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GENERALIZED STANDARD TRIPLES FOR ALGEBRAIC LINEARIZATIONS
OF MATRIX POLYNOMIALS∗
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Abstract. We define generalized standard triples X, Y , and L(z) = zC1 −C0, where L(z) is a linearization of a regular
matrix polynomial P (z) ∈ Cn×n[z], in order to use the representation X(zC1 − C0)−1Y = P−1(z) which holds except
when z is an eigenvalue of P . This representation can be used in constructing so-called algebraic linearizations for matrix
polynomials of the form H(z) = zA(z)B(z) +C ∈ Cn×n[z] from generalized standard triples of A(z) and B(z). This can be
done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using
the coefficients of the expression 1 =

∑`
k=0 ekφk(z) in terms of the relevant polynomial basis. For convenience, we tabulate

generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the
Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases.

Key words. Standard triple, Regular matrix polynomial, Polynomial bases, Companion matrix, Colleague matrix, Com-
rade matrix, Algebraic linearization, Linearization of matrix polynomials.
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1. Introduction. A matrix polynomial P (z) ∈ Fm×n[z] is a polynomial in the variable z with coef-
ficients that are m by n matrices with entries from the field F. We will use F = C, the field of complex
numbers, in this paper. Typically, an expression in the monomial basis φk(z) = zk is given for P (z), and
often only regular matrix polynomials are considered, that is, with m = n (we will use n for the dimension)
and where detP (z) is not identically zero. Matrix polynomials have many applications, and their study is
of both classic and ongoing interest. See the classic work [20] and the surveys [21] and [29] for theory and
applications.

In this paper, as is done in [2], we consider the case when any polynomial basis φk(z) is used. We require
that the set {φk(z)} for 0 ≤ k ≤ ` forms a basis for polynomials of grade `. The word ‘grade’ is short for
‘degree at most.’ Thus, we write our regular matrix polynomial as

(1.1) P (z) =
∑̀
k=0

Pkφk(z) ,

where the matrices Pk ∈ Fn×n are square, and the degree1 of P (z) is at most ` (P (z) has grade `).
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1The degree of a matrix polynomial P (z) is defined as follows. If P (z) is identically zero, the degree is −∞. Otherwise, if

P (z) =
∑`

k=0 Akz
k expressed in the monomial basis and A` is not the zero matrix, then the degree of P (z) is `.
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The notion of ‘grade’ is useful even for the monomial basis, but it is especially useful if the basis is
an interpolational basis or the Bernstein basis φk(z) = Bnk (z) =

(
n
k

)
zk(1 − z)n−k, when the degree of the

polynomial may not be clear from the data.

For more information about matrix polynomials, consult [27]. See also [29, 21] and consult the sem-
inal book [20]. Linearizations using different polynomial bases were first systematically studied in [2];
for a more up-to-date treatment see [5]. Some other recent papers of interest include [4, 28, 12, 17],
and [32]; this is a very active area. See also [1]. In that paper, standard triples for structured matrices
are studied. In [10], several proofs are given of strict equivalence of various linearizations to the stan-
dard second linearization for the monomial basis, which we will use without much further comment in this
paper.

1.1. Organization of the paper. In Section 1.2, we establish notation, give the definition of algebraic
linearization, and define generalized standard triples. We define this last in Definition 1.1 with reference to
the representation in equation (1.7). In Section 1.3, we show how to use a generalized standard triple in the
construction of algebraic linearizations. We also give a proof, by construction of the necessary equivalence
matrices E(z) and F (z), that algebraic linearizations are local linearizations (a very useful notion from [13])
in the same sense that its components are. In particular, if the componentsA andB are local linearizations in
the sets ΣA and ΣB, respectively, then the ‘algebraic linearization’ is a local linearization in the intersection
ΣA ∩ ΣB.

In Section 2, we prove our main result, giving a universal expression for generalized standard triples
for the linearizations using the polynomial bases that appear in Sections 3.1, 3.2, and 3.3. In Section 3, we
introduce all the polynomial bases by scalar examples. We sum up in the final section.

1.2. Notation and definitions. Two matrix polynomials P1(z) and P2(z) are called unimodularly
equivalent if there exist unimodular matrix polynomials (that is, matrix polynomials with constant nonzero
determinant) E(z) and F (z) with P1(z) = E(z)P2(z)F (z). A matrix pencil L(z) := zC1 − C0 is called
a linearization of the matrix polynomial P (z) if both C1 and C0 are of dimension N ≥ n and L(z) is
unimodularly equivalent to the block diagonal matrix diag(P (z), IN−n). Two linearizations Lm(z) and
Lφ(z) are called strictly equivalent if the corresponding matrices are equivalent in the following stronger
sense: C1,m = E(z)C1,φF (z) and C0,m = E(z)C0,φF (z), with the same unimodular matrix polynomials
E(z) and F (z).

In the paper [13], we find the powerful notion of a local linearization. In the notation of their Def-
inition 2.1, two rational matrices G1(z) and G2(z) are said to be equivalent in a nonempty set Σ ⊂ F
if there exist rational matrices R1(z) and R2(z) each nonsingular in Σ with R1(z)G1(z)R2(z) = G2(z).
This notion, intended for use with matrix rational functions, is also useful for matrix polynomials, as we
will see.

