≥ 2, then λ(Kn1,...,ni−1,...,nj+1,...,np
) > λ(Kn1,...,ni,...,nj ,...,np

).

Lemma 3.3. E(K1,i,t3,...,tk − e) > E(K1,i,t3,...,tk) for any k ≥ 4, i ∈ {2, 3} and every edge e between

1-part and i-part.

Proof. For short, we write K1,i,t3,...,tk as G.

By Lemma 2.4, when n ≥ 8, if max{t3, . . . , tk} = 1, λ(G) > n−2.33 holds, which implies that 2(n−1)
λ2+n−1 <

2(n−1)
(n−2.33)2+n−1 . Note that 2(n−1)

(n−2.33)2+n−1 < 0.357 when n ≥ 8. Hence, 2(n−1)
λ2+n−1 < 0.357

If max{t3, . . . , tk} ≥ 2, say t3 ≥ 2, then K1,i,t3,n−i−t3−1 is a subgraph of G, so

λ(G) ≥ λ(K1,i,t3,n−i−t3−1) ≥ λ(K1,i,2,n−i−3) ≥ λ(K1,2,2,n−5),

the last two inequalities follow from Lemma 3.2. Note that λ(K1,2,2,n−5) is the largest root of g(x) = x4 −
(5n−17)x2−8(2n−9)x−6(2n−10) which is the characteristic polynomial of its equitable matrix. It is easy to

check that τ(g) >
√

5n− 7 when n ≥ 8, which means λ(G) >
√

5n− 7. And thus, 2(n−1)
λ2+n−1 <

2(n−1)
6n−8 < 0.357,

when n ≥ 8.

On the other hand, λ2(G − e) ≥ λ2(K1,2,1,1 − e) > 0.357. Now we use (2) of Lemma 2.5 by taking

a = 0.357, we have E(G− e) > E(G).

With the aid of mathematics software “SageMath” [6], one can verify the result holds for G when

n ≤ 7.

The following proposition is an immediate result from Lemma 3.1 and Lemma 3.3.

Proposition 3.4. E(K1,i,t3,...,tk − e) > E(K1,i,t3,...,tk) holds for any k ≥ 4, i ≥ 2 and e between 1-part

and i-part.

4. Complete tripartite graph. In this section, we will focus on the energy change of the complete

tripartite graph K1,i,n−i−1. We distinguish into two cases: 4 ≤ i ≤ n− 3 and i ∈ {2, 3, n− 2}. The proof of

the first case is similar to the proof of Lemma 3.1. But for the case i ∈ {2, 3, n− 2}, it is almost impossible

to use the former method, so we will give another new energy comparison method.

Lemma 4.1. If 4 ≤ i ≤ n− 3, then E(K1,i,n−i−1− e) > E(K1,i,n−i−1), for any edge e between 1-part and

i-part.

Proof. If i ≥ 8, with the similar manner of Lemma 3.1, K1,5,2−e is an induced subgraph of K1,i,n−i−1−e,
by the Interlacing Theorem, λ2(K1,i,n−i−1 − e) ≥ λ2(K1,5,2 − e) > 11

30 .

Taking a = 11
30 , we find fa(n, i) is a strictly increasing function for n. Since n ≥ i + 3, we easily have

that

30fa(n, i) ≥ 30fa(i+ 3, i) = 14i2 − 95i− 90 > 0

holds when i ≥ 8. Since 2i+1
i(i+2) ≤

17
80 < a for i ≥ 8, by (1) of Lemma 2.5, we have E(K1,i,n−i−1 − e) >

E(K1,i,n−i−1).
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When 4 ≤ i ≤ 7, we take a = 0.36 < λ2(K1,4,2−e). Lemma 2.4 provides that 2(n−1)
λ2+n−1 <

2(n−1)
(n−i)(i+1)+n−1 <

λ2(K1,4,2−e) for n ≥ 35. Since λ2(K1,i,n−i−1−e) > λ2(K1,4,2−e), E(K1,i,n−i−1−e) > E(K1,i,n−i−1) follows

from (2) of Lemma 2.5 .

