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MOORE-PENROSE INVERSE OF SOME LINEAR MAPS
ON INFINITE-DIMENSIONAL VECTOR SPACES*
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Abstract. The aim of this work is to characterize linear maps of infinite-dimensional inner product spaces where the
Moore-Penrose inverse exists. This MP inverse generalizes the well-known Moore-Penrose inverse of a matrix A € Maty, xm (C).
Moreover, a method for the computation of the MP inverse of some endomorphisms on infinite-dimensional vector spaces is
given. As an application, the least norm solution of an infinite linear system from the Moore-Penrose inverse offered is studied.
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1. Introduction. Given a matrix A € Mat,x,,(C), the Moore-Penrose inverse of A is the unique
matrix AT € Mat,,,x,,(C) such that:

o AATA = A;

o AT A AT = At
o (AAN* = AAT;
o (AT A)* = Al 4A;

where B* is the conjugate transpose of the matrix B.

The Moore-Penrose inverse of A always exists, it is a reflexive generalized inverse of A, [AT]T = A and,
if A € Mat,,x,(C) is non-singular, then A" coincides with the inverse matrix A~! (for details, readers are
referred to [2]).

Recently, the notion of generalized inverses of matrices A € Mat,, x.,,(C) has been extended to some linear
maps on infinite-dimensional vector spaces. Indeed, the authors have computed explicit solutions of infinite
systems of linear equations from reflexive generalized inverses of finite potent endomorphisms in [3] and,
also, the second-named author has generalized the notion of Drazin inverse to finite potent endomorphisms
in [4].

The aim of this work is to characterize linear maps of infinite-dimensional inner product spaces where the
Moore-Penrose (MP) inverse exists. This MP inverse generalizes the Moore-Penrose inverse AT of a matrix
A € Mat, xm(C). Moreover, a method for the computation of the MP inverse of some endomorphisms on
infinite-dimensional vector spaces is given. As an application, we study the least norm solution of an infinite
linear system from this Moore-Penrose inverse.
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The paper is organized as follows. In Section 2, we recall the basic definitions of this work: inner product
vector spaces, finite potent endomorphisms, reflexive generalized inverse and Moore-Penrose inverse of a
(n xm)-matrix. Also, in this section, we briefly describe the construction of Jordan bases for endomorphisms
admitting an annihilator polynomial.

Section 3 contains the main results the this work: the definition of linear map admissible for the Moore-
Penrose inverse (Definition 3.10), the proof of the existence and uniqueness of the MP inverse for these
linear maps (Theorem 3.12) and the conditions for computing the MP inverse for some endomorphisms on
infinite-dimensional vector spaces from the MP inverses of (n x n)-matrices (Theorem 3.20).

Finally, Section 4 is devoted to study infinite systems of linear equations from the Moore-Penrose Inverse.
Thus, Proposition 4.4 shows that if (V,g) and (W, g) are two arbitrary inner product vector spaces over R
or C, f: V — W is a linear map admissible for the Moore-Penrose inverse and f(z) = w is a linear system,
then fT(w) is the unique minimal least g-norm solution of this linear system.

2. Preliminaries. This section is added for the sake of completeness.
2.1. Inner product vector spaces. Let k be the field of the real numbers or the field of the complex
numbers, and let V' be a k-vector space.

An inner product on V is a map g: V x V — k satisfying:

e g is linear in its first argument:
g(Avy + pvg, v') = Ag(v1,v") + pg(ve,v’)  for every wvy,ve,v" € V;

e g(v',v) = g(v,v’) for all v,v" € V, where g(v,v’) is the complex conjugate of g(v,v’);
e g is positive definite:
g(v,v) >0 and g(v,v) =0<=v=0.

Note that g(v,v) € R for each v € V, because g(v,v) = g(v,v).

An inner product space is a pair (V, g).

If (V,g) is an inner product vector space over C, it is clear that g is antilinear in its second argument,
that is:

9(v, W + p) = Ag(v, v}) + fig(v, v3)

for all v,v},v4 € V, and X and [i being the conjugates of A\ and y, respectively.

Nevertheless, if (V, g) is an inner product vector space over R, then ¢ is symmetric and bilinear.

The norm on an inner product vector space (V, g) is the real-valued function

[-llg:V—R

v— +/g(v,v),

and the distance is the map
dg: VxV —R

(0,0") = [l = vllg.
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Simple examples of inner product vector spaces are Euclidean finite-dimensional real vector spaces and
complex Hilbert spaces.