There is a related idea to linearization, that of ‘companion pencil’, sometimes denoted by an ordered
pair of matrices (A,B), where the only requirement is that detP (z) = K det (zB −A) for some nonzero
constant K. A companion pencil, therefore, has the same generalized eigenvalues as the matrix polynomial.
Companion pencils that are not linearizations do not necessarily preserve eigenvectors or elementary divisors
and are less useful than linearizations.

We will frequently use the notation (A,B) to indicate the pencil zB −A.
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The usual reversal2 of a matrix polynomial of grade ` is the polynomial revP (z) = z`P (z−1). A
linearization L(z) = zC1 − C0 of P is called a strong linearization if revL(z) = C1 − zC0 is also a
linearization of revP (z).

If L(z) = zC1 − C0 ∈ CN×N [z] is a local linearization of P (z) in Σ, then as a necessary consequence
det(P (z)) = q(z)det(L(z)) = det(zC1−C0) for some rational q(z) whose zeros and poles lie outside Σ. The
eigenvalues of P in Σ are thus computable from the generalized eigenvalues of L, which can be computed
using well-known methods.

A standard pair (X,T ) for a regular matrix polynomial P (z) expressed in the monomial basis with
coefficients Pk is defined in [20] or in [27] as having the following properties: X has dimension n × n`, T
has dimension n`× n`,

(1.2)
∑̀
k=0

PkXT k = 0 ,

and the n`× n` matrix

(1.3) Q =


X

XT
...

XT `−1

 ,
is nonsingular. We can then define a third matrix

(1.4) Y = Q−1


0n
...

0n
In

 ,
and say that the triple (X,T ,Y ) is a standard triple for a monic P (z). It is pointed out in [27] that monicity
of P (z) is not required for many of the formulæ to do with standard pairs (but is required for some).

Theorem 12.1.4 of [19] states that if there are matrices X, T , and Y of dimension n× n`, n`× n`, and
n`× n for which

(1.5) P−1(z) = X(zIn − T )−1Y ,

then (X,T ,Y ) is a standard triple for P (z). This is also reported in Lemma 2 in [1]. There are two
other representations of a matrix polynomial given a standard triple: the right canonical form, and the
left canonical form. See Theorem 2.4 in [20]. However, we do not need those representations for algebraic
linearization: it is the resolvent form above that we seek to generalize in this paper. The reason is that it

2This definition, which is standard, is particularly appropriate for the monomial basis. The coefficients of the reversed
matrix polynomial in the monomial basis are simply the same matrices in reverse order. The notion of a reversal, however,
is independent of the basis used, and indeed reversals can be done differently. In [9] for instance, we find a slightly different
definition of reversal, appropriate for computation in a Lagrange or Hermite interpolational basis, which maps an arbitrary
finite point to infinity; this difference allows for greater numerical stability. Something analogous for the Bernstein linearization
was introduced in [10].
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is this formula that is used in the proof that algebraic linearizations can be performed when the component
matrix polynomials are expressed in different bases.

A polynomial basis {φk(z)}`k=0 for polynomials of grade ` is a set of polynomials for which there is a
nonsingular matrix Φ relating the polynomials φk(z) to the monomials 1, z, . . ., z`. We can write this as

(1.6)


φ`(z)

φ`−1(z)
...

φ0(z)

 = Φ


z`

z`−1

z`−2

...
1

 .

Frequently, we want the ` × ` matrix that only goes up to grade ` − 1. This should not cause confusion.
This matrix forms the foundation for the proofs in [10] of strict equivalence of various linearizations. The
matrix Φ is called the change-of-basis matrix and is usually exponentially ill-conditioned in the dimension.
For example, for the Bernstein polynomials φ`j(z) =

(
`
j

)
zj(1− z)(`−j) the change-of-basis matrix has entries

φi,j =
(
j
i

)
/
(
`
j

)
and condition number K1 = K∞ = (` + 1)

(
`
s

)
2`−s where s = d(` − 2)/3e (the notation dxe

means the ceiling of x, the least integer not smaller than x). A short computation shows K1 ∼ 3`+1
√
`/4π

as `→∞ and is thus exponentially growing with the dimension.

The constructions and definitions of standard triple discussed above are apparently tied to the monomial
basis because of the powers T k in equation (1.3). We would like to relax this restriction and extend the
notion of standard triple to other bases and also to the non-monic case. In particular, we would like the
following extension of Theorem 2.4 in [20] or Theorem 12.1.4 in [19] to be available: If a matrix X ∈ Cn×N ,
the linearization L(z) = zC1 − C0 ∈ CN×N [z] of a polynomial matrix P (z) expressed in terms of any
polynomial basis, and a matrix Y ∈ CN×n satisfy

(1.7) P−1(z) = X(zC1 −C0)−1Y ,

for z /∈ z(P ) (the set of eigenvalues of P (z)), then X, L(z), and Y form a generalized standard triple for
P (z). This obviously requires regularity of P because the formula contains P−1(z).

Indeed, we simply require L(z) to be a linearization (or local linearization, restricted to some set Σ) and
take this extension as a definition. Such things exist, as we will demonstrate, and are useful, as shown in [7].

A referee pointed out that a simple characterization of linearizations L(z) can be found in [17]; this can
be used as a starting point, here.

Definition 1.1. Matrices X, zC1−C0, and Y form a generalized standard triple for the regular matrix
polynomial P (z) if L(z) = zC1 −C0 is a linearization of P and equation (1.7) holds.

