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CHARACTERIZATION OF THE RESPONSE MAPS

OF ALTERNATING-CURRENT NETWORKS∗

GÜNTER ROTE†

Abstract. In an alternating-current network, each edge has a complex conductance with positive real part. The response

map is the linear map from the vector of voltages at a subset of boundary nodes to the vector of currents flowing into the

network through these nodes. In this paper, it is proved that the known necessary conditions for a linear map to be a response

map are sufficient, and we show how to construct an appropriate network for a given response map.
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1. Problem statement and background. An alternating-current network is an undirected graph G

in which each edge uw is assigned a conductance cuw = cwu ∈ C with positive real part: Re cuw > 0. Such

networks can model the physics of alternating current with a fixed frequency in an electrical network of

conductors, capacitors, and inductors [5, Section 2.4]. At least 2 of the nodes are designated as boundary

nodes (or terminals). Remaining nodes are called interior nodes.

A voltage is a complex-valued function Vu on the set of nodes such that the equilibrium condition

(1.1)
∑
uw

cuw(Vu − Vw) = 0

holds for each interior node u, where the sum is taken over the edges uw incident to u. In a connected

network, the voltage is uniquely determined by its boundary values [5, Section 5.1]. The current flowing into

the network through a boundary node u is

(1.2) Iu :=
∑
uw

cuw(Vu − Vw).

The response map is the linear map that takes the vector (Vu) of voltages at the boundary nodes to the

vector (Iu) of currents flowing into the network through the boundary nodes.

Which linear maps are response maps of alternating-current networks? This question has been posed as

an open problem [5, Problem 4.8], see also [6, Questions 1 and 2]. This note settles the problem: Theorem 2.1

shows that the known necessary conditions are sufficient.

Prasolov and Skopenkov [5] investigated alternating-current networks in connection with tilings of

squares (or more general polygonal shapes) by rectangles. The prototypical problem in this area is to

decide whether a square can be tiled by rectangles whose aspect ratio is selected from a range of given values

c1, . . . , cn, see [5, Problem 1.2]. (The aspect ratio of a rectangle is the height divided by the width.) The

rectangles can have arbitrary size, and the number of rectangles of each aspect ratio ci is not fixed. For the
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case of two values c and 1/c, (in other words, for one shape which may be scaled and rotated), Prasolov and

Skopenkov used alternating-current networks to give a new proof of the known characterization [5, Theo-

rem 1.5]. For the general case, they derived some necessary conditions [5, Theorem 1.3], and they expressed

hopes that the conjectured solution of their question (our Theorem 2.1) might allow further progress towards

a full characterization [5, Section 4.2].

The general electrical impedance tomography problem is to reconstruct the network from its response

map. This problem is more difficult and can only be solved when the structure of the network is constrained,

cf. [1, 2, 3, 4].

2. Statement and discussion of the characterization.

Theorem 2.1. Let Λ = S+Ti be a b× b complex symmetric matrix with S and T real, for b ≥ 2. Then

Λ describes the response map of some connected alternating-current network G with b boundary nodes if and

only if it satisfies the following conditions:

1. Λ has row sums 0.

2. The real part S is positive semidefinite.

3. The only solutions of Sx = 0 are the constant vectors x = (c, c, . . . , c)T .

If Λ is given, one can construct a suitable network G with 2b− 2 nodes.

It has been shown by Prasolov and Skopenkov that these conditions on Λ are necessary, see in particular

[5, Lemma 5.2 (5)] for condition 2 and [5, Remark 5.3] for condition 3, which depends on G being connected.

For the more familiar direct-current networks, i. e., networks with real (and nonnegative) conductances, it

is known that the response matrix must fulfill the above conditions 1–3, along with the condition that the

off-diagonal elements are ≤ 0. In this case, sufficiency is trivial, since one can take Λ directly as the Laplace

matrix (see Section 3 for the definition) of a network, without any interior nodes.

For alternating-current networks, sufficiency of conditions 1–3 is easy for b = 2, by the same reason as for

direct-current networks: Condition 1 implies that Λ is of the form
(
c −c
−c c

)
, and by conditions 2 and 3, c must

have positive real part. No interior nodes are needed: the network consists of a single edge of conductance c.

For b ≥ 3, however, the matrix Λ can have off-diagonal entries with positive real part, and this implies that

interior nodes are required, as discussed in Section 5 for the example of the 3 × 3 matrix (5.6). For b = 3,

sufficiency has been established by Prasolov and Skopenkov [5, Theorem 4.7], using one interior node. Their

construction is different from ours when specialized to the case b = 3. We do not know whether the number

b− 2 of interior nodes is optimal for b ≥ 4.

3. The Laplace matrix and the response matrix. We will now recall how the matrix of the

response map is computed, and we will prove a simple lemma that will be useful. The statements of this

section are basic linear algebra and hold both over the reals and over the complex numbers.