Let us now consider two inner product vector spaces: (V,g) and (W, g). If f: V — W is a linear map, a
linear operator f*: W — V is called the adjoint of f when

9(f*(w),v) = g(w, f(v))
forallv eV and w e W. If f € Endg(V), we say that f is self-adjoint when f* = f.

Moreover, if (V,g) and (W,g) are finite-dimensional inner vector spaces over C, B = {vy,...,v,,}
and B’ = {wy,...,w,} are orthonormal bases of V and W, respectively, f: V — W is a linear map,
A € Mat,xm(C) and f = A in these bases, then f* = A* € Mat,;;«,(C) in the same bases, where A* is the
conjugate transpose of A.

2.2. Jordan bases for endomorphisms admitting an annihilator polynomial. Let V' be an
arbitrary vector space over a ground field k, and let f € Endg (V) be an endomorphism of V' admitting an
annihilator polynomial

afg(w) = p1(z)"" - pp(z)",

where p;(x) are irreducible polynomials in k[z] and n; are positive integers.

For each j € {1,...,r}, we can consider

vi(V.p;(f)) = dimp, (Kerp;(f)'/[Kerp;(f)' ™" +p;(f) Kerp(f)™]),
with K; = k[x]/pj(x) Henceforth, S, (v,p,(r)) Will be a set such that #S,, (v, (r)) = vi(V,p;(f)), with
Sui(vips (1) N Sunvips () = 0 for @ # h.

According to the statements of [5], there exist families of vectors {Uzj}hesywp.(f)) with
A ]

vzj € Kerpj(f)i and v,ilj ¢ Kelrpj(f)j’_1 +p;(f) Kerpj(f)H'1
forall 1 < j <rand 1 <i < nj, such that if we set
H! =<wv! >= | Aos(" Wi Lo (D)) mi (5 (o))
0<s<i—1
where d; = dimy K, then
U <o) >;
l<j<r
1 S ) S n;
h € Sui(vip; (1)
is a Jordan basis of V for f, and this basis determines a decomposition
(2.1) V= &y H).
1<j<r
1 S 7 S Uz

h €Sy, vp,5)
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EXAMPLE 2.1. (Jordan bases for a nilpotent endomorphism) Let V' be a vector space over an arbitrary
field k and let f € Endg(V) be a nilpotent endomorphism. If f has index of nilpotency n, setting Wif =
Ker fi/[Ker fi=! + f(ker f*1)] with i € {1,2,...,n}, u(V,f) = dimpyW; and Su.(v.p) a set such that
#S,, v, = wi(V, f) with Sy, (v, 5y NSy, (v,5) = 0 for all i # j, one has that there exists a family of vectors
{vs, } that determines a Jordan basis of V for f:

(2.2) B= U v @) f @)

8i € Sp,(v,f)

1<1<n
Moreover, if we write H = (vs,, f(vs,), ..., f""'(vs,)), the basis B induces a decomposition
(2.3 v- @ ul.
S; € S;M(V,f)
1<i<n

2.3. Finite potent endomorphisms. Let k& be an arbitrary field, let V' be a k-vector space and let
¢ € Endg (V). We say that ¢ is “finite potent” if ™V is finite dimensional for some n. This definition was
introduced by J. Tate in [7] as a basic tool for his elegant definition of Abstract Residues.

In 2007 M. Argerami, F. Szechtman and R. Tifenbach showed in [1] that an endomorphism ¢ is finite
potent if and only if V' admits a ¢-invariant decomposition V' = U, @ W, such that Plu, is nilpotent, W,

is finite dimensional, and Plw, * W, — W, is an isomorphism.

2.4. Reflexive generalized inverses. Let C be the field of complex numbers. Given a matrix A €
Mat,, xm (C), a reflexive generalized inverse of A is a matrix AT € Mat,, x,,(C) such that:

o AAT A=A
o ATAAT = AT,
In general, the reflexive generalized inverse of a matrix A is not unique.

The notion of reflexive generalized inverse in arbitrary vector spaces is the following:

DEFINITION 2.2. If V and W are k-vector spaces, given a morphism f: V' — W, a linear map
fT: W =V is a “reflexive generalized inverse” of f when:

o foffof=F
o ffofoft=f"

For every reflexive generalized inverse f+ of f, if w € W, it is known that
(2.4) welm f < (fofh)(w)=w.

3. Moore-Penrose inverse of linear maps on infinite-dimensional vector spaces. This section
is devoted to proving the existence of a Moore-Penrose inverse of some linear maps on infinite-dimensional

vector spaces, such that it generalizes the notion and the properties of the Moore-Penrose inverse of an
(n x m)-matrix with entries in C. Our generalization will be valid for linear maps on inner product vector
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spaces over k = R and & = C and we shall give conditions for computing the Moore-Penrose inverse of
endomorphisms on infinite-dimensional vector spaces.