Note that the matrices X and Y do not depend on z, but the linearization L(z) does, albeit only
linearly; we could instead have chosen to use the words ‘standard quadruple’ to mean (X,C1,C0,Y ) where
z does not appear of any of these matrices, but this quibble seems to be a matter of aesthetics only; we may
use the term ‘triple’ to refer to X, the linearization, and Y .

Proposition 1.2. If L(z) is a linearization for P (z), then there exists X and Y forming a generalized
standard triple with L(z) in the above sense.
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Proof. This is already proved in [20]. If L(z) is a linearization for P (z), then there exist unimodular
matrix polynomials E(z) and F (z) with F−1(z)(zC1 −C0)−1E−1(z) = diag(P−1(z), In, . . . , In). By pre-
multiplying by Xp = [In, 0, . . . , 0] and postmultiplying by Yp = [In, 0, . . . , 0]T , we may find X = XpF

−1(z)

and Y = E−1(z)Yp so that equation (1.7) holds. \

Remark 1.3. Thus, as a referee pointed out, generalized standard triples may be read off from the proof
that L(z) is indeed a linearization (we shall see this explicitly, shortly). The matrices E(z) and F (z) above
are not unique; given a nonsingular constant matrix B of the right dimension, diag(In,B)E(z)(zC1 −
C0)F (z)diag(In,B

−1) is also diag(P (z), In, . . . , In). Therefore, generalized standard triples are also not
unique.

Without using the rank criterion characterization of [17], say, it is not a priori clear that if equation (1.7)
holds then L(z) is necessarily a linearization of P (z). We do have in any case, however, the following:

Lemma 1.4. If X, Y , and the matrix pencil L(z) = zC1 −C0 are such that equation (1.7) holds, then
the matrix pencil L(z) is at least a companion pencil for P (z).

Proof. The norm of the resolvent ‖P−1(z)‖ will be arbitrarily large if and only if ‖ (zC1 −C0)
−1 ‖ is

arbitrarily large. Thus, the zeros of detP (z) are the same as the zeros of detL(z). \

For various reasons, we usually do not wish to invert a ‘leading coefficient’ here; for instance, if the
polynomial basis is not degree-graded, e.g. for the Bernstein basis, then in order to even look at the true
leading coefficient, we have to form a particular linear combination of the existing coefficients. In floating-
point arithmetic, rounding errors can disguise the rank of the resulting matrix, hence our interest in the
generalization.

If X, zC1 −C0, and Y form a generalized standard triple according to our definition, then so do XU ,
V −1(zC1 −C0)U , and V −1Y for any nonsingular matrices U and V of dimension N by N .

Several similarities are used very frequently. For convenience, we explicitly describe here one of the most
common.

Lemma 1.5 (Flipping). Let X, L(z), Y be a generalized standard triple for P (z). Further, let J be
the N × N ‘anti-identity’, also called the sip matrix, for standard involutory permutation, Ji,j = 0 unless
i + j = N + 1 when Ji,N+1−i = 1. Consider the ‘flipped’ linearization LF (z) = J(zC1 − C0)J . Then
XF = XJ , LF (z), and YF = JY also form a generalized standard triple for P (z).

Proof. Immediate. \

Remark 1.6. Flipping switches both the order of the equations and the order of the variables. It
obviously does not change eigenvalues. Flipping, transposition, and flipping-with-transposition give four
common equivalent linearizations [34].

1.3. Algebraic linearizations. An algebraic linearization (AH ,BH), as referred to in the title of this
present note, is defined in [7] as a linearization (AH ,BH) of a matrix polynomial H(z) = zA(z)D0B(z)+C

constructed recursively from linearizations (AA,BA) and (AB ,BB) of the lower-grade component matrix
polynomials A(z) and B(z), together with constant matrices D0 and C. The paper [7] did not give an
explicit unimodular pair (EH(z),FH(z)) that reduces the linearization to diag(zA(z)D0B(z) + C0, IN−n),
proving that the construction actually gave a linearization, so we give a method to construct them here.
Without loss of generality we take D0 = In.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 640-658, September 2021.

645 Generalized standard triples for algebraic linearizations of matrix polynomials

Theorem 1.7. Let EA(z) and FA(z) be rational matrices such that if z ∈ ΣA then EA(z) and FA(z)

are invertible and EA(z)(zBA − AA)FA(z) = diag(A(z), INA−n), and likewise let EB(z) and FB(z) be
rational matrices such that if z ∈ ΣB then EB(z) and FB(z) are invertible and EB(z)(zBB −AB)FB(z) =

diag(B(z), INB−n). Then the pencil zBH − AH is a local linearization of H(z) = zA(z)B(z) + C for
z ∈ ΣA ∩ ΣB, where the matrices BH and AH are given as follows:

(1.8) BH =

 BA

In
BB

 ,
and

(1.9) AH =

 AA 0NA,n −YAcXB

−XA 0n 0n,NB

0NB ,NA
−YB BA

 .

Here XA = [In, 0, . . . , 0]F−1A (z) YA = E−1A (z)[In, 0, . . . , 0]T and likewise XB = [In, 0, . . . , 0]F−1B (z) and
YB = E−1A (z)[In, 0, . . . , 0]T give the elements of the (generalized) standard triples for A(z) and B(z).

Proof. We first construct

(1.10) E1(z) =

EA(z)

In
EB(z)

 ,
and

(1.11) F1(z) =

FA(z)

In
FB(z)

 .