In the rest of the paper, In×n denotes the n × n unit matrix, Jm×n denotes the all-ones matrix of

dimension m× n, and jn = Jn×1 denotes the all-ones column vector of size n.

We can assume without loss of generality that the network has no loops: cuu = 0. The Laplace matrix

(or Kirchhoff matrix ) L of the network is a symmetric matrix, which is defined as follows: The off-diagonal
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edges Luv for u 6= v are the negative conductances:

Luv =

{
−cuv, if there is an edge between u and v,

0, otherwise.

The diagonal elements Luu are chosen to make the row sums 0:

Luu =
∑
uw

cuw.

If there are no interior nodes, the response matrix is equal to L. Otherwise, the response matrix can

calculated from L as follows. Assume that the nodes 1, 2, . . . , b are the boundary nodes, and b+ 1, . . . , b+ n

are the interior nodes. Partition L into blocks accordingly:

(3.3) L =

(
A B

BT C

)
with A ∈ Cb×b, B ∈ Cb×n, and C ∈ Cn×n.

Proposition 3.1. Let L be the Laplace matrix of a connected network G with at least one interior node,

partitioned into blocks according to (3.3). Then the submatrix C is invertible, and the response matrix R is

equal to the Schur complement of C in L:

R = A−BC−1BT .

This well-known formula follows easily from writing the equations (1.1–1.2) in block form and substi-

tuting the solutions, see [3, Theorem 2.3] or [4, Lemma 3.8 and Theorem 3.9].

Lemma 3.2. Assume that L is a (b+ n)× (b+ n) matrix of the form (3.3), C is invertible, and the last

n row sums of L are zero. Then the row sums of the response matrix R = A−BC−1BT are zero if and only

if the first b row sums of L are zero.

Proof. By assumption, the last n row sums of L are zero: BT jb+Cjn = 0, which implies C−1BT jb = −jn.

In view of this, zero row sums of R mean that 0 = Rjb = Ajb − BC−1BT jb = Ajb + Bjn, which in turn

expresses the fact that the first b row sums of L are zero.

4. Proof of sufficiency and construction of the network. Before giving the proof, we will study

the simple example of just one interior node y and boundary nodes x1, . . . , xb, see Figure 1. We give the edge

x1

x2

x3
...

xb

y

δ + iw1

δ + iwb

δ + iw2

δ + iw3

Figure 1. A network with one interior node y.

between xu and y a conductance δ+ iwu with a small positive real part δ, leaving the imaginary part wu as
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a parameter, subject to the constraint
∑b
u=1 wu = 0. Calculating the response matrix R by Proposition 3.1

gives Re ruv = (wuwv− δ2)/δb for the off-diagonal entries. Thus, with this method, one can produce, for the

real part of the response matrix, any positive semidefinite rank-one matrix (wuwv)/δb with row sums 0, up

to a small error δ/b in all entries.

By inserting more interior nodes in this way, we can build up a sum of positive semidefinite rank-one

matrices, and hence an arbitrary positive semidefinite matrix S with row sums 0. This is the main idea of

the construction for the real part S of Λ. We must take care of the accumulated error terms in the entries.

We are able to accommodate them since is there is some tolerance for changing all off-diagonal entries of S

by the same amount while keeping the eigenvalues nonnegative. We will in fact choose the parameter δ in

such a way such that S gains an additional zero eigenvalue, and this will allow us to save one interior node

in the construction.

The complex part of Λ can be handled as an afterthought. We assign a fixed positive real conductance

to every edge between two boundary nodes. This gives us the freedom to adjust the complex part of these

edges as we like. In this way, we can achieve any desired complex part of the response matrix.

We now begin with the formal proof of Theorem 2.1. As mentioned in Section 2, the case b = 2 can be

easily handled without interior nodes. We thus assume b ≥ 3 in order to avoid degenerate situations. Since

the real part S of the desired response matrix is symmetric, it can be written as

S = UDUT

with a diagonal matrix D = diag(λ1, . . . , λb) whose entries are the eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λb,

and an orthogonal matrix U whose columns are the corresponding normalized eigenvectors of S. Since S

is positive semidefinite, all eigenvalues are nonnegative. By assumption 3, S has only one zero eigenvalue:

0 = λ1 < λ2. From assumption 3 (or 1) of the theorem, we know the eigenvectors corresponding to λ1 = 0:

they are the multiples of jb. Thus, we can take the vector jb/
√
b as the first column of U .

We now decrease all positive eigenvectors by λ2, so that they remain nonnegative. Algebraically, we

replace the diagonal matrix of eigenvalues D by

D′ = D − λ2

[
Ib×b −

(
1 0 0 ···
0 0 0 ···
0 0 0 ···
· · · ·· · · ·· · · ·

)]
,

and this results in the matrix

(4.4) S′ = UD′UT = UDUT − λ2UUT + λ2jb/
√
b · jTb /

√
b = S − λ2Ib×b + λ2Jb×b/b.