To do so, we shall first study some properties of the Moore-Penrose inverse of an endomorphism on a

finite-dimensional inner product space.

3.1. Moore-Penrose inverse of an endomorphism on finite-dimensional inner product vector
spaces. Let us now consider a finite dimensional inner product vector space (E, g) over k =R or k = C.

If f € Endy(E), one has that E = Ker f @ [Ker f]* = Im f @ [Im f]*, and there exists an isomorphism

f: [Ker f]* =5 Imf.

Thus, the Moore-Penrose of f is the unique linear map fT € Endy(E) such that

(fio ) He) if e€lmf
Te _ [Ker £] -
(35) 71e) { S

It is known that fT is the unique linear map such that:

e f1is a reflexive generalized inverse of f;
e fTofand foff are self-adjoint.
DEFINITION 3.1. If f € Endi(E) and Hy = {Hi,..., Hy,} is a family of subspaces of E invariants for f

such that £ = Hy @ --- ® H,,, we define the endomorphism f;,‘_'[f € Endg(FE) as the unique linear map such
that

[f;f]lHi = [f|Hi]T for each e {1,...,n}.

If we denote f; = f‘Hi for each 7 € {1,...,n}, it is clear that for every vector e € E, such that
e = hj1 + -+ hjn Wlth hji S Hi, then

@) = L (hg) + -+ i (h,)-

Moreover, it is immediately observed, from Definition 3.1 and from the properties of the Moore-Penrose
inverse, that f;_?f is a reflexive generalized inverse of f for every family H;.

Keeping the previous notation and given a subspace W C E, such that W C H; for a certain ¢ €
{1,...,n}, we shall denote

Wit = {v; € H; such that g(w,v;) =0 for all we W}.

LEMMA 3.2. IfU C E is a subspace and {Uy,...,Uy,} are subspaces of U such that U =U; & --- & U,

Wi @@ [Uns CUT  if and only if [Ui)i C [Z Ujlt forall ic{l,...,n}.
i
Proof. If [U1]f @ --- @ [Upn)f C U™, then [U;] C UL for all i € {1,...,n} and we deduce that

n

(Uil €[22, Ujl*- foralli e {1,...,n}

—
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Conversely, if [U;]i+ C (>4 Uj]* for all i € {1,...,n}, one has that
glog+ -+ ovp,ur+- -4 u,) =0

with v; € [U;]; and w; € U; for all i € {1,...,n} and, therefore, we obtain that [U1]{ @ --- @ [U,,]

3

LEMMA 3.3. Using the previous notation, we have that:

Imf=Imfi®---®Im f,;

IfHt =[Im filf @ @ [Im f,.);5, then E =Im f ® H+;
Ker f=Ker fi & ®Ker fn;

If Hi = [Ker fil{ ©--- @ [Ker fuly, then

Ll e

_ 771,
E=XKer f®Hy;
5. f induces an isomorphism between 7—7}* and Im f and
(f)Ne) if eetmf
f .
‘ 1L
0 if e€Hy

Proof. 1. Tt is clear that Im f; @ --- @ Im f,, C Im f. Moreover, given e € Im f, if e = f(e’) with
e'=ej +---+e) ande) € H; forallie{l,...,n}, then

(3.6) [, 1(e) =

e=fle)+-+flej)emfrd---dImfp,

because f(v}) € H; for every i € {1,...,n}.

i

2. Since H; = Im f; @ [Im f;]; for all i € {1,...,n}, we have that

E=H& - ©H,=Imfi®[mfi]{)® & dmf, ® [Im f,];)
=(mfi®---®Imf,)® (Imfily @ @ [Im f];;) = Im f & Hy.
3. It is immediate that Ker f; @ --- & Ker f,, C Ker f. Furthermore, if € € Ker f and

e€=¢é; +---+¢;, with é; € H; forevery i€ {l,...,n},

since
F@)+ o+ f(E,) =0 and H;N[Y_ H]=0,
r#i
we conclude that f(e;;) = 0 for all ¢ € {1,...,n}, from which it is deduced that
Ker f C Ker f1 @ --- @ Ker f,,.
4. Similar to (2).
5. Tt is a direct consequence of (2), (4) and the definition of fﬂf. 0

REMARK 3.4. With the previous notation, in general ﬁ; # [Ker f]*+ and ’HJ% # [Im f]*, which is
deduced from the following counter-example.