Applying them we get

(1.12) E1(z)(zBH −AH)F1(z) =


A(z) EA(z)YACXBFB(z)

INA−n
XAFA(z) zIn

EB(z)YB B(z)

INB−n

 .

Simplifying and using the definitions of the matrices appearing in the standard triples, we get

(1.13)


A(z) C

INA−n

In zIn
In B(z)

INB−n

 ,

which is permutationally equivalent to

(1.14)


A(z) C

INA−n

B(z) In
INB−n

In zIn

 .
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Adding to the third block column, the last block column multiplied by −B(z), we get

(1.15)


A(z) C

INA−n

0 In
INB−n

In −zB(z) zIn

 ,

which is permutationally equivalent to

(1.16)


A(z) C

In −zB(z) zIn
INA−n

INB−n

In

 .

Adding to the second block row, the last block row multiplied by −z, we get

(1.17)


A(z) C

In −zB(z)

INA−n
INB−n

In

 .

Finally, take into account that

(1.18)
[
In −A(z)

In

] [
A(z) C

In −zB(z)

] [
zB(z) In
In

]
=

[
zA(z)B(z) + C

In

]
.

This completes the proof. \

Remark 1.8. In the case that ΣA = ΣA = F, then the intersection is also F, and this establishes that
‘algebraic linearizations’ are linearizations if their components are linearizations.

Remark 1.9. The generalized standard triple for the algebraic linearization given here has XH =

[0, 0,XB ] and YH = [Y T
A , 0, 0]T . For these linearizations, there is no notion of expressing 1 as a linear

combination of anything, because this formulation is independent of particular polynomial bases, and indeed
may use different bases for different submatrices.

Algebraic linearizations offer a new class of linearizations. In [7] examples are given where the eigen-
value conditioning of such linearizations is exponentially better than that of the Frobenius linearization; this
demonstrates that this class of linearizations potentially offers more numerically stable algorithms3 for com-
puting matrix polynomial eigenvalues than standard linearizations do. The extent to which this is possible
in general has not yet been explored: at this point, we only know that this can happen for some cases.

The recursive construction of algebraic linearizations relies on generalized standard triples of each of
the component matrix polynomials, and (as does the unrelated paper [32]) allows different polynomial bases
to be used for each component. This present note provides some explicit formulas for generalized standard

3Any algorithm that transforms a well-conditioned problem into an ill-conditioned one as a step along the way is likely to
be a numerically unstable algorithm.
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triples in various bases, for reference. As one reviewer points out, these formulas could simply be obtained
by reading the proofs that these linearizations are indeed linearizations; one purpose of this paper is simply
convenience.

2. Expressing 1 in the basis gives the triple. If the φk(z), 0 ≤ k ≤ ` − 1 form a basis, we may
express the polynomial 1 in that basis: then 1 =

∑`−1
k=0 ekφk(z) defines the coefficients ek uniquely. Putting

(2.19) X =
[
e`−1 e`−2 · · · e1 e0

]
⊗ In,

for an appropriate choice of basis always gives our generalized standard triple P−1(z) = X(zC1 −C0)−1Y

with

(2.20) Y =
[
In 0n 0n · · · 0n

]T
= e1 ⊗ In .

[Here the notation e1 means the first elementary vector: although printed in bold type, it does not look very
different from the scalar e1, not bold, printed earlier as a component of X.] We prove this below for all the
elementary linearizations we use in this paper. Moreover, if we replace Y above with v ⊗ In for a general
anszatz column vector v, then the theorem is also true for all the linearizations of [17] as well.

Theorem 2.1. Let P (z) be a regular matrix polynomial expressed in terms of a polynomial basis {φi(z)}
i.e. P (z) =

∑`
k=0 Pkφk(z) . Consider a linearization L(z) of P (z) such that

(2.21) L(z) (Φ`(z)⊗ Im) = (e1 ⊗ Im)P (z) ,

where e1 =
[
1 0 · · · 0

]T ∈ C` and Φ`(z) =
[
φ`−1(z) · · · φ0(z)

]T
. Let x be a vector such that

xΦ`(z) = 1 and define X = x⊗ Im and Y = e1 ⊗ Im. Then

(2.22) P (z)−1 = XL(z)−1Y .

Proof. The following proof, which uses an idea of an anonymous referee, is simpler than our original
one. For each of the polynomial bases we examine in this paper, the linearization satisfies either

(2.23) L(z)


φ`−1(z)In
φ`−2(z)In

...
φ0(z)In

 =


In
0n
...

0n

P (z) ,

for degree-graded bases, or similar statements for Bernstein bases and Lagrange and Hermite interpolational
bases, as follows. For the Bernstein basis, the polynomial elements in the vector on the left are multiples of
B`−1j (z): [`/1 · B`−1`−1(z), `/2 · B`−1`−1(z), . . . , `/` · B`−10 (z)]T . For the Lagrange basis, the vector on the left is
[w(z), `0(z), `1(z), . . . , ``(z)]

T . For the Hermite interpolational basis4, it is the same as for the Lagrange but
with the Lagrange basis elements replaced with the Hermite interpolational basis elements.

Premultiplying by L−1(z) and post-multiplying by P−1(z), we have

(2.24) L−1(z)


In
0n
...

0n

 =


φ`−1(z)In
φ`−2(z)In

...
φ0(z)In

P−1(z) .