With the aid of mathematics software “SageMath” [6], one can verify the result holds for n ≤ 34.

Next we will consider how the energy changes of K1,n−2,1, K1,2,n−3 and K1,3,n−4 by deleting one edge

between the first two parts. For convenience, we use τ(f) to denote the largest real root of the equation

f(x) = 0 if it exists.

The following is a lemma about the largest root of equation which will be used in the proof of our last

lemma.

Lemma 4.2. Let f(x) = x4 + ax2 + bx+ c and g(x) = x6 + 8ax4 + 16(a2 − 4c)x2 − 64b2. If all roots of

the equation f(x) = 0 are real, then:

(1) g(x) = 0 has only real roots.

(2) In particular, if f(x) = 0 has exactly two positive roots, then E(f) = τ(g).

Proof. Let x1, x2, x3, x4 be the four real roots of f(x) = 0, then

x1 + x2 + x3 + x4 = 0,(4.1)

x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 = a,(4.2)

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −b,(4.3)

x1x2x3x4 = c.

(1) Put y = 2(x1 + x2). By formulas (4.1) and (4.2), we see that

x1x2 + x3x4 = a+ (x1 + x2)2 = a+
y2

4
.

On the other hand,

y(x1x2 − x3x4) = 2b

follows from formulas (4.1) and (4.3). Then (a+ y2

4 )2y2 − 4b2 = 4x1x2x3x4y
2 = 4cy2, which yields

y6 + 8ay4 + 16(a2 − 4c)y2 − 64b2 = 0.

That is to say, 2(x1 + x2) is a root of g(x) = 0. From the symmetry of x1, x2, x3, x4, we know that

2(x1 +x3), 2(x1 +x4), 2(x2 +x3), 2(x2 +x4), 2(x3 +x4) are roots of g(x) = 0. In view of g(x) = 0 has exactly

6 roots, then all roots of g(x) = 0 are 2(x1 + x2), 2(x1 + x3), 2(x1 + x4), 2(x2 + x3), 2(x2 + x4), 2(x3 + x4)

which are all real.

(2) If x1, x2 are positive, and x3, x4 are negative, then τ(g) = 2(x1 + x2). Note that E(f) = x1 + x2 −
x3 − x4 = 2(x1 + x2) implies that τ(g) = E(f).

Now we are ready to determine how the energy changes of K1,i,n−i−1 due to deleting one edge between

1-part and i-part, where i ∈ {2, 3, n− 2}.
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Lemma 4.3. If e is an edge between 1-part and i-part in K1,i,n−i−1, i ∈ {2, 3, n− 2}. Then

(1) E(K1,2,n−3 − e) < E(K1,2,n−3),

(2) E(K1,3,n−4 − e) > E(K1,3,n−4),

(3) E(K1,n−2,1 − e) > E(K1,n−2,1).

Proof. For short, we write K1,i,n−i−1 as G, and n− i− 1 as t, where i ∈ {2, 3, n− 2}. Then

Q =

 0 i t

1 0 t

1 i 0

 ,

is a quotient matrix of G, and

Φ(Q, x) = x3 − (ti+ i+ t)x− 2ti.

It is easy to see that Φ(Q, x) = 0 has two negative roots, say −x1, −x2, and one positive root, say x3. Then

we have −x1−x2 +x3 = 0 and E(G) = E(Q) = 2x3. If we denote g(x) = 8φ(Q, x2 ) = x3−4(ti+ i+ t)x−16ti,

then E(G) = τ(g).

Similarly,

Q′ =


0 0 0 t

0 0 i− 1 t

0 1 0 t

1 1 i− 1 0

 ,

is a quotient matrix of G− e, and

Φ(Q′, x) = x4 + (−ti− i− t+ 1)x2 − 2(ti− t)x+ ti− t.

