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Abstract. The aim of this work is to characterize linear maps of infinite-dimensional inner product spaces where the

Moore-Penrose inverse exists. This MP inverse generalizes the well-known Moore-Penrose inverse of a matrix A ∈ Matn×m(C).

Moreover, a method for the computation of the MP inverse of some endomorphisms on infinite-dimensional vector spaces is

given. As an application, the least norm solution of an infinite linear system from the Moore-Penrose inverse offered is studied.
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1. Introduction. Given a matrix A ∈ Matn×m(C), the Moore-Penrose inverse of A is the unique

matrix A† ∈ Matm×n(C) such that:

• AA†A = A;

• A†AA† = A†;

• (AA†)∗ = AA†;

• (A†A)∗ = A†A;

where B∗ is the conjugate transpose of the matrix B.

The Moore-Penrose inverse of A always exists, it is a reflexive generalized inverse of A, [A†]† = A and,

if A ∈ Matn×n(C) is non-singular, then A† coincides with the inverse matrix A−1 (for details, readers are

referred to [2]).

Recently, the notion of generalized inverses of matrices A ∈ Matn×m(C) has been extended to some linear

maps on infinite-dimensional vector spaces. Indeed, the authors have computed explicit solutions of infinite

systems of linear equations from reflexive generalized inverses of finite potent endomorphisms in [3] and,

also, the second-named author has generalized the notion of Drazin inverse to finite potent endomorphisms

in [4].

The aim of this work is to characterize linear maps of infinite-dimensional inner product spaces where the

Moore-Penrose (MP) inverse exists. This MP inverse generalizes the Moore-Penrose inverse A† of a matrix

A ∈ Matn×m(C). Moreover, a method for the computation of the MP inverse of some endomorphisms on

infinite-dimensional vector spaces is given. As an application, we study the least norm solution of an infinite

linear system from this Moore-Penrose inverse.
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The paper is organized as follows. In Section 2, we recall the basic definitions of this work: inner product

vector spaces, finite potent endomorphisms, reflexive generalized inverse and Moore-Penrose inverse of a

(n×m)-matrix. Also, in this section, we briefly describe the construction of Jordan bases for endomorphisms

admitting an annihilator polynomial.

Section 3 contains the main results the this work: the definition of linear map admissible for the Moore-

Penrose inverse (Definition 3.10), the proof of the existence and uniqueness of the MP inverse for these

linear maps (Theorem 3.12) and the conditions for computing the MP inverse for some endomorphisms on

infinite-dimensional vector spaces from the MP inverses of (n× n)-matrices (Theorem 3.20).

Finally, Section 4 is devoted to study infinite systems of linear equations from the Moore-Penrose Inverse.

Thus, Proposition 4.4 shows that if (V, g) and (W, ḡ) are two arbitrary inner product vector spaces over R
or C, f : V →W is a linear map admissible for the Moore-Penrose inverse and f(x) = w is a linear system,

then f†(w) is the unique minimal least ḡ-norm solution of this linear system.

2. Preliminaries. This section is added for the sake of completeness.

2.1. Inner product vector spaces. Let k be the field of the real numbers or the field of the complex

numbers, and let V be a k-vector space.

An inner product on V is a map g : V × V → k satisfying:

• g is linear in its first argument:

g(λv1 + µv2, v
′) = λg(v1, v

′) + µg(v2, v
′) for every v1, v2, v

′ ∈ V ;

• g(v′, v) = g(v, v′) for all v, v′ ∈ V , where g(v, v′) is the complex conjugate of g(v, v′);

• g is positive definite:

g(v, v) ≥ 0 and g(v, v) = 0⇐⇒ v = 0.

Note that g(v, v) ∈ R for each v ∈ V , because g(v, v) = g(v, v).

An inner product space is a pair (V, g).

If (V, g) is an inner product vector space over C, it is clear that g is antilinear in its second argument,

that is:

g(v, λv′1 + µv′2) = λ̄g(v, v′1) + µ̄g(v, v′2)

for all v, v′1, v
′
2 ∈ V , and λ̄ and µ̄ being the conjugates of λ and µ, respectively.

Nevertheless, if (V , g) is an inner product vector space over R, then g is symmetric and bilinear.

The norm on an inner product vector space (V, g) is the real-valued function

‖ · ‖g : V −→ R

v 7−→ +
√
g(v, v),

and the distance is the map

dg : V × V −→ R
(v, v′) 7−→ ‖v′ − v‖g.
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Simple examples of inner product vector spaces are Euclidean finite-dimensional real vector spaces and

complex Hilbert spaces.

Let us now consider two inner product vector spaces: (V, g) and (W, ḡ). If f : V →W is a linear map, a

linear operator f∗ : W → V is called the adjoint of f when

g(f∗(w), v) = ḡ(w, f(v))

for all v ∈ V and w ∈W . If f ∈ Endk(V ), we say that f is self-adjoint when f∗ = f .

Moreover, if (V, g) and (W, ḡ) are finite-dimensional inner vector spaces over C, B = {v1, . . . , vm}
and B′ = {w1, . . . , wn} are orthonormal bases of V and W , respectively, f : V → W is a linear map,

A ∈ Matn×m(C) and f ≡ A in these bases, then f∗ ≡ A∗ ∈ Matm×n(C) in the same bases, where A∗ is the

conjugate transpose of A.