4The paper [10] did not prove that the Hermite companion pencil discussed here is in fact a linearization. We believe that
it is, but there is no proof published yet, to our knowledge.
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If 1 =
∑`−1
k=0 ekφk(z) is the expression of 1 in that basis, then premultiplying both sides by

X =
[
e`−1In e`−2In . . . e0In

]
,

gives the theorem. Compare also Remark 1.2 which gives another formula for X and Y . \

Remark 2.2. This result can be extended slightly using the results of [17], and their use of a general
anszatz vector v generalizes our results, in the following way: They consider the set of all matrix pencils
L(z) satisfying

(2.25) L(z) (Φ⊗ In) = v ⊗ P (z),

and later characterize just which of these matrix pencils are linearizations. They did not explicitly consider
Lagrange or Hermite interpolational basis polynomials, or the Bernstein basis, but as they point out their
proofs go through unchanged for matrix pencils where z appears only on the diagonal of the matrix pencil,
as it does for all the cases we consider here except the Bernstein case. Their use of the general anszatz vector
(all the examples we have considered just use v = e1) extends our result to the case Y = v ⊗ In. With the
appropriate changes, the proof above goes through.

Remark 2.3. There are linearizations not explicitly considered in this paper; for instance, a referee
has pointed out that when a matrix polynomial is expressed in a basis where the elements satisfy a linear
recurrence, then there is an automatic way to build what is called a CORK linearization. See [21] and [35]
for details.

In what follows we examine specific cases in detail and supply specific proofs for each basis. Indeed,
much of the utility of this paper is simply writing down those details, which will allow easier programming
for the uses of these generalized standard triples.

3. Scalar examples of generalized standard triples. In this section, we tabulate generalized stan-
dard triples for four classes of linearizations. Note that the generalized standard triples will be given for
(scalar) polynomials of degree 5.

In the special case n = 1 and when the monomial basis is used, a linearization is usually simplified by
dividing by the leading coefficient, making the result monic and the second matrix of the pair just becomes
the identity. The remaining matrix is called a ‘companion matrix’ or Frobenius companion5. Thus, finding
roots of a scalar polynomial can be done by finding eigenvalues of the companion matrix. Kublanovskaya
calls these ‘accompanying pencils’ in [25].

Construction of a linearization from a companion matrix is, when possible at all, a simple matter of the
Kronecker (tensor) product: given C1, C0 ∈ C`×`, take C̃1 = C1 ⊗ In and then replace each block pkIn
with the corresponding matrix coefficient Pk ∈ Cn×n (the first pk, in pkIn, is the symbolic coefficient from
p(z) =

∑`
k=0 pkφk(z); the matrix coefficient Pk ∈ Cn×n is from P (z) =

∑`
k=0 Pkφk(z).) This will be clearer

by example.

3.1. Bases with three-term recurrence relations. The monomial basis, the shifted monomial basis,
the Taylor basis, the Newton interpolational bases, and many common orthogonal polynomial bases all have
three-term recurrence relations that, except for initial cases, can be written

5The Frobenius form of a matrix is related, but different: see for instance [33].
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Table 1
A short list of three-term recurrence relations for some important polynomial bases discussed in Section 3.1. For a

more comprehensive list, see The Digital Library of Mathematical Functions. These relations and others are coded in Walter
Gautschi’s packages OPQ and SOPQ [18] and in the MatrixPolynomialObject implementation package in Maple (see [22]).

φk(z) Name αk βk γk φ0 φ1
zk Monomial 1 0 0 1 z

(z − a)k Shifted monomial 1 a 0 1 z − a
(z − a)k/k! Taylor n+ 1 a 0 1 z − a∏k−1
j=0 (z − τj) Newton interpolational 1 τn 0 1 z − τ0

Tk(z) = cos
(
k cos−1(z)

)
Chebyshev 1/2 0 1/2 1 z

Pk(z) Legendre (k + 1)/(2k + 1) 0 k/(2k + 1) 1 z

(3.26) zφk(z) = αkφk+1(z) + βkφk(z) + γkφk−1(z) .

In all cases, we have αk 6= 0. For instance, the Chebyshev polynomial recurrence is usually written Tn+1(z) =

2zTn(z)−Tn−1(z) but is easily rewritten in the above form by isolating zTn(z), and all Chebyshev αk = 1/2

for k > 1. We give a selection in Table 1, and refer the reader to Section 18.9 of the Digital Library of
Mathematical Functions (dlmf.nist.gov) for more. See also [18].

For all such bases, we have the linearization6

(3.27) zC1 −C0 = z



p5
α4

1

1

1

1

−

−p4 +

β4
α4
p5 −p3 +

γ4
α4
p5 −p2 −p1 −p0

α3 β3 γ3
α2 β2 γ2

α1 β1 γ1
α0 β0

 ,

(remember that αk 6= 0) and

X =
[
0 0 0 0 1

]
,(3.28)

Y =
[
1 0 0 0 0

]T
.(3.29)

As an example showing how to extend this companion matrix to a linearization of a matrix polynomial,
a Newton interpolational basis on the nodes τ0, τ1, . . ., τ5 has the linearization for matrix polynomials of
this grade,

(3.30) z


P5

In
In

In
In

−

−P4 + τ4P5 −P3 −P2 −P1 −P0

In τ3In
In τ2In

In τ1In
In τ0In

 .

