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ZERO-NONZERO PATTERNS THAT ALLOW OR REQUIRE AN INERTIA SET
RELATED TO DYNAMICAL SYSTEMS*

WEI GAOT AND YANLING SHAOf

Abstract. The inertia of an n X n real matrix B, denoted by i(B), is the ordered triple i(B) = (i+(B), i—(B),i0(B)),
in which i4+(B), i—(B) and ip(B) are the numbers of its eigenvalues (counting multiplicities) with positive, negative and zero
real parts, respectively. The inertia of an n X n zero-nonzero pattern A is the set i(A) = {i(B) | B € Q(A)}. For n > 2,
let S¥ = {(0,n,0),(0,n —1,1),(1,n — 1,0),(n,0,0),(n — 1,0,1),(n — 1,1,0)}. An n X n zero-nonzero pattern A allows S} if
S¥ Ci(A) and requires S7, if S}, = i(A). In this paper, it is shown that there are no zero-nonzero patterns for order n > 2 that
require S} . Also, a complete characterization of zero-nonzero star patterns of order n > 3 that allow S}, is given.
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1. Introduction. An n xn zero-nonzero pattern is an n X n matrix .4 with entries from {x, 0}, where x*
is nonzero. A real matrix B = (b;;) is a realization of A if b;; # 0 if and only if the (4, j)-entry of A is *. The
zero-nonzero pattern class Q(A) is the set of all realizations of A. Two zero-nonzero patterns are equivalent
if one can be obtained from the other by any combination of transposition and permutation similarity. If we
assign each nonzero entry of A a sign (+ or —), then we can get a sign pattern 5, whose entries come from
the set {+,—,0}. The sign pattern B is called a signing of A.

The inertia of an nxn real matrix B, denoted by i(B), is the ordered triple i(B) = (i1 (B), i—(B),io(B)),
in which i, (B), i—(B) and io(B) are the numbers of its eigenvalues (counting multiplicities) with positive,
negative and zero real parts, respectively. The inertia of an n X n zero-nonzero pattern A is the set i(A) =

{i(B) | B € Q(A)} ([11)).

In [2], motivated by the possible onset of instability in dynamical systems associated with a zero eigen-
value, the inertia set S,, with n > 2 is defined as

S, = {(0,n,0), (0,n —1,1), (1,n — 1,0)}.

For a zero-nonzero pattern A, (iy,i_,i9) € i(A) if and only if its reversal (i_,i1,i9) € i(A). Thus, in [2],
the inertia set S} = {(0,n,0),(0,n —1,1),(1,n — 1,0), (n,0,0), (n — 1,0,1), (n — 1,1,0)} was introduced.

An n xn zero-nonzero pattern (resp. sign pattern) A allows S}, (resp. S,) if S}, Ci(A) (resp. S, Ci(A)),
and requires S% (resp. S,) if S = i(A) (resp. S, =i(A)).

A related set of refined inertias H,, was introduced for sign patterns in [3]. The refined inertia of a square
real matrix B, denoted by ri(B), is the ordered 4-tuple (ny(B),n_(B),n.(B), 2n,(B)), where ny (B) (resp.,
n_(B)) is the number of eigenvalues of B with positive (resp., negative) real part, n,(B) is the number of
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zero eigenvalues of B, and 2n,(B) is the number of pure imaginary (nonzero) eigenvalues of B. For n > 2,
H,, = {(0,n,0,0),(0,n —2,0,2),(2,n —2,0,0)}. The set H,, can signal the onset of periodic solutions by a
pair of nonzero pure imaginary eigenvalues in dynamical systems. For further results on H,, see [4, 5, 6, 8, 9].
In [1], the concept H,, for sign patterns is expanded to H for zero-nonzero patterns. For further results on
H? | see [7].

A zero-nonzero pattern A is reducible if it is permutation similar to a pattern of the form

{An Au]
0 Ay |’

where A1, Aso are square and non-vacuous. A zero-nonzero pattern is irreducible if it is not reducible.

There is a natural association between digraphs and zero-nonzero patterns. For an n X n zero-nonzero
pattern A, the associated digraph D(A) has n vertices v1,vs, ..., vy, an arc from vertex v; to vertex v; if and
only if the (7, j)-entry of A is nonzero, and a loop at vertex v; if and only if the (7,7)-entry of A is nonzero.
Two digraphs are equivalent if and only if their associated zero-nonzero patterns are equivalent.

A simple cycle of length [ or an I-cycle in a digraph D is a sequence of arcs of the form C = v;, v;,, v;,is,
..., 05,0;,, where v;,,...,v;, are distinct vertices. A composite cycle C' in a digraph D is a vertex disjoint
union of simple cycles, say C = C; UCy U --- U Cy. If the length of C; is [;, then the length of C' is Ele l;.