2.2. Jordan bases for endomorphisms admitting an annihilator polynomial. Let V be an

arbitrary vector space over a ground field k, and let f ∈ Endk(V ) be an endomorphism of V admitting an

annihilator polynomial

af (x) = p1(x)n1 · pr(x)nr ,

where pi(x) are irreducible polynomials in k[x] and ni are positive integers.

For each j ∈ {1, . . . , r}, we can consider

νi(V, pj(f)) = dimKj

(
Ker pj(f)i

/
[Ker pj(f)i−1 + pj(f) Ker p(f)i+1]

)
,

with Kj = k[x]
/
pj(x). Henceforth, Sνi(V,pj(f)) will be a set such that #Sνi(V,pj(f)) = νi(V, pj(f)), with

Sνi(V,pj(f)) ∩ Sνh(V,pj(f)) = ∅ for i 6= h.

According to the statements of [5], there exist families of vectors {vijh }h∈Sνi(V,pj(f)) with

vijh ∈ Ker pj(f)i and vijh /∈ Ker pj(f)i−1 + pj(f) Ker pj(f)i+1

for all 1 ≤ j ≤ r and 1 ≤ i ≤ nj , such that if we set

Hij
h =< vijh >f=

⋃
0≤s≤i−1

{pj(f)s[vijh ], pj(f)s[f(vijh )], . . . , pj(f)s[fdj−1(vijh )]},

where dj = dimkKj , then ⋃
1 ≤ j ≤ r
1 ≤ i ≤ nj
h ∈ Sνi(V,pj(f))

< vijh >f

is a Jordan basis of V for f , and this basis determines a decomposition

(2.1) V =
⊕

1 ≤ j ≤ r
1 ≤ i ≤ nj
h ∈ Sνi(V,pj(f))

Hij
h .
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Example 2.1. (Jordan bases for a nilpotent endomorphism) Let V be a vector space over an arbitrary

field k and let f ∈ Endk(V ) be a nilpotent endomorphism. If f has index of nilpotency n, setting W f
i =

Ker f i/[Ker f i−1 + f(ker f i+1)] with i ∈ {1, 2, . . . , n}, µi(V, f) = dimkW
f
i and Sµi(V,f) a set such that

#Sµi(V,f) = µi(V, f) with Sµi(V,f) ∩ Sµj(V,f) = ∅ for all i 6= j, one has that there exists a family of vectors

{vsi} that determines a Jordan basis of V for f :

(2.2) B =
⋃

si ∈ Sµi(V,f)

1 ≤ i ≤ n

{vsi , f(vsi), . . . , f
i−1(vsi)}.

Moreover, if we write Hf
si = 〈vsi , f(vsi), . . . , f

i−1(vsi)〉, the basis B induces a decomposition

(2.3) V =
⊕

si ∈ Sµi(V,f)

1 ≤ i ≤ n

Hf
si .

2.3. Finite potent endomorphisms. Let k be an arbitrary field, let V be a k-vector space and let

ϕ ∈ Endk(V ). We say that ϕ is “finite potent” if ϕnV is finite dimensional for some n. This definition was

introduced by J. Tate in [7] as a basic tool for his elegant definition of Abstract Residues.

In 2007 M. Argerami, F. Szechtman and R. Tifenbach showed in [1] that an endomorphism ϕ is finite

potent if and only if V admits a ϕ-invariant decomposition V = Uϕ ⊕Wϕ such that ϕ|Uϕ is nilpotent, Wϕ

is finite dimensional, and ϕ|Wϕ : Wϕ
∼−→Wϕ is an isomorphism.

2.4. Reflexive generalized inverses. Let C be the field of complex numbers. Given a matrix A ∈
Matn×m(C), a reflexive generalized inverse of A is a matrix A+ ∈ Matm×n(C) such that:

• AA+A = A;

• A+AA+ = A+.

In general, the reflexive generalized inverse of a matrix A is not unique.

The notion of reflexive generalized inverse in arbitrary vector spaces is the following:

Definition 2.2. If V and W are k-vector spaces, given a morphism f : V → W , a linear map

f+ : W → V is a “reflexive generalized inverse” of f when:

• f ◦ f+ ◦ f = f ;

• f+ ◦ f ◦ f+ = f+.

For every reflexive generalized inverse f+ of f , if w ∈W , it is known that

(2.4) w ∈ Im f ⇐⇒ (f ◦ f+)(w) = w.

3. Moore-Penrose inverse of linear maps on infinite-dimensional vector spaces. This section

is devoted to proving the existence of a Moore-Penrose inverse of some linear maps on infinite-dimensional

vector spaces, such that it generalizes the notion and the properties of the Moore-Penrose inverse of an

(n ×m)-matrix with entries in C. Our generalization will be valid for linear maps on inner product vector
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spaces over k = R and k = C and we shall give conditions for computing the Moore-Penrose inverse of

endomorphisms on infinite-dimensional vector spaces.

To do so, we shall first study some properties of the Moore-Penrose inverse of an endomorphism on a

finite-dimensional inner product space.

3.1. Moore-Penrose inverse of an endomorphism on finite-dimensional inner product vector

spaces. Let us now consider a finite dimensional inner product vector space (E, g) over k = R or k = C.

If f ∈ Endk(E), one has that E = Ker f ⊕ [Ker f ]⊥ = Im f ⊕ [Im f ]⊥, and there exists an isomorphism

f : [Ker f ]⊥
∼−→ Im f.

Thus, the Moore-Penrose of f is the unique linear map f† ∈ Endk(E) such that

(3.5) f†(e) =

{
(f|

[Ker f]⊥
)−1(e) if e ∈ Im f

0 if e ∈ [Im f ]⊥
.