Let E = {(vy,vq,v3,v4) be a inner product k-vector space, B = {v1,v2,v3,v4} being an orthonormal
basis, and let us consider the endomorphism f: E — E defined as:

U1 if i=1,2
flu) = —2v; if i=3
v +vetug if i=4
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If we set Hy = (v1,v2) and Ha = (v1 + v + v3,v4), it is clear that H; and Hy are f-invariant and, if we
again denote fi = f, and fo = f}, , we have that:

Im f; = (v1) and [Im f1]{ = (v2);

Im fo = (v1 + vz +v3) and [Im fo]y = (va);

Im f = (v1,v1 + v2 + v3) and [Im f]* = (vo — v3,v4);

Ker f; = (v; — v2) and [Ker f1]1 = (v1 + vo);

Ker fo = (v + vz +v3) and [Ker folo = (va);

Ker f = (v) — v2,v; + vo +v3) and [Ker f]* = (vy + vo — 203, v4).

Accordingly, 7—7}‘ # [Ker f]* and H;* # [Im f]* in this case.

REMARK 3.5. Given an endomorphism f € Endg(F), in general fﬂf is not the Moore-Penrose inverse
of f.
EXAMPLE 3.6. If f and H; = {Hy, H>} are as in Remark 3.4, a computation shows that

1 e
V1 + =U9 if 1=1

2072
+ () = 1 1 e
fo(Ul)_ e L if i=3
0 if =24
and

- —|—1U - =U if i=1
61)1 6 2 3 3 =
! ! +1 -I-l if 1 =2
——V1 — =V v v if i=

Fvy) = 12 12776 " 2"
: CHPRE if =3
12’01 12’02 6113 21}4 I 1=
0 if i=4

Readers can easily check that f;t_f is a reflexive generalized inverse of f (Definition 2.2), although it is clear
that f;f £ ft.
LEMMA 3.7. With the above notation, we have that ’HJ‘ [Im f]* if and only if

[Im f;] Zlmfj for every i€ {l,...,n}.

J#i
Proof. Considering that £ =Im f & HJ% and [Im f]* NIm f = {0}, the statement is deduced bearing in
mind that this condition is equivalent to ’HJ% C [Im f]* (Lemma 3.2). o

Similarly, one can prove that
LEMMA 3.8. We have that ’HJ‘ [Ker f]* if and only if
[Ker f;]+ ZKer 1T for every i€ {l,....n}.
J#i
PROPOSITION 3.9. If f € Endy(E) and Hy = {H1,...,H,} is a family of subspaces of E invariants for
f such that E=H,&---® H,, and H; C [XIJ»?&‘H']L forallie {1,...,n}, then f;zf = fh.

Proof. 1t H; C [, H;]* for all i € {1,...,n}, then the conditions of Lemma 3.7 and Lemma 3.8
hold. O
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3.2. Moore-Penrose inverse of linear maps on arbitrary inner product spaces. We shall
now generalize the notion of Moore-Penrose inverse to some endomorphisms of arbitrary vector spaces, in
particular some infinite-dimensional vector spaces.

Henceforth, (V, g) and (W, g) will be inner product vector spaces over k, with k = C or k = R.

DEFINITION 3.10. Given a linear map f: V — W, we say that f is admissible for the Moore-Penrose
inverse when V = Ker f @ [Ker f]+ and W = Im f @ [Im f]*.

REMARK 3.11. It is known that there exist infinite-dimensional vector spaces V' and vector subspaces
U C V such that V # U @ UL. In this case, if V = U @ W, it is clear that the linear map f,, € Endy(V)
defined as

0 if velU
fu(v)={

v if veW
is not admissible for the Moore-Penrose inverse.

THEOREM 3.12 (Existence and uniqueness of Moore-Penrose inverse). If (V,g) and (W, g) are inner
product spaces over k, then f: V. — W is a linear map admissible for the Moore-Penrose inverse if and only
if there exists a unique linear map f1: W — V such that:

1. fT is a reflexive generalized inverse of f;

2. ftof and fo ft are self-adjoint, that is:
o 9([fTo fl(v),v') = g(v, [fT o f]("),
o g([f o fT)(w),w') = g(w, [f o fT](w)

for allv,v' € V and w,w' € W.