3.2. The Bernstein basis. The set of polynomials {B`k(z)}`k=0 =
(
`
k

)
zk(1 − z)`−k is a set of ` +

1 polynomials each of exact degree ` that together forms a basis for polynomials of grade `. Bernstein

6For exposition, we follow Peter Lancaster’s dictum, namely that the 5× 5 case almost always gives the idea.

dlmf.nist.gov
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polynomimals have many applications, for example, in Computer-Aided Geometric Design (CAGD), and
many important properties including that of optimal condition number over all bases positive on [0, 1]. They
do not satisfy a simple three term recurrence relation of the form discussed in Section 3.1, although they
satisfy an interesting and useful ‘degree-elevation’ recurrence, namely

(3.31) (j + 1)B`j+1(z) + (`− j)B`j(z) = `B`−1j (z) ,

which specifically demonstrates that a sum of Bernstein polynomials of degree ` might have degree strictly
less than `. See [14], [15], and [16] for more details of Bernstein bases.

A Bernstein companion pencil for p5(z) =
∑5
k=0 pkB

5
k(z) is

zC1 −C0 = z



−p4 +
1

5
p5 −p3 −p2 −p1 −p0

1
2

4

1
3

3

1
4

2

1
5

1


−


−p4 −p3 −p2 −p1 −p0

1 0

1 0

1 0

1 0

 ,(3.32)

X =

[
1

5

2

5

3

5

4

5

5

5

]
,(3.33)

Y =
[
1 0 0 0 0

]T
.(3.34)

For a construction of rational E(z) and F (z) that show this is a local linearization (unless z = 1 is an
eigenvalue), see [2]. The paper [30] goes further and gives a general method of constructing all strong
linearizations for Bernstein matrix polynomials, including this one (which they show is strictly equivalent
to the second companion form for the monomial basis, without any restrictions on z or on the leading
coefficient). We have p−1(z) = X(zC1−C0)−1Y if p(z) 6= 0. This pencil was first analyzed in [23] and [24].
One of the present authors independently invented and implemented a version of this companion pencil in
Maple (except using PT(z), and flipped from the above form) in about 2004. For a proof of numerical
stability, see the original thesis [23]. The standard triple is, we believe, new to this paper.

Example 3.1 (Singular leading coefficient case).

P (z) =

[
29/100 −8/25
7/10 −1/100

]
B3

0(z) +

[
−41/50 41/100

−7/10 91/100

]
B3

1(z)(3.35)

+

[
9/10 19/100
4/5 22/25

]
B3

2(z) +

[
1 1

9851/1980 0

]
B3

3(z) .

Expressing equation (3.35) into the monomial basis, we have

P (z) =

[
29/100 −8/25
7/10 −1/100

]
+

[
29/100 −8/25
7/10 −1/100

]
z +

[
849/100 −57/20
87/10 −57/20

]
z2 +

[
−89/20 99/50

−89/396 1/10

]
z3 .

Taking the determinant of the leading coefficient

det

([
−89/20 99/50

−89/396 1/10

])
= (−89/20) (1/10)− (99/50) (−89/396) = 0 ,
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we can observe that leading coefficient is singular, and thus, this matrix polynomial cannot be made monic.
The standard triple for equation (3.35) is

C0 =



−9/10 −19/100 41/50 −41/100 −29/100 8/25

−4/5 −22/25 7/10 −91/100 −7/10 1/100

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



C1 =



−17/30 43/300 41/50 −41/100 −29/100 8/25
5099/5940 −22/25 7/10 −91/100 −7/10 1/100

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 3 0

0 0 0 1 0 3



X =

[
1/3 0 2/3 0 1 0

0 1/3 0 2/3 0 1

]
Y =



1 0

0 1

0 0

0 0

0 0

0 0


,

because

X (zC1 −C0)
−1

Y P (z) = I2 .

3.3. The Lagrange interpolational basis. There are by now several Lagrange basis linearizations.
The use of barycentric forms means that Lagrange interpolation is efficient and numerically stable and is
increasing in popularity [3]. Here is the definition of the first barycentric form for interpolation of polynomials
of grade ` on the ` + 1 distinct nodes τk ∈ C, 0 ≤ k ≤ `. Take the partial fraction decomposition of the
reciprocal of the node polynomial

(3.36) w(z) =
∏̀
k=0

(z − τk) ,

namely

(3.37)
1

w(z)
=
∑̀
k=0

βk
z − τk

where the coefficients βk occurring in the partial fraction decomposition are called the barycentric weights.
A well-known explicit formula for the βk is

(3.38) βk =
∏̀
j=0
j 6=k

(τk − τj)−1 .
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The Lagrange basis polynomials are normally written

(3.39) `k(z) = βk
∏̀
j=0
j 6=k

(z − τj) .

For many sets of nodes (Chebyshev nodes on [−1, 1], or roots of unity on the unit disk), the resulting
interpolant is also well-conditioned, and can even be ‘better than optimal’ [11], see also [6]. The pencil
we use here is ‘too large’ and has (numerically harmless in our experience) spurious roots at infinity7; for
alternative formulations, see [35, 31]. Then, the pencil is zC1 −C0 where

(3.40) zC1 −C0 = z


0

1

1

1

1

−


0 −ρ0 −ρ1 −ρ2 −ρ3 −ρ4
β0 τ0
β1 τ1
β2 τ2
β3 τ3
β4 τ4


.