Obviously, Φ(Q′, x) = 0 has exactly two positive roots. Applying Lemma 4.2 to Φ(Q′, x), we can obtain

h(x) = x6−8(ti+t+i−1)x4+16
(
(ti+t)2+(i−1)2(2t+1)

)
x2−256(ti−t)2, such that E(G−e) = E(Q′) = τ(h).

Let

q(x) = x3 − 4((i+ 1)t+ i− 2)x+ 16ti,

r(x) = h(x)− q(x)g(x) = −16[(4ti− 4t− 1)x2 − 8tix− 16(2i− 1)t2].

Since q(x)− g(x) = 8x+ 32, τ(q) < τ(g) and τ(g) = τ(qg).

Case 1. Suppose i = 2. Then

h(x) =(x3 + 4x2 − (12t− 4)x− 16t)(x3 − 4x2 − (12t− 4)x+ 16t),

g(x) =x3 − 4(2 + 3t)x− 32t.

Suppose

h1(x) =x3 + 4x2 − (12t− 4)x− 16t, h2(x) = x3 − 4x2 − (12t− 4)x+ 16t,

r2(x) =
1

4
(h2(x)− g(x)) = −x2 + 3x+ 12t.

Then h1(x)−g(x) > 0 when x > 0, so τ(h1) < τ(g). Since h2(x) = (1−x)r2(x)+x+4t, h2(x) > 0 always

holds for any x > τ(r2) > 1. This means all the positive roots of h2(x) are in the interval (0, τ(r2)). On the
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other hand, we find that h2(x) > g(x) holds in (0, τ(r2)). Combining these with the fact g(x) = 0 has exactly

one positive root, we conclude τ(g) > τ(h2). Consequently, E(G) > max{τ(h1), τ(h2)} = τ(h) = E(G − e),
Hence, (1) holds.

Case 2. Suppose i = 3. Note that g(2
√

4t+ 3) = −48t < 0, and thus, τ(g) > 2
√

4t+ 3. Since

r(x) = −16((8 t − 1)x2 − 24 tx − 80 t2) has only one positive root, say x0, so r(x) is a decreasing function

for x > x0. It is easy to see x0 < 2
√

4t+ 3 when t ≥ 2. Therefore, h(τ(g)) = r(τ(g)) < r(2
√

4t+ 3) < 0 for

t ≥ 2. Hence, h(τ(g)) = r(τ(g)) < 0, and then τ(h) > τ(g), i.e., E(G− e) > E(G).

Case 3. Suppose i = n − 2. Then t = 1, and g(x) =
(
x2 − 2x− 8 i

)
(x+ 2), which yields that

E(G) = τ(g) = 1 +
√

1 + 8i.

Note that h(1 +
√

1 + 8i) = r(1 +
√

1 + 8i) = 32(−16 i2 + 36 i+ 5
√

8 i+ 1− 3) is a decreasing function

for i ≥ 3. Hence, h(1 +
√

1 + 8i) ≤ h(6) = −448 < 0 when i ≥ 3. Consequently, E(G − e) = τ(h) >

1 +
√

1 + 8i = E(G).

The following proposition is an immediate result from Lemma 4.1 and Lemma 4.3.

Proposition 4.4.

(1) E(K1,2,n−3 − e) < E(K1,2,n−3) for any edge e between 1-part and 2-part.

(2) E(K1,i,n−i−1 − e) > E(K1,i,n−i−1) for i ≥ 3 and any edge e between 1-part and i-part.

Combining these with the well-known results of bipartite graphs, we can get our main result.

Theorem 4.5. Let e be an edge between the ti-part and tj-part of Kt1,...,tk . Then:

(1) For k ≥ 4, if ti = tj = 1, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) > E(Kt1,...,tk).

(2) For k = 3, if ti + tj ≤ 3, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) > E(Kt1,...,tk).

(3) For k = 2, if min{ti, tj} = 1, then E(Kt1,...,tk − e) < E(Kt1,...,tk), otherwise, E(Kt1,...,tk − e) >

E(Kt1,...,tk).
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