It is known that f† is the unique linear map such that:

• f† is a reflexive generalized inverse of f ;

• f† ◦ f and f ◦ f† are self-adjoint.

Definition 3.1. If f ∈ Endk(E) and Hf = {H1, . . . ,Hn} is a family of subspaces of E invariants for f

such that E = H1 ⊕ · · · ⊕Hn, we define the endomorphism f+
Hf ∈ Endk(E) as the unique linear map such

that

[f+
Hf ]|Hi = [f|Hi ]

† for each i ∈ {1, . . . , n}.

If we denote fi = f|Hi for each i ∈ {1, . . . , n}, it is clear that for every vector e ∈ E, such that

e = hj1 + · · ·+ hjn with hji ∈ Hi, then

f+
Hf (e) = f†1 (hj1) + · · ·+ f†n(hjn).

Moreover, it is immediately observed, from Definition 3.1 and from the properties of the Moore-Penrose

inverse, that f+
Hf is a reflexive generalized inverse of f for every family Hf .

Keeping the previous notation and given a subspace W ⊆ E, such that W ⊂ Hi for a certain i ∈
{1, . . . , n}, we shall denote

W⊥i = {vi ∈ Hi such that g(w, vi) = 0 for all w ∈W}.

Lemma 3.2. If U ⊂ E is a subspace and {U1, . . . , Un} are subspaces of U such that U = U1 ⊕ · · · ⊕ Un
with Ui ⊆ Hi, then

[U1]⊥1 ⊕ · · · ⊕ [Un]⊥n ⊆ U⊥ if and only if [Ui]
⊥
i ⊂ [

∑
j 6=i

Uj ]
⊥ for all i ∈ {1, . . . , n}.

Proof. If [U1]⊥1 ⊕ · · · ⊕ [Un]⊥n ⊆ U⊥, then [Ui]
⊥
i ⊆ U⊥ for all i ∈ {1, . . . , n} and we deduce that

[Ui]
⊥
i ⊆ [

∑
j 6=i Uj ]

⊥ for all i ∈ {1, . . . , n} .
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Conversely, if [Ui]
⊥
i ⊆ [

∑
j 6=i Uj ]

⊥ for all i ∈ {1, . . . , n}, one has that

g(v1 + · · ·+ vn, u1 + · · ·+ un) = 0

with vi ∈ [Ui]
⊥
i and ui ∈ Ui for all i ∈ {1, . . . , n} and, therefore, we obtain that [U1]⊥1 ⊕ · · · ⊕ [Un]⊥n ⊆ U⊥.

Lemma 3.3. Using the previous notation, we have that:

1. Im f = Im f1 ⊕ · · · ⊕ Im fn;

2. If H⊥f = [Im f1]⊥1 ⊕ · · · ⊕ [Im fn]⊥n , then E = Im f ⊕H⊥f ;

3. Ker f = Ker f1 ⊕ · · · ⊕Ker fn;

4. If H̃⊥f = [Ker f1]⊥1 ⊕ · · · ⊕ [Ker fn]⊥n , then

E = Ker f ⊕ H̃⊥f ;

5. f induces an isomorphism between H̃⊥f and Im f and

(3.6) [f+
Hf ](e) =

 (f|H̃⊥
f

)−1(e) if e ∈ Im f

0 if e ∈ H⊥f
.

Proof. 1. It is clear that Im f1 ⊕ · · · ⊕ Im fn ⊆ Im f . Moreover, given e ∈ Im f , if e = f(e′) with

e′ = e′j1 + · · ·+ e′jn and e′ji ∈ Hij for all i ∈ {1, . . . , n}, then

e = f(e′j1) + · · ·+ f(e′jn) ∈ Im f1 ⊕ · · · ⊕ Im fn,

because f(v′ji) ∈ Hi for every i ∈ {1, . . . , n}.
2. Since Hi = Im fi ⊕ [Im fi]

⊥
i for all i ∈ {1, . . . , n}, we have that

E = H1 ⊕ · · · ⊕Hn = (Im f1 ⊕ [Im f1]⊥1 )⊕ · · · ⊕ (Im fn ⊕ [Im fn]⊥n )

= (Im f1 ⊕ · · · ⊕ Im fn)⊕ ([Im f1]⊥1 ⊕ · · · ⊕ [Im fn]⊥n ) = Im f ⊕H⊥f .

3. It is immediate that Ker f1 ⊕ · · · ⊕Ker fn ⊆ Ker f . Furthermore, if ē ∈ Ker f and

ē = ēj1 + · · ·+ ējn with ēji ∈ Hi for every i ∈ {1, . . . , n},

since

f(ēj1) + · · ·+ f(ējk) = 0 and Hi ∩ [
∑
r 6=i

Hr] = 0,

we conclude that f(ēji) = 0 for all i ∈ {1, . . . , n}, from which it is deduced that

Ker f ⊆ Ker f1 ⊕ · · · ⊕Ker fn.

4. Similar to (2).

5. It is a direct consequence of (2), (4) and the definition of f+
Hf .

Remark 3.4. With the previous notation, in general H̃⊥f 6= [Ker f ]⊥ and H⊥f 6= [Im f ]⊥, which is

deduced from the following counter-example.