Proof. If f is admissible of the Moore-Penrose inverse (Definition 3.10), then the restriction f| or F11 is

an isomorphism between [Ker f]* and Im f and there exists a linear map satisfying that

fH(w) = {(f'lKeer)_1<w) wein/ :
0 if we [Imf]*
In this case, f is unique.
We now check that fT satisfies the conditions of the statement.
Firstly, since

w if welmf

@] Jr w) =
(o fHw) {o if w e [Imf]*

and (ff o f)(v) = vy with v = v; + vy (v1 € [Ker f]* and vy € Ker f), it is clear that fT is a reflexive
generalized inverse of f because:

o (foffof)(v)=f(v);
o (ffofof)(w)=fi(w).
Moreover,
glw,w") if w,w’ €Imf
g((f o fNw),w') = g(w,[fo fYw)) =4 0 if wemf]* .
0 if w' € [Imf]*
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And, if v,v" € V with v = vy + va, v/ = v} + v}, v1,v] € [Ker f]* and vq, v} € Ker f, one has that

g([fT o f](v),0") = g(v1,0}) = g(v, [fT o f](v").
Hence, we conclude that fT satisfies the conditions of the theorem.

For proving the uniqueness of the Moore-Penrose inverse of f, let us consider a linear map f: W -V
such that

1. f is a reflexive generalized inverse of f,

2. g([f o f](v),v) = g(v, [ o f1(v"),

3. g([f o fl(w),w') = g(w, [f o fl(w')
for all v,v’ € V and w,w’ € W.

A direct consequence of (1) is that (fo f)?= fof. Hence, fo f is a projection and, since
Im f=Im (fofof)Clm(fof)CIm f,
then Im (fof) =1Im f.

Accordingly, given w € Imf, there exists w € W such that (f o f)(w), and then
(fo Fw)=(fof)@@)=(fof)w)=uw.

Furthermore, if w’ € [Im f]*, we have that

0=g([f o fI2(w'),w') = g([f o fl(w), [f o fl(w')) = [f o fl(w') = 0.
Thus,

~ w if w m
(fof)(w)z{ cfmf

0 if we [Imf]*t

and, in particular, f(w') = 0 when w’ € [Im f]*.
In line with the above arguments, one has that (f o f)2 =fo fand Im (fo f)=Im f

Now, if v € Im f, v = [f o f](¥) and v € Ker f, then
g(v,v') = g([f o f](¥),0') = g(v,0) =0,

and we deduce that Im f C [Ker f]*.

Finally, since f|[Ker L [Ker f]* =5 Im f and (f o f) =1d,, ,, then

|Im f

(f)llm ;= (f\[Kerf]L)_l = f= sl

Conversely, let us assume that there exists the Moore-Penrose inverse f': W — V of a linear map
f:V — W. Based on the same arguments as above one immediately has that:

e foftand ffof are projections;
e Im (foff)=Im f;



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 570-586, August 2020.

Yolen

579 Infinite Moore-Penrose Inverse

o [Im f]* € Ker(f o f7);
e Im (fTof)C [Ker f]*.

Moreover, if w ¢ [Im f]* there exists w € W such that

0# g([f o f11*(@), w) = g([f o fT](@), [f o fT)(w)),
from where we deduce that w ¢ Ker(f o fT) and [Im f]* = Ker(f o fT).

On the other hand, it is clear that Ker f C Ker(f'o f) and, if v € V with f(v) # 0 then v ¢ Ker(fTo f),
because

f)=(foflof)v)#0.

Hence, Ker f = Ker(ff o f) and, bearing in mind that if ¢ € End(V) is a projection then V =
Ker g & Im g, one concludes that

V =Ker(ffof)®Im (ff o f) = Ker f & [Ker f]*
and
W =Ker(fofHYy@Im (foff)=Im f&[Im f]*.

Accordingly, f is admissible for the Moore-Penrose inverse and the statement is deduced. |

The operator fT characterized in Theorem 3.12 is named the Moore-Penrose inverse of f.

Since each isomorphism g: V' — W is admissible for the Moore-Penrose inverse, a direct consequence of
Theorem 3.12 is that gt = ¢g=!, where ¢! is the inverse map of g.

COROLLARY 3.13. If (V,g) and (W,g) are inner product spaces over k and f:V — W is a linear map
admissible for the Moore-Penrose inverse, then f1 is also admissible for the Moore-Penrose inverse and
(fHt=r.

Proof. This statement is deduced from Theorem 3.12 bearing in mind that:

Im f1 = [Ker f]*;
[Im f1]+ = Ker f;
Ker f1 = [Im f]*;
[Ker 1]+ =Tm f. 0

Moreover, if f: V' — W is a linear map admissible for the Moore-Penrose inverse and Py, s+ and
Piy 5 are the projections induced by the decompositions V' = Ker f @ [Ker f]* and W = Im f & [Im f]*,
respectively, we obtain from the arguments of the proof of Theorem 3.12 that

COROLLARY 3.14. If (V,g) and (W, g) are inner product spaces over k and f: V — W is a linear map
admissible for the Moore-Penrose inverse, then

i fTof:P[kerf]i;
o fofl=Ppy,;.