Rational matrices E(z) and F (z) demonstrating that this is indeed a local linearization, except when the
nodes are eigenvalues, can be found in the appendix of [2]. More is true: by a block permutation argument,
one can find constant matrices Ek and Fk with determinant ±1 such that EkL(τk)Fk = diag(Pk, IN−n),
for 0 ≤ k ≤ `. Interpolating these matrices polynomially (indeed, we already know the correct barycentric
weights) to form polynomial matrices E(z) and F (z), we have E(z)L(z)F (z) = diag(P (z), IN−m), and
moreover because the determinants are ±1 exactly at the nodes (and therefore nonzero in certain small
neighbourhoods of the nodes) we see that L(z) and P (z) are equivalent on a set Σ (not necessarily simply
connected) that contains the nodes τk. Since L(z) and P (z) are also equivalent on a set that contains
everything except the nodes, we see by Proposition 2.1 of [13] that L(z) is a linearization of P (z).

The X and Y for the standard triple are

X =
[
0 1 1 1 1 1

]
,(3.41)

Y =
[
1 0 0 0 0 0

]T
.(3.42)

Notice in this case that for the linearization N = (`+ 2)n while deg p ≤ `, and therefore, there are at least
2n eigenvalues at infinity. This can be inconvenient if n is at all large.

3.4. Hermite interpolational basis. The Lagrange linearization of the previous section has been
extended to Hermite interpolational bases, where some of the nodes have ‘flowed together’, collapsing to
fewer distinct nodes8.

7This numerical harmlessness needs some explanation. In brief, Lagrange basis matrix polynomial eigenvalues will be
well-conditioned only in a compact region determined by the interpolation nodes and are increasingly ill-conditioned toward
infinity; in practice, this means only small changes in the data are needed to perturb large finite ill-conditioned eigenvalues out
to infinity. Any eigenvalues produced numerically that are well outside the region determined by the interpolation nodes are
likely easily perturbed all the way to infinity and can be safely ignored.

8A formal definition can be found in [8], for instance. The essential idea is that given two distinct pieces of data (τk, p(τk))

and (τk+1, p(τk+1)), we also know the forward difference (pk+1 − pk)/(τk+1 − τk). In the limit as one node approaches (flows
towards) the other, we still know two pieces of information: p(τk) and p′(τk). Hermite interpolation captures this idea.
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We suppose that at each remaining distinct node τi, 0 ≤ i ≤ N−1, say, there are now si ≥ 1 consecutive
pieces of information known, namely P (τi), P ′(τi)/1!, P ′′(τi)/2!, and so on up to the last one, the value of
the si− 1-th derivative at z = τi, namely P (si−1)(τi)/(si− 1)!. The integer si is called the confluency of the
node. The known pieces of information are the local Taylor coefficients of the polynomial fitting the data:

(3.43) ρi,j =
f (j)(τi)

j!
, 0 ≤ j ≤ si − 1 .

This gives 1 + ` =
∑
si pieces of information, determining a polynomial of grade `. The barycentric weights,

this time doubly indexed as βi,j , are again computed from the partial fraction decomposition of the reciprocal
of the node polynomial

(3.44)
1

w(z)
=

1∏N−1
i=0 (z − τi)si

=
N−1∑
i=0

si−1∑
j=0

βi,j
(z − τi)j+1

.

For evaluation of the interpolating polynomial, one should use the first or second barycentric form; see [8]
for details. For theoretical work with the Hermite interpolational bases, however, we can define

(3.45) Hi,j(z) =

si−1−j∑
k=0

βi,j+kw(z)(z − τi)−k−1 .

These polynomials, each of degree `, form a basis (a Hermite interpolational basis, to distinguish from the
Hermite orthogonal polynomials) for polynomials of grade `; moreover, they generalize the Lagrange property
in that only one Taylor coefficient at only one node is 1 and all the rest are zero.

Note that the derivative P ′(z) of a matrix polynomial is a straightforward extension to matrices of the
ordinary derivative. It is isomorphic to the matrix with entries that are the ordinary derivatives of the
original matrix.

The linearization of the previous section changes to the following elegant form. The matrix C1 is
unchanged,

(3.46) C1 =


0

1
. . .

1

1

 ,

being (`+ 2) by (`+ 2) as before. The matrix C0 changes, picking up transposed Jordan-like blocks for each
distinct node. For instance, suppose we have two distinct nodes, τ0 and τ1. Suppose further that τ0 has
confluency s0 = 3 while τ1 has confluency s1 = 2. This means that we know f(τ0), f ′(τ0)/1!, f ′′(τ0)/2!, f(τ1)

and f ′(τ1)/1!. Then,

(3.47) C0 =



0 −f ′′(τ0)/2! −f ′(τ0)/1! −f(τ0) −f ′(τ1)/1! −f(τ1)

β02 τ0
β01 1 τ0
β00 1 τ0
β11 τ1
β10 1 τ1


.
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Note the reverse ordering of the derivative values in this formulation.

The matrices E(z) and F (z) demonstrating that this is indeed a local linearization have, so far as we
know, not been noted in the literature. However, they are exactly the same as those for the Lagrange basis,
mutatis mutandis, which are discussed in the appendix to [2],with appropriately modified meanings for φ
and D. The new φ contains the Hermite interpolational bases in equation (3.45), and now D is not diagonal,
but rather block diagonal with the transposed Jordan-like blocks above. Both (rational) matrices are still
unimodular. Again we have E(z)(zC1 −C0)F (z) = diag(P (z), In, . . . , In), everywhere except the nodes.