Let E = 〈v1, v2, v3, v4〉 be a inner product k-vector space, B = {v1, v2, v3, v4} being an orthonormal

basis, and let us consider the endomorphism f : E → E defined as:

f(vi) =


v1 if i = 1, 2

−2v1 if i = 3

v1 + v2 + v3 if i = 4

.
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If we set H1 = 〈v1, v2〉 and H2 = 〈v1 + v2 + v3, v4〉, it is clear that H1 and H2 are f -invariant and, if we

again denote f1 = f|H1
and f2 = f|H2

, we have that:

• Im f1 = 〈v1〉 and [Im f1]⊥1 = 〈v2〉;
• Im f2 = 〈v1 + v2 + v3〉 and [Im f2]⊥2 = 〈v4〉;
• Im f = 〈v1, v1 + v2 + v3〉 and [Im f ]⊥ = 〈v2 − v3, v4〉;
• Ker f1 = 〈v1 − v2〉 and [Ker f1]⊥1 = 〈v1 + v2〉;
• Ker f2 = 〈v1 + v2 + v3〉 and [Ker f2]⊥2 = 〈v4〉;
• Ker f = 〈v1 − v2, v1 + v2 + v3〉 and [Ker f ]⊥ = 〈v1 + v2 − 2v3, v4〉.

Accordingly, H̃⊥f 6= [Ker f ]⊥ and Hf⊥ 6= [Im f ]⊥ in this case.

Remark 3.5. Given an endomorphism f ∈ Endk(E), in general f+
Hf is not the Moore-Penrose inverse

of f .

Example 3.6. If f and Hf = {H1, H2} are as in Remark 3.4, a computation shows that

f+
Hf (vi) =


1

2
v1 +

1

2
v2 if i = 1

v4 −
1

2
v1 −

1

2
v2 if i = 3

0 if i = 2, 4

and

f†(vi) =



1

6
v1 +

1

6
v2 −

1

3
v3 if i = 1

− 1

12
v1 −

1

12
v2 +

1

6
v3 +

1

2
v4 if i = 2

− 1

12
v1 −

1

12
v2 +

1

6
v3 +

1

2
v4 if i = 3

0 if i = 4

.

Readers can easily check that f+
Hf is a reflexive generalized inverse of f (Definition 2.2), although it is clear

that f+
Hf 6= f†.

Lemma 3.7. With the above notation, we have that H⊥f = [Im f ]⊥ if and only if

[Im fi]
⊥
i ⊆ [

∑
j 6=i

Im fj ]
⊥ for every i ∈ {1, . . . , n}.

Proof. Considering that E = Im f ⊕H⊥f and [Im f ]⊥ ∩ Im f = {0}, the statement is deduced bearing in

mind that this condition is equivalent to H⊥f ⊆ [Im f ]⊥ (Lemma 3.2).

Similarly, one can prove that

Lemma 3.8. We have that H̃⊥f = [Ker f ]⊥ if and only if

[Ker fi]
⊥
i ⊆ [

∑
j 6=i

Ker fj ]
⊥ for every i ∈ {1, . . . , n}.

Proposition 3.9. If f ∈ Endk(E) and Hf = {H1, . . . ,Hn} is a family of subspaces of E invariants for

f such that E = H1 ⊕ · · · ⊕Hn and Hi ⊆ [
∑
j 6=iHj ]

⊥ for all i ∈ {1, . . . , n}, then f+
Hf = f†.

Proof. If Hi ⊆ [
∑
j 6=iHj ]

⊥ for all i ∈ {1, . . . , n}, then the conditions of Lemma 3.7 and Lemma 3.8

hold.
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3.2. Moore-Penrose inverse of linear maps on arbitrary inner product spaces. We shall

now generalize the notion of Moore-Penrose inverse to some endomorphisms of arbitrary vector spaces, in

particular some infinite-dimensional vector spaces.

Henceforth, (V, g) and (W, ḡ) will be inner product vector spaces over k, with k = C or k = R.

Definition 3.10. Given a linear map f : V → W , we say that f is admissible for the Moore-Penrose

inverse when V = Ker f ⊕ [Ker f ]⊥ and W = Im f ⊕ [Im f ]⊥.

Remark 3.11. It is known that there exist infinite-dimensional vector spaces V and vector subspaces

U ⊂ V such that V 6= U ⊕ U⊥. In this case, if V = U ⊕W , it is clear that the linear map f
U
∈ Endk(V )

defined as

f
U

(v) =

{
0 if v ∈ U
v if v ∈W

is not admissible for the Moore-Penrose inverse.

Theorem 3.12 (Existence and uniqueness of Moore-Penrose inverse). If (V, g) and (W, ḡ) are inner

product spaces over k, then f : V →W is a linear map admissible for the Moore-Penrose inverse if and only

if there exists a unique linear map f† : W → V such that:

1. f† is a reflexive generalized inverse of f ;

2. f† ◦ f and f ◦ f† are self-adjoint, that is:

• g([f† ◦ f ](v), v′) = g(v, [f† ◦ f ](v′),

• ḡ([f ◦ f†](w), w′) = ḡ(w, [f ◦ f†](w′)
for all v, v′ ∈ V and w,w′ ∈W .

Proof. If f is admissible of the Moore-Penrose inverse (Definition 3.10), then the restriction f|
[Ker f]⊥

is

an isomorphism between [Ker f ]⊥ and Im f and there exists a linear map satisfying that

f†(w) =

{
(f|

[Ker f]⊥
)−1(w) if w ∈ Im f

0 if w ∈ [Im f ]⊥
.

In this case, f is unique.

We now check that f† satisfies the conditions of the statement.