In [2], it is shown that a zero-nonzero pattern of order 2 allows S} if and only if every entry in the
zero-nonzero pattern is x. The authors also describe all irreducible nonequivalent zero-nonzero patterns of
order 3 and 4 that allow S} . For zero-nonzero patterns requiring S}, it is proved that for 2 < n < 4, there
are no irreducible zero-nonzero patterns of order n that require S}. For n > 5, this question is open.

In this paper, we study zero-nonzero patterns that allow or require S}. In Section 3, we first prove that
there are no irreducible zero-nonzero patterns of order n > 5 that require S},. So together with the result in
[2], there are no irreducible zero-nonzero patterns of order n > 2 that require S7. Moreover, we can prove
that there are no reducible zero-nonzero patterns of order n > 2 that require S}. In Section 4, we give a
complete characterization of zero-nonzero star patterns of order n > 3 that allow S.

2. Preliminaries.

REMARK 2.1. Let A be a zero-nonzero pattern of order n. If A requires S}, then by the definition of
Sk, it is clear that for any B € Q(A), either i, (B) <1lori_(B) < 1.

LEMMA 2.2. Letn >4 and n X n matrix

(n=4), B= (n>5).

— o O O
o O O

o O = O
o = O O

Then iy (B) > 2 and i_(B) > 2.
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Proof. When n = 4, the characteristic polynomial of B is

A1 0 0

0 A -1 0 4 ) 9
detM-B)=| o o O [=A+1=( VA 1)(A2 = V2A +1).

-1 0 O A

So, i(B) = (2,2,0,0) and the lemma holds.
When n > 5, the characteristic polynomial of B is

A -1

det(A\ — B) = = A" 1.

Co-1
-1 A

It is easy to see that o(B) = {cos(2:%) +isin(2:T) | k = 1,2,...,n}, and so iy (B) > 2 and i_(B) > 2. The
lemma holds. O

A zero-nonzero pattern B is a subpattern of a zero-nonzero pattern A if B is obtained from A by replacing
some (or possibly none) of the nonzero entries of A with zeros. A is a superpattern of B if B is a subpattern

of A.

LEMMA 2.3. Let A be a zero-nonzero pattern of order n and Ay be a subpattern of A. If there exists
By € Q(Ay) such that iy (Bg) > 2 and i—(Bg) > 2, then A does not require S,.

Proof. Note that the eigenvalues of a matrix can be arranged so that they are continuous functions of
the entries ([10]). If the condition holds, then there exists a matrix B € Q(.A) such that i, (B) > 2 and
i_(B) > 2. So A does not require S}, by Remark 2.1. ad

LEMMA 2.4. Let A be a zero-nonzero pattern of order n and assume that A has k nonzero diagonal
entries. If A requires S}, then 1 <k < 3.

Proof. First suppose kK = 0. Since the trace of A is zero, it is impossible to find B € Q(A) with
i(B) = (0,n — 1,1). This contradicts to A requiring S,.

Now suppose k& > 4. Without loss of generality, assume that the nonzero diagonal entries of A are

ai1, 092, ... ,akk. By emphasizing ai1, ase, ass, asq and taking aq; > 0,a90 > 0,a33 < 0,a44 < 0, we can get
a matrix B € Q(A) such that iy (B) > 2 and i_(B) > 2. By Remark 2.1, A does not require S¥. Thus, the
result follows. ]

LEMMA 2.5. Let A be a zero-nonzero pattern of order n. If D(A) contains a composite cycle that
consists of one 2-cycle and two loops, then A does not require S,.

Proof. Without loss of generality, assume that the 2-cycle is vyvov; and two loops are on vz and vy.
Take an n x n matrix By = (b;;) with bio = ba1 = bsg = 1, baa = —1, and other entries equal to zero. It is
clear that i4(Bg) = 2 and i_(By) = 2. Thus, A does not require S} by Lemma 2.3. 0

A zero-nonzero pattern A is combinatorially singular if B is singular for all B € Q(A), and A is
combinatorially nonsingular if B is nonsingular for all B € Q(A).
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LEMMA 2.6. ([2]) If an nxn zero-nonzero pattern A requires or allows S, then A is not combinatorially
singular, and not combinatorially nonsingular.

LEMMA 2.7. If an n x n zero-nonzero pattern A allows S,,, then A allows S},. And if an n X n sign
pattern A allows or requires S, then the associated zero-nonzero pattern allows S} .

Proof. Note that for zero-nonzero pattern A, the inertia (iy,i_,i) € i(A) if and only if its reversal
(i—,it,i0) € i(A). O

3. Zero-nonzero patterns of order n do not require S} .

LEMMA 3.1. Let A be a zero-nonzero pattern of order n > 5. If D(A) satisfies one of the following two
conditions, then A does not require S, .