3.3. Computation of the Moore-Penrose inverse of endomorphisms on arbitrary inner
product spaces. Similar to the finite-dimensional situation, given an inner product space (V,g) over
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k, f € Endg(V) let us assume that there exists a family of f-invariant finite-dimensional subspaces,
M = {H;}ier, such that
V= @H
il
Note that this assumption is always satisfied when f admits an annihilator polynomial.
To simplify, fixing a family Hy, we shall denote f; = f|,, .

DEFINITION 3.15. The unique linear map f;_tf € Endg (V) such that [f;{rf]‘Hi = f;r for every ¢ € I is
called the generalized inverse of f associated with the family H .

For each vector v € V', if v = vy, + -+ +v;, with v;; € H;;, then
i, @) = )+ + £l (),

If f is admissible for the Moore-Penrose inverse, our purpose is to determine when f;{'f = ft. To do
this, the generalization onto infinite-dimensional vector spaces of Lemma 3.3 is:

LEMMA 3.16. We have that:

1. Im f = @Imfi;
2. If H+ :le_éB[Im fili, then V. =Tm f © H+;
3. Ker f = éGBIKer fis
4. If 7-[J- :léé[Ker fili, then V =Ker f @ 7—7%,
5 f induce;in isomorphism between 7?[}‘ and Im f.
Proof. 1. Tt is clear that @Imfi C Im f. Moreover, given v € Im f, if v = f(v') with v/ =
v, 4 v; and vj € Hijzef(l)r all j € {1,...,s}, then

v=fl) 4+ fWL) € @Imfi,

i€l

2. Since H; = Im f; & [Im f;];- for all i € I, we have that

because f(v;,) € H;; for every j € {1,...,s}.

iel iel
iel iel
3. It is immediate that @ Ker f; C Ker f. Furthermore, if v € Ker f and

icl
V=10 +--+0, with v; € Hy, forevery je{l,...,k},

since
@)+ + f(@,) =0 and H, N[y H,]=0,
r#i

we conclude that f(v;,) = 0 for all j € {1,...,k}, from which it is deduced that Ker f C @ Ker f;.
iel
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4. Similar to (2).
5. It is a direct consequence of (2) and (4). 0

It is now easy to prove that the generalization onto an arbitrary vector space V of the Lemma 3.2 is the
following:

LEMMA 3.17. With the previous assumptions on V and H;y = {U;}ier, if U C V is a subspace and
{U;}ier is a family of subspaces of U such that U = @ U; with U; C H;, then
il

& U CUH <= [U)F cD_U)*- forall i€l

i€l Y
J#i

Accordingly, we have that:

LEMMA 3.18. If (V. g) is an inner product vector space over k, f € Endy(V), and Hy = {H;}icr with
V = @H; and each H; is f-invariant, then H+ = [Im f]* if and only if

i€l
[Im f;];- ZIm il £ for every i€ l.
J#i
Proof. This statement is the generalization of Lemma 3.7 to arbitrary vector spaces. ]

Moreover, similar to Lemma 3.8 one has that:

LeMMA 3.19. If (V,g) is an inner product vector space over k, f € Endp(V), and Hy = {H;}icr with

V = @H,; and each subspace H; is f-invariant, then ﬁf; = [Ker f]* if and only if
iel

[Ker fz ZKer f] for every i€ l.
J#i

THEOREM 3.20. If (V,g) is an inner product vector space over k, f € Endy(V) is admissible for the

Moore-Penrose inverse, and Hy = {H,;}ier with V. = @H; and each subspace H; is f-invariant, then
icl
fﬂf = f1 if and only if the following conditions are satisfied:

L. [Im f;]+ C [Zﬁéi Im f;]* for everyi € I;
2. [Ker fili C [>_; 2 Ker fi]+ forallie 1.
Proof. The claim is a direct consequence of Lemma 3.18 and Lemma 3.19. a0

COROLLARY 3.21. If (V,g) is an inner product vector space over k, f € Endp(V'), Hy = {H;}icr with

V = @H; and each subspace H; is f-invariant, and H; C [}, H;]* for everyi € I, then f is admissible
iel
for the Moore-Penrose inverse and f;zf = ft.

Proof. With the hypothesis of this Corollary the conditions of Theorem 3.20 are satisfied. ]

ExAMPLE 3.22. Let (V,g) be an inner product vector space of countable dimension over k. Let
{v1, v2,v3, ...} be an orthonormal basis of V indexed by the natural numbers.
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Let ¢ € Endg (V) the finite potent endomorphism defined as follows:

p(vi) =

for all A > 1.