Firstly, since

(f ◦ f†)(w) =

{
w if w ∈ Im f

0 if w ∈ [Im f ]⊥

and (f† ◦ f)(v) = v1 with v = v1 + v2 (v1 ∈ [Ker f ]⊥ and v2 ∈ Ker f), it is clear that f† is a reflexive

generalized inverse of f because:

• (f ◦ f† ◦ f)(v) = f(v);

• (f† ◦ f ◦ f†)(w) = f†(w).

Moreover,

ḡ([f ◦ f†](w), w′) = ḡ(w, [f ◦ f†](w′)) =


ḡ(w,w′) if w,w′ ∈ Im f

0 if w ∈ [Im f ]⊥

0 if w′ ∈ [Im f ]⊥
.
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And, if v, v′ ∈ V with v = v1 + v2, v′ = v′1 + v′2, v1, v
′
1 ∈ [Ker f ]⊥ and v2, v

′
2 ∈ Ker f , one has that

g([f† ◦ f ](v), v′) = g(v1, v
′
1) = g(v, [f† ◦ f ](v′).

Hence, we conclude that f† satisfies the conditions of the theorem.

For proving the uniqueness of the Moore-Penrose inverse of f , let us consider a linear map f̃ : W → V

such that

1. f̃ is a reflexive generalized inverse of f ,

2. g([f̃ ◦ f ](v), v′) = g(v, [f̃ ◦ f ](v′),

3. ḡ([f ◦ f̃ ](w), w′) = ḡ(w, [f ◦ f̃ ](w′)

for all v, v′ ∈ V and w,w′ ∈W .

A direct consequence of (1) is that (f̃ ◦ f)2 = f̃ ◦ f . Hence, f̃ ◦ f is a projection and, since

Im f = Im (f ◦ f̃ ◦ f) ⊆ Im (f ◦ f̃) ⊆ Im f,

then Im (f ◦ f̃) = Im f .

Accordingly, given w ∈ Imf , there exists w̄ ∈W such that (f ◦ f̃)(w̄), and then

(f ◦ f̃)(w) = (f ◦ f̃)2(w̄) = (f ◦ f̃)(w̄) = w.

Furthermore, if w′ ∈ [Im f ]⊥, we have that

0 = ḡ([f ◦ f̃ ]2(w′), w′) = ḡ([f ◦ f̃ ](w′), [f ◦ f̃ ](w′)) =⇒ [f ◦ f̃ ](w′) = 0.

Thus,

(f ◦ f̃)(w) =

{
w if w ∈ Im f

0 if w ∈ [Im f ]⊥

and, in particular, f̃(w′) = 0 when w′ ∈ [Im f ]⊥.

In line with the above arguments, one has that (f ◦ f̃)2 = f ◦ f̃ and Im (f̃ ◦ f) = Im f̃ .

Now, if v ∈ Im f̃ , v = [f̃ ◦ f ](v̄) and v′ ∈ Ker f , then

g(v, v′) = g([f̃ ◦ f ](v̄), v′) = g(v̄, 0) = 0,

and we deduce that Im f̃ ⊆ [Ker f ]⊥.

Finally, since f|
[Ker f]⊥

: [Ker f ]⊥
∼−→ Im f and (f ◦ f̃)|Im f

= Id|Im f
, then

(f̃)|Im f
= (f|

[Ker f]⊥
)−1 =⇒ f̃ = f†.

Conversely, let us assume that there exists the Moore-Penrose inverse f† : W → V of a linear map

f : V →W . Based on the same arguments as above one immediately has that:

• f ◦ f† and f† ◦ f are projections;

• Im (f ◦ f†) = Im f ;
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• [Im f ]⊥ ⊆ Ker(f ◦ f†);
• Im (f† ◦ f) ⊆ [Ker f ]⊥.

Moreover, if w /∈ [Im f ]⊥ there exists w̄ ∈W such that

0 6= ḡ([f ◦ f†]2(w̄), w) = ḡ([f ◦ f†](w̄), [f ◦ f†](w)),

from where we deduce that w /∈ Ker(f ◦ f†) and [Im f ]⊥ = Ker(f ◦ f†).

On the other hand, it is clear that Ker f ⊆ Ker(f† ◦ f) and, if v ∈ V with f(v) 6= 0 then v /∈ Ker(f† ◦ f),

because

f(v) = (f ◦ f† ◦ f)(v) 6= 0.

Hence, Ker f = Ker(f† ◦ f) and, bearing in mind that if g ∈ Endk(V ) is a projection then V =

Ker g ⊕ Im g, one concludes that

V = Ker(f† ◦ f)⊕ Im (f† ◦ f) = Ker f ⊕ [Ker f ]⊥

and

W = Ker(f ◦ f†)⊕ Im (f ◦ f†) = Im f ⊕ [Im f ]⊥.

Accordingly, f is admissible for the Moore-Penrose inverse and the statement is deduced.

The operator f† characterized in Theorem 3.12 is named the Moore-Penrose inverse of f .

Since each isomorphism g : V →W is admissible for the Moore-Penrose inverse, a direct consequence of

Theorem 3.12 is that g† = g−1, where g−1 is the inverse map of g.

Corollary 3.13. If (V, g) and (W, ḡ) are inner product spaces over k and f : V → W is a linear map

admissible for the Moore-Penrose inverse, then f† is also admissible for the Moore-Penrose inverse and

(f†)† = f .

Proof. This statement is deduced from Theorem 3.12 bearing in mind that:

• Im f† = [Ker f ]⊥;

• [Im f†]⊥ = Ker f ;

• Ker f† = [Im f ]⊥;

• [Ker f†]⊥ = Im f .