To generalize the argument of the previous section that the companion pencil is equivalent also at the
nodes requires more work than the Lagrange case does because the Jordan-like block structure interferes
with the perturbation argument; on the other hand, one only needs the highest derivatives at each node to
be nonsingular for the construction to work. We leave the details for another paper.

We believe that the strict equivalence proof for the Lagrange basis in [10] can be extended to the Hermite
case as well, but this has not yet been carried out.

For the standard triple, take in the scalar case

(3.48) Y =
[
1 0 · · · 0

]T
,

but for X take the coefficients of the expansion of the polynomial 1 in this particular Hermite interpolational
basis: it is equal to 1 at each node but has all derivatives zero at each node. That is, put

(3.49)

{
ρij = 1 if j = 0 ,

ρij = 0 otherwise ,

and sort them in order:

(3.50) X =
[
0 ρ0,s0−1 ρ0,s0−2 · · · ρ0,0 ρ1,s1−1 · · · ρn,0

]
.

For the earlier instance (two nodes, of confluency 3 and 2, respectively),

(3.51) X =
[
0 0 0 1︸ ︷︷ ︸

for τ0

0 1︸︷︷︸
for τ1

]
.

Then,

(3.52) p−1(z) = X(zC1 −C0)−1Y .

Remark 3.2. We may re-order the nodes in any fashion we like, and each ordering generates its own
linearization (both Hermite and Lagrange). We may also find a linearization where the confluent data are
ordered p(τi), p′(τi)/1!, p′′(τi)/2!, etc., although we have not done so.

If there is just one node of confluency `, we recover the standard Frobenius companion (plus two infinite
roots):

(3.53)


0

1
. . .

1

1

 ,



0 −p`−1 −p`−2 · · · −p1 −p0
1 τ0
0 1 τ0

0 1
. . .

...
. . . τ0

0 1 τ0


.
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Here, pk = p(k)(τ0)/k! is the ordinary coefficient in the expansion p(z) =
∑`
k=0 pk(z−τ0)k. The numerical sta-

bility of these Hermite interpolational linearization has been studied briefly [26] but much remains unknown.
We confine ourselves in this paper to the study of the standard triple.

To make a linearization for matrix polynomials out of these scalar linearizations, take the Kronecker tensor
product with In and insert the appropriate matrix polynomial values and derivative values.

Example 3.3 (Matrix polynomial case). Let

τ = [0, 1] ,

and

z P (z) P ′(z)

τ0 = 0

[
−1 0

−1 1

]
τ1 = 1

[
0 1

1 −1

] [
1 −1

−1 0

] .

Then, the standard triple is

C0 =



0 0 −1 1 0 −1 1 0

0 0 1 0 −1 1 1 −1

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

−1 0 1 0 1 0 0 0

0 −1 0 1 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


C1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



X =

[
0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

]
Y =



1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0


.

The Hermite interpolating polynomial is

P (z) =

[
z − 1 −2z2 + 3z

−3z2 + 5z − 1 2z2 − 4z + 1

]
,

and the resolvent form is

X (zC1 −C0)
−1

Y =

 −2z2 + 4z − 1

6z4 − 21z3 + 23z2 − 8z + 1

−2z2 + 3z

6z4 − 21z3 + 23z2 − 8z + 1
−3z2 + 5z − 1

6z4 − 21z3 + 23z2 − 8z + 1

−z + 1

6z4 − 21z3 + 23z2 − 8z + 1

 .
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Then,

X (zC1 −C0)
−1

Y P (z) = I2 ,

which indicates that the standard triples is correct.

Remark 3.4. The modified linearizations of [35] also have standard triples that can be used for algebraic
linearization and arguably should be tabled here as well. They have the advantage of including fewer
eigenvalues at infinity, or no spurious eigenvalues at infinity, which may lead to better algebraic linearizations.
However, they are more involved, and we have less numerical experience with them. In particular, we do not
understand their dependence on the ordering of the nodes, and so we leave their analysis to a future study.

4. Concluding remarks. The generalized standard triples (or standard quadruples, if you prefer)
that we propose in this paper for convenience in algebraic linearization may have other uses. As pointed
out on p. 28 of [20], many of the properties stated in that work for monic polynomials are valid for non-
monic polynomials with the appropriate changes made. Some caution with the results of this paper is thus
mandated.

We have here defined these generalized standard triples simply by the resolvent representation for the
matrix polynomial equation (1.7), and only for linearizations, which is all we need for algebraic linearization.

The main theorem of the paper, namely Theorem 2.1, gives a universal way to construct this generalized
standard triple for polynomial matrices written in terms of any polynomial basis, given a linearization satis-
fying equation 2.21. We also gave explicit instructions for this construction using any of several polynomial
bases, for convenience, which may give insight for further work in this area.

In Section 1.3, we gave an explicit construction for matrices EH(z) and FF (z) showing that algebraic
linearizations are, in fact, local linearizations, with EH(z)(zBH −AH)FH(z) = diag(P (z), I, . . . , I).

In [10] we find new constructions for matricesE(z) and F (z) which likewise show that the companions for
the Lagrange and Hermite interpolational bases are, in fact, linearizations (of matrix polynomials of higher
grade). A proof for Lagrange interpolational bases was given already in [2], where indeed the linearization
was proved to be strong, but the result for Hermite interpolational bases has not yet, to our knowledge,
been published. Indeed while we claim that the standard triple given here works for Hermite interpolational
bases, we have not given any details of a proof, and we leave that proof for a future paper.
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