We can consider the decomposition V' = €

Hy = (vi)ieq1,..,100 and  Hj = (Vsjy1, V5512, Vs 43, Usjtd, Usjts)

for every j > 2. It is clear that H; is a -invariant subspace of V for every ¢ € N.

In the above bases one has that

01 0
1 3 0
0 0O
0 0 1
110 0
Pl =10 0 o
0 0O
0 0O
0 0 0
0 0 0
and

Pla, =

for all 7 > 2.

Thus, bearing in mind that:

o Imy = (v1,v2,v3,04,05) B [,§1<U5j+1’v5j+2vvsj+4av5j+5>} and [Im ¢]* = ,€>Bl<v5z'+3>;
) (-

o Kerp = ,@>91<Usi+2> and [Ker o] - = (

Vo 4+ v5 + U7
v1 + v
Vg

U1 — U3

—v3 + 2v5 + 2v7

3Vi41
0

—Vi—2 + 20; 11

Vi—2 + Vit1

—Vj—4 + OV;_3

ieN

1 0 0
0o 0 0
-1 -1 0
0 0 0
0 2 0
0 0 0
0o 0 0
0 0 O
0 0 0
0 0 O
0 0 -1
3 0 0
0 0 O
0 0 2
0 0 O

H; where

_ o O = O

if
if
if
if
if
if
if
if
if
if

O OO DO DO OO o oo

1=1
1=2
1=3
1=4
1=25
1=5h+1
1=>5h+2
i =>5h+3
i =5h+4
1=05h+5

O O O O O
_ O O O O o o o oo

o N OO

o O O Ot

|
L O oo oo

o O O O

U1, V2, U3, V4, Us) B [A€>51<U5j+1,715j+3a Usjt+4,Usjt5)];
12

IL
AS

582



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 36, pp. 570-586, August 2020.

583 Infinite Moore-Penrose Inverse

we have that ¢ is admissible for the Moore-Penrose inverse and, since {v; };¢s is an orthonormal basis of V|
Corollary 3.21 holds for ¢.

Accordingly, a non-difficult computation shows that

6 -2 6 0 3 0 0 0 O 0
-2 1 -2 0 -1 0 0 0 O 0
0 0 0 1 0 0 0 0 O 0
3 -1 2 0 1 0 0 0 O 0
-3 1 -3 0 -1 0 0 0 O 0
=0 0 0 0 -1 5 Lo & -
0 0 0 0 0 0 0 0 O 0
o 0 0 0 0O 0 00 35 0
0 0 0 0 O 0 0 0 O 1
o 0 0 0 0 -1 00 —% 0
and . . )
3 3 0 § -3
0 0 0 O 0
@, =0 00 5 0
0 0 0 O 1
-1 0 0 —% 0
for all i > 2, from where the endomorphism ¢! is determined.
Thus, the explicit expression of ¢! is
6v, — 2vg 4 3vg — 3vs — vy if i=1
72’L}1+U27’U4+U5+’U7 lf Z:2
6v1 — 2v9 + 204 — 3vs — vy if i=3
V3 if i=4
1 e
3@1—v2+v4—v5—§vg—v7 if i=5
51} v if i=5h+1
Vi — Vitda =
ol (v;) = 3
1
g’l)i,1 if i=2>5h + 2
0 if i=5h+3
5 1 1 e
E’Ui_g + 5’01‘_1 — §Ui+1 if i=5h+4
1 e
—§Ui74 + v 1 if i=2>5h +5

for all A > 1.

REMARK 3.23. We wish point out that this example shows that the Moore-Penrose inverse of a finite
potent endomorphism is not, in general, a finite potent endomorphism.
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4. Study of infinite systems of linear equations from the Moore-Penrose inverse. The aim of
this final section is to study solutions of infinite system of linear equations from the Moore-Penrose inverse
of linear maps characterized in the previous section.

DEFINITION 4.1. If V and W are two arbitrary k-vector spaces and f: V — W is a linear map, a linear
system is an expression

f(@) = w,

where w € W. This system is called “consistent” when w € Im f.

If V and W are infinite-dimensional vector spaces, fixing bases of V' and W, the linear system f(x) = w
is equivalent to an infinite system of linear equations.

If a linear system f(x) = w is consistent and f(vy) = w for a certain vy € V, then the set of solutions
of this system is vg + Ker f. The vector vy is named “particular solution” of the system.