Moreover, if f : V → W is a linear map admissible for the Moore-Penrose inverse and P[ker f ]⊥ and

PIm f are the projections induced by the decompositions V = Ker f ⊕ [Ker f ]⊥ and W = Im f ⊕ [Im f ]⊥,

respectively, we obtain from the arguments of the proof of Theorem 3.12 that

Corollary 3.14. If (V, g) and (W, ḡ) are inner product spaces over k and f : V → W is a linear map

admissible for the Moore-Penrose inverse, then

• f† ◦ f = P[ker f ]⊥ ;

• f ◦ f† = PIm f .

3.3. Computation of the Moore-Penrose inverse of endomorphisms on arbitrary inner

product spaces. Similar to the finite-dimensional situation, given an inner product space (V, g) over
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k, f ∈ Endk(V ) let us assume that there exists a family of f -invariant finite-dimensional subspaces,

Hf = {Hi}i∈I , such that

V =
⊕
i∈I

Hi.

Note that this assumption is always satisfied when f admits an annihilator polynomial.

To simplify, fixing a family Hf , we shall denote fi = f|Hi .

Definition 3.15. The unique linear map f+
Hf ∈ Endk(V ) such that [f+

Hf ]|Hi = f†i for every i ∈ I is

called the generalized inverse of f associated with the family Hf .

For each vector v ∈ V , if v = vi1 + · · ·+ vis with vij ∈ Hij , then

f+
Hf (v) = f†i1(v1) + · · ·+ f†is(vs).

If f is admissible for the Moore-Penrose inverse, our purpose is to determine when f+
Hf = f†. To do

this, the generalization onto infinite-dimensional vector spaces of Lemma 3.3 is:

Lemma 3.16. We have that:

1. Im f =
⊕
i∈I

Im fi;

2. If H⊥f =
⊕
i∈I

[Im fi]
⊥
i , then V = Im f ⊕H⊥f ;

3. Ker f =
⊕
i∈I

Ker fi;

4. If H̃⊥f =
⊕
i∈I

[Ker fi]
⊥
i , then V = Ker f ⊕ H̃⊥f ;

5. f induces an isomorphism between H̃⊥f and Im f .

Proof. 1. It is clear that
⊕
i∈I

Im fi ⊆ Im f . Moreover, given v ∈ Im f , if v = f(v′) with v′ =

v′i1 + · · ·+ v′is and v′ij ∈ Hij for all j ∈ {1, . . . , s}, then

v = f(v′i1) + · · ·+ f(v′is) ∈
⊕
i∈I

Im fi,

because f(v′ij ) ∈ Hij for every j ∈ {1, . . . , s}.
2. Since Hi = Im fi ⊕ [Im fi]

⊥
i for all i ∈ I, we have that

V =
⊕
i∈I

Hi =
⊕
i∈I

(
Im fi ⊕ [Im fi]

⊥
i

)
=
(⊕
i∈I

Im fi
)
⊕
(⊕
i∈I

[Im fi]
⊥
i

)
= Im f ⊕H⊥f .

3. It is immediate that
⊕
i∈I

Ker fi ⊆ Ker f . Furthermore, if v̄ ∈ Ker f and

v̄ = v̄i1 + · · ·+ v̄ik with v̄ij ∈ Hij for every j ∈ {1, . . . , k},

since

f(v̄i1) + · · ·+ f(v̄ik) = 0 and Hij ∩ [
∑
r 6=j

Hir ] = 0,

we conclude that f(v̄ij ) = 0 for all j ∈ {1, . . . , k}, from which it is deduced that Ker f ⊆
⊕
i∈I

Ker fi.
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4. Similar to (2).

5. It is a direct consequence of (2) and (4).

It is now easy to prove that the generalization onto an arbitrary vector space V of the Lemma 3.2 is the

following:

Lemma 3.17. With the previous assumptions on V and Hf = {Ui}i∈I , if U ⊂ V is a subspace and

{Ui}i∈I is a family of subspaces of U such that U = ⊕
i∈I
Ui with Ui ⊆ Hi, then

⊕
i∈I

[Ui]
⊥
i ⊆ U⊥ ⇐⇒ [Ui]

⊥
i ⊂ [

∑
j 6=i

Uj ]
⊥ for all i ∈ I.

Accordingly, we have that:

Lemma 3.18. If (V, g) is an inner product vector space over k, f ∈ Endk(V ), and Hf = {Hi}i∈I with

V =
⊕
i∈I
Hi and each Hi is f -invariant, then H⊥f = [Im f ]⊥ if and only if

[Im fi]
⊥
i ⊆ [

∑
j 6=i

Im fj ]
⊥ for every i ∈ I.

Proof. This statement is the generalization of Lemma 3.7 to arbitrary vector spaces.

Moreover, similar to Lemma 3.8 one has that:

Lemma 3.19. If (V, g) is an inner product vector space over k, f ∈ Endk(V ), and Hf = {Hi}i∈I with

V =
⊕
i∈I
Hi and each subspace Hi is f -invariant, then H̃⊥f = [Ker f ]⊥ if and only if

[Ker fi]
⊥
i ⊆ [

∑
j 6=i

Ker fj ]
⊥ for every i ∈ I.