In other words, S′ is obtained from S by increasing each off-diagonal entry by λ2/b and adjusting the diagonal

so that the row sums remain 0.

It will be convenient to rewrite (4.4) in a different way:

S′ = U
√
D′
√
D′UT =

(
U
√
D′
)(
U
√
D′
)T

= V V T ,

where the columns of V = U
√
D′ are no longer normalized. The columns of V correspond to the interior

nodes that we will add to the network. We can reduce their number by observing that, as the first two
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diagonal entries of D′ are zero, the first two columns of V are zero. They contribute nothing to S′ and can

be omitted, resulting in the real b× (b− 2) matrix W with

WWT = S′ = S − λ2Ib×b + λ2Jb×b/b.

To obey the conventions of Section 3, we denote by n = b − 2 the number of columns of W . (If the

eigenvalue λ2 has higher multiplicity, then more columns of V are zero and n can be further reduced.) Since

the columns of U are orthogonal and its first column is jb/
√
b, the remaining columns of U , and hence, all

columns of W are orthogonal to jb:

(4.5) WT jb = 0.

We are now ready to define the network. The imaginary parts of the conductances of the edges between

the boundary nodes are represented by a symmetric real b× b matrix F that will be determined later. With

the parameters δ := λ2/2n and ε :=
√
bδ, we set up the symmetric (b+ n)× (b+ n) matrix

L :=

(
λ2Ib×b − λ2

2b · Jb×b + iF −δJb×n + εiW

−δJn×b + εiWT δbIn×n

)
.

We have to show that it yields the desired response matrix Λ, and that it is indeed the Laplace matrix of a

network with n interior nodes. Let us calculate the response matrix R by Proposition 3.1:

R = λ2Ib×b −
λ2
2b
· Jb×b + iF − (−δJb×n + εiW )(δbIn×n)−1(−δJn×b + εiWT )

Its real part is

ReR = λ2Ib×b − λ2/2b · Jb×b − 1
δb (δ

2nJb×b − ε2WWT )

= λ2Ib×b − Jb×b(λ2/2b+ δn/b) +WWT

= λ2Ib×b − Jb×b(λ2/2b+ λ2/2b) + S − λ2Ib×b + Jb×b · λ2/b = S,

as desired. Since we can choose F arbitrarily, the imaginary part of R can be adjusted to any desired value T .

The straightforward calculation gives the explicit formula

F := T −
√
δ/b
(
WJn×b + Jb×nW

T
)
.

Thus, we have achieved R = Λ.

To conclude the proof, we still have to show that L is the Laplace matrix of a network whose conductances

have positive real parts: (a) All off-diagonal elements of L, whenever they are nonzero, have negative real

parts, namely −λ2/2b or −δ, and hence, the corresponding conductances have positive real parts. (b) Finally,

we need to check that the row sums of L are zero. The sums of the last n rows are −δJn×bjb + εiWT jb +

δbIn×njn = −δbjn + 0 + δbjn = 0, by applying (4.5) for the second term. Since the row sums of R = Λ are 0

by assumption, Lemma 3.2 allows us to conclude without further calculation that the first b row sums of L

are also 0.

5. An example. We have seen that the imaginary part of Λ is not an issue. Thus, for simplicity, we

choose a real matrix as an example:

(5.6) Λ =

 2 1 −3

1 2 −3

−3 −3 6


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This matrix has some positive off-diagonal entries. Hence, it is not the response matrix of a network without

interior nodes, and it cannot be the response matrix of any direct-current network whatsoever.

The eigenvalues of Λ are λ1 = 0, λ2 = 1, λ3 = 9. The matrix W has n = 1 column, which is the properly

scaled eigenvector
√
λ3 − λ2 · (1, 1,−2)T /

√
6 corresponding to λ3. One can recognize this vector in the last

column of the matrix L below in the imaginary parts. Our method sets δ = 1/2, ε =
√

3/2, and constructs

the following Laplace matrix:

L =


+ 5

6 −
2
3 i
√

2 − 1
6 −

2
3 i
√

2 − 1
6 + 1

3 i
√

2 − 1
2 + i

√
2

− 1
6 −

2
3 i
√

2 + 5
6 −

2
3 i
√

2 − 1
6 + 1

3 i
√

2 − 1
2 + i

√
2

− 1
6 + 1

3 i
√

2 − 1
6 + 1

3 i
√

2 + 5
6 + 4

3 i
√

2 − 1
2 − 2i

√
2

− 1
2 + i

√
2 − 1

2 + i
√

2 − 1
2 − 2i

√
2 3

2

 .
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