(1) D(A) contains a s-cycle with s > 4;

(2) D(A) contains a k-cycle and a t-cycle that are vertex disjoint with 1 < k,t < 3 and k +t > 4.
Proof. Denote V(D(A)) = {v1,v2,...,v,}. Consider the following two cases.

Case 1. D(A) contains a s-cycle Cs with s > 4.

Without loss of generality, assume that Cs = vivs - - - vgv1. If s = 4, then take an n x n matrix By = (b;;)
with bjg = —1, bag = -+ = bs_1,s = bs;1 = 1, and the other entries of By equal to zero. If s > 4, then take
an n x n matrix By = (b;;) with bjg = bag = -+ = bs_15 = bs;1 = 1, and the other entries of By equal to
zero. By Lemma 2.2, iy (By) > 2 and i_(By) > 2. Thus, A does not require S} by Lemma 2.3.

Case 2. D(A) contains a k-cycle Cy and a t-cycle C; that are vertex disjoint with 1 < k,t < 3 and
k+1t>4.

Without loss of generality, assume that Cj = wvivg---vgv1 and Cy = Vp41Vk42 - VgttVk+1. Up to
equivalence, there are the following four cases.

e k=3 and t = 1;
e k=2and t=2;
e k=2andt=3;
e k=3 and t=3.

Ifk=3andt= 1, take an n X n matrix BO = (blj) with blg = b23 = b31 = 1, b44 = 1 and the other
entries equal to zero. Then iy (By) =2 and i (Bp) = 2, and A does not require S by Lemma 2.3.

If k=2 and t = 2, take an n x n matrix By = (b;;) with bia = bg1 = bs4 = by = 1, and the other entries
equal to zero. Then i4(By) =2 and i_(By) = 2, and A does not require S} by Lemma 2.3.

If k=2 and t = 3, take an n x n matrix By = (b;;) with b1a = ba1 = bss = bys = bsz = 1, and the other
entries equal to zero. Then i1 (By) = 2 and i_(By) = 3, and A does not require S}, by Lemma 2.3.

Ifk=3andt= 37 take an n X n matrix BO = (blj) with b12 = b23 = b31 = 1, b45 = b56 = b64 = 71, and
the other entries equal to zero. Then iy (By) = 3 and i_(By) = 3, and A does not require S} by Lemma
2.3. O

THEOREM 3.2. There are no irreducible zero-nonzero patterns of order n > 2 that require S},.

Proof. Based on the result in [2], we only need to prove the result when n > 5.
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Let D(A) be the associated digraph of A with vertex set {vq, v2,...,v,}. By Lemma 2.6, we may assume
that A is not combinatorially singular. Thus, there exists a composite cycle C = C;UCyU- - -UCy of length n
in D(A). Denote the lengths of C1,Cs,...,Ck by l1,..., I, respectively. Without loss of generality, assume
that I; < -+ <.

Consider the following four cases.
Case 1.l > 4. Then A does not require S}, by Lemma 3.1.
Case 2. l;, = 3. Note that k£ > 2 since n > 5. Then A does not require S}, by Lemma 3.1.

Case 3. ly, = 2. If l_1 = 2, then D(A) contains two vertex disjoint 2-cycles that do not have common
vertices. By Lemma 3.1, A does not require S;. Otherwise, since n > 5, it is clear that D(A) contains a
composite cycle that consists of one 2-cycle and two loops. By Lemma 2.5, A does not require S;.

Case 4.l = 1. Since n > 5, A has at least five nonzero diagonal vertices. By Lemma 2.4, A does not
require S},. a0
THEOREM 3.3. There are no reducible zero-nonzero patterns of order n > 2 that require S},.

Proof. Let A be a reducible zero-nonzero pattern of order n. Then there is a permutation zero-nonzero
pattern P such that

A #
T o m
prap= |
where # is an m x (n —m) zero-nonzero pattern and 1 <m <n — 1.

Suppose that A requires S}. Then {(0,n,0),(n,0,0)} C i(A), and so {(0,m,0),(m,0,0)} Ci(A,,) and
{(0,n—m,0),(n—m,0,0)} Ci(A,_pm). Thus, {(m,n—m,0),(n—m,m,0)} Ci(A). Som=1lorn—m = 1.

m=1andn—m=1,thenn=2 and Ay = Ay, = (+). Thus, i(4) = {(0.2,0),(1,1,0), (2,0,0)},
and so A does not require S.

If only one of m and n—m is equal to one, then n > 3. Without loss of generality, assume m = 1, that is,
Apm = (%). Then i(A,,) = {(1,0,0),(0,1,0)}. Since A requires S, we must have {(0,n—2,1),(n—2,0,1)} C
i(An—m). Thus, {(1,n