Theorem 3.20. If (V, g) is an inner product vector space over k, f ∈ Endk(V ) is admissible for the

Moore-Penrose inverse, and Hf = {Hi}i∈I with V =
⊕
i∈I
Hi and each subspace Hi is f -invariant, then

f+
Hf = f† if and only if the following conditions are satisfied:

1. [Im fi]
⊥
i ⊆ [

∑
j 6=i Im fj ]

⊥ for every i ∈ I;

2. [Ker fi]
⊥
i ⊆ [

∑
j 6=i Ker fj ]

⊥ for all i ∈ I.

Proof. The claim is a direct consequence of Lemma 3.18 and Lemma 3.19.

Corollary 3.21. If (V, g) is an inner product vector space over k, f ∈ Endk(V ), Hf = {Hi}i∈I with

V =
⊕
i∈I
Hi and each subspace Hi is f -invariant, and Hi ⊆ [

∑
j 6=iHj ]

⊥ for every i ∈ I, then f is admissible

for the Moore-Penrose inverse and f+
Hf = f†.

Proof. With the hypothesis of this Corollary the conditions of Theorem 3.20 are satisfied.

Example 3.22. Let (V, g) be an inner product vector space of countable dimension over k. Let

{v1, v2, v3, . . . } be an orthonormal basis of V indexed by the natural numbers.
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Let ϕ ∈ Endk(V ) the finite potent endomorphism defined as follows:

ϕ(vi) =



v2 + v5 + v7 if i = 1

v1 + 3v2 if i = 2

v4 if i = 3

v1 − v3 if i = 4

−v3 + 2v5 + 2v7 if i = 5

3vi+1 if i = 5h+ 1

0 if i = 5h+ 2

−vi−2 + 2vi+1 if i = 5h+ 3

vi−2 + vi+1 if i = 5h+ 4

−vi−4 + 5vi−3 if i = 5h+ 5

for all h ≥ 1.

We can consider the decomposition V =
⊕

i∈NHi where

H1 = 〈vi〉i∈{1,...,10} and Hj = 〈v5j+1, v5j+2, v5j+3, v5j+4, v5j+5〉

for every j ≥ 2. It is clear that Hi is a ϕ-invariant subspace of V for every i ∈ N.

In the above bases one has that

ϕ|H1
≡



0 1 0 1 0 0 0 0 0 0

1 3 0 0 0 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 −1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 1 0


and

ϕ|Hi ≡


0 0 −1 0 −1

3 0 0 1 5

0 0 0 0 0

0 0 2 0 0

0 0 0 1 0


for all i ≥ 2.

Thus, bearing in mind that:

• Imϕ = 〈v1, v2, v3, v4, v5〉 ⊕ [ ⊕
i≥1
〈v5j+1, v5j+2, v5j+4, v5j+5〉] and [Imϕ]⊥ = ⊕

i≥1
〈v5i+3〉;

• Kerϕ = ⊕
i≥1
〈v5i+2〉 and [Kerϕ]⊥ = 〈v1, v2, v3, v4, v5〉 ⊕ [ ⊕

i≥1
〈v5j+1, v5j+3, v5j+4, v5j+5〉];
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we have that ϕ is admissible for the Moore-Penrose inverse and, since {vi}i∈I is an orthonormal basis of V ,

Corollary 3.21 holds for ϕ.

Accordingly, a non-difficult computation shows that

(ϕ†)|H1
≡



6 −2 6 0 3 0 0 0 0 0

−2 1 −2 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

3 −1 2 0 1 0 0 0 0 0

−3 1 −3 0 −1 0 0 0 0 0

0 0 0 0 − 1
3

5
3

1
3 0 5

6 − 1
3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 −1 0 0 − 1
2 0


and

(ϕ†)|Hi ≡


5
3

1
3 0 5

6 − 1
3

0 0 0 0 0

0 0 0 1
2 0

0 0 0 0 1

−1 0 0 − 1
2 0


for all i ≥ 2, from where the endomorphism ϕ† is determined.

Thus, the explicit expression of ϕ† is

ϕ†(vi) =



6v1 − 2v2 + 3v4 − 3v5 − 3v7 if i = 1

−2v1 + v2 − v4 + v5 + v7 if i = 2

6v1 − 2v2 + 2v4 − 3v5 − 3v7 if i = 3

v3 if i = 4

3v1 − v2 + v4 − v5 −
1

3
v6 − v7 if i = 5

5

3
vi − vi+4 if i = 5h+ 1

1

3
vi−1 if i = 5h+ 2

0 if i = 5h+ 3

5

6
vi−3 +

1

2
vi−1 −

1

2
vi+1 if i = 5h+ 4

−1

3
vi−4 + vi−1 if i = 5h+ 5

for all h ≥ 1.

Remark 3.23. We wish point out that this example shows that the Moore-Penrose inverse of a finite

potent endomorphism is not, in general, a finite potent endomorphism.
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4. Study of infinite systems of linear equations from the Moore-Penrose inverse. The aim of

this final section is to study solutions of infinite system of linear equations from the Moore-Penrose inverse

of linear maps characterized in the previous section.

Definition 4.1. If V and W are two arbitrary k-vector spaces and f : V →W is a linear map, a linear

system is an expression

f(x) = w,

where w ∈W . This system is called “consistent” when w ∈ Im f .

If V and W are infinite-dimensional vector spaces, fixing bases of V and W , the linear system f(x) = w

is equivalent to an infinite system of linear equations.

If a linear system f(x) = w is consistent and f(v0) = w for a certain v0 ∈ V , then the set of solutions

of this system is v0 + Ker f . The vector v0 is named “particular solution” of the system.