Let us now consider two arbitrary inner product spaces (V,g) and (W, g) over k, let f: V — W be a
linear map admissible for the Moore-Penrose inverse and let, fT be its Moore-Penrose inverse. If f(z) = w is a
linear system , since fT is a reflexive generalized inverse of f, then f is consistent if and only if (fo fT)(w) = w
and, in this case, the set of solutions of the linear system is

fH(w) + Ker f.

In finite-dimensional inner product vector spaces, it is known that the Moore-Penrose inverse is useful
for studying the least squares solutions of a linear system. To complete this work, we shall generalize this
notion to arbitrary vector spaces.

DEFINITION 4.2. If (V, g) and (W, g) are two arbitrary inner product spaces over k, then v’ € V is called
“least g-norm solution” of a linear system f(z) = w when

1£ (") = wlg < 1 (v) —wll

for all v e V.

Note that v € V is a least g-norm solution of the linear system f(z) = w if and only if dg(w, f(v')) =
dg(w,Im f).

DEFINITION 4.3. If (V, g) and (W, g) are two arbitrary inner product spaces over k, then ¢ € V is called
“minimal least g-norm solution” of a linear system f(x) = w when

150y < 10"llg

for every least g-norm solution v’ € V.

ProrosiTION 4.4. If (V,g) and (W, g) are two arbitrary inner product spaces over k, f: V. — W is a
linear map admissible for the Moore-Penrose inverse and f(x) = w is a linear system, then fT(w) is the
unique minimal least g-norm solution of this linear system.

Proof. Firstly, since Im(f o fT —1d) C [Im f]*, one has that

1£(v) = w3 = I1F () = F(FF )] + [F (T (w)) = w]|l}

4.7
o = [If (w) = £ )5 + 1 (£ (w) = wlF
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for all v € V. Hence,
1£(FT(w) = wllg < I1f(v) = wlg
for all v € V, and we deduce that fT(w) is a least g-norm solution of f(z) = w.

Moreover, it follows from (4.7) that v’ € V' is a least g-norm solution of this linear system if and only if
f(') — f(fT(w)) = 0, that is, v’ is a solution of the consistent system

f(a) = f(fT(w)) = 0.
Thus, for each least g-norm solution v’ € V, one has that
ffw)=v"+h,

with h € Ker f and, bearing in mind that f(w) € [Ker f]*, we conclude that f(w) is the unique minimal
least g-norm solution of f(x) = w because

IFF)llg < 110l

for every v’ # ft(w). |

EXAMPLE 4.5. Let (V,g) be an inner product space of countable dimension over k. Let {v1,v2,v3,...}

be an orthonormal basis of V' indexed by the natural numbers. If (z;);en € @k, since z; = 0 for almost all
ieN
i € N, we shall write z = (z;) to denote the well-defined vector

x:in-vieV.

ieN
Let ¢ € Endg (V) the finite potent endomorphism studied in Example 3.22. We can consider the system

@(m) = w,
where w = (a;);en and whose explicit expression is:

T2 +Tg = 0

T +3l‘2 = Qg

—T4 — T5 = Q3

T3 = 0y

I +2£L’5 = Q5

—Zxg — T10 = G

1 + 25 + 326 + 9 + 210 = Q7

0 = aspys for all

2x5h43 = asppq  for all

—T5h43 — Tshys = Qspy1  for all

h

h
Tshtd = Qspt5 forall h >

h

h

3%5n41 + Tshya + 5Tspys = aspye forall h >
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By Proposition 4.4, we have that the unique minimal least g-norm solution of this linear system is
(Bi)ien = @' (w) and, bearing in mind the expression of ' obtained in Example 3.22, an easy computation
shows that

61 — 2ai0 + 6z + 3as if i=1
—201 + a9 — 203 — ag if i=2
Qy if 4=
31 — as + 2a3 + as if 4=
—3a1 + ay — 3az — as if =5

——a +§a —i—la +§a—la it i=6
305 T 306 T 307+ £Q9 = 2010 =

Bi = 0 if =7
1
50@4_1 if i=5h+3, forallh>1
Qg1 if i=5h+4, forallh>1
1
—Oli_g — iai_l if i=5h+5, forallh>1
> —|—1 —|—5 L if i=5h+1, forallh>2
—; + -y —Qjgr3 — —Q if = r
3 7 3 i+1 6 i+3 3 i+4 5 =
0 if i=5h+2, forallh>2

Moreover, one have that
0 if i=5h+3

v; otherwise

(po@h)(v) =

Thus, according to (2.4), the system (4.8) is consistent if and only if as,+3 = 0 for all A > 1, and, in
this case, (5;)ien is a particular solution of it.
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