Let us now consider two arbitrary inner product spaces (V, g) and (W, ḡ) over k, let f : V → W be a

linear map admissible for the Moore-Penrose inverse and let f† be its Moore-Penrose inverse. If f(x) = w is a

linear system , since f† is a reflexive generalized inverse of f , then f is consistent if and only if (f ◦f†)(w) = w

and, in this case, the set of solutions of the linear system is

f†(w) + Ker f.

In finite-dimensional inner product vector spaces, it is known that the Moore-Penrose inverse is useful

for studying the least squares solutions of a linear system. To complete this work, we shall generalize this

notion to arbitrary vector spaces.

Definition 4.2. If (V, g) and (W, ḡ) are two arbitrary inner product spaces over k, then v′ ∈ V is called

“least ḡ-norm solution” of a linear system f(x) = w when

‖f(v′)− w‖ḡ ≤ ‖f(v)− w‖ḡ

for all v ∈ V .

Note that v′ ∈ V is a least ḡ-norm solution of the linear system f(x) = w if and only if dḡ(w, f(v′)) =

dg(w, Im f).

Definition 4.3. If (V, g) and (W, ḡ) are two arbitrary inner product spaces over k, then ṽ ∈ V is called

“minimal least ḡ-norm solution” of a linear system f(x) = w when

‖ṽ‖g ≤ ‖v′‖g

for every least ḡ-norm solution v′ ∈ V .

Proposition 4.4. If (V, g) and (W, ḡ) are two arbitrary inner product spaces over k, f : V → W is a

linear map admissible for the Moore-Penrose inverse and f(x) = w is a linear system, then f†(w) is the

unique minimal least ḡ-norm solution of this linear system.

Proof. Firstly, since Im(f ◦ f† − Id) ⊆ [Im f ]⊥, one has that

(4.7)
‖f(v)− w‖2ḡ = ‖[f(v)− f(f†(w))] + [f(f†(w))− w]‖2ḡ

= ‖f(v)− f(f†(w))‖2ḡ + ‖f(f†(w))− w‖2ḡ
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for all v ∈ V . Hence,

‖f(f†(w))− w‖ḡ ≤ ‖f(v)− w‖ḡ

for all v ∈ V , and we deduce that f†(w) is a least ḡ-norm solution of f(x) = w.

Moreover, it follows from (4.7) that v′ ∈ V is a least ḡ-norm solution of this linear system if and only if

f(v′)− f(f†(w)) = 0, that is, v′ is a solution of the consistent system

f(x)− f(f†(w)) = 0.

Thus, for each least ḡ-norm solution v′ ∈ V , one has that

f†(w) = v′ + h ,

with h ∈ Ker f and, bearing in mind that f†(w) ∈ [Ker f ]⊥, we conclude that f†(w) is the unique minimal

least ḡ-norm solution of f(x) = w because

‖f†(w)‖g < ‖v′‖g ,

for every v′ 6= f†(w).

Example 4.5. Let (V, g) be an inner product space of countable dimension over k. Let {v1, v2, v3, . . . }
be an orthonormal basis of V indexed by the natural numbers. If (xi)i∈N ∈

⊕
i∈N

k, since xi = 0 for almost all

i ∈ N, we shall write x = (xi) to denote the well-defined vector

x =
∑
i∈N

xi · vi ∈ V.

Let ϕ ∈ Endk(V ) the finite potent endomorphism studied in Example 3.22. We can consider the system

ϕ(x) = w,

where w = (αi)i∈N and whose explicit expression is:

(4.8)



x2 + x4 = α1

x1 + 3x2 = α2

−x4 − x5 = α3

x3 = α4

x1 + 2x5 = α5

−x8 − x10 = α6

x1 + 2x5 + 3x6 + x9 + 5x10 = α7

0 = α5h+3 for all h ≥ 1

2x5h+3 = α5h+4 for all h ≥ 1

x5h+4 = α5h+5 for all h ≥ 1

−x5h+3 − x5h+5 = α5h+1 for all h ≥ 2

3x5h+1 + x5h+4 + 5x5h+5 = α5h+2 for all h ≥ 2

.
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By Proposition 4.4, we have that the unique minimal least g-norm solution of this linear system is

(βi)i∈N = ϕ†(w) and, bearing in mind the expression of ϕ† obtained in Example 3.22, an easy computation

shows that

βi =



6α1 − 2α2 + 6α3 + 3α5 if i = 1

−2α1 + α2 − 2α3 − α5 if i = 2

α4 if i = 3

3α1 − α2 + 2α3 + α5 if i = 4

−3α1 + α2 − 3α3 − α5 if i = 5

−1

3
α5 +

5

3
α6 +

1

3
α7 +

5

6
α9 −

1

3
α10 if i = 6

0 if i = 7

1

2
αi+1 if i = 5h+ 3, for all h ≥ 1

αi+1 if i = 5h+ 4, for all h ≥ 1

−αi−4 −
1

2
αi−1 if i = 5h+ 5, for all h ≥ 1

5

3
αi +

1

3
αi+1 +

5

6
αi+3 −

1

3
αi+4 if i = 5h+ 1, for all h ≥ 2

0 if i = 5h+ 2, for all h ≥ 2

.

Moreover, one have that

(ϕ ◦ ϕ†)(vi) =

{
0 if i = 5h+ 3

vi otherwise
.

Thus, according to (2.4), the system (4.8) is consistent if and only if α5h+3 = 0 for all h ≥ 1, and, in

this case, (βi)i∈N is a particular solution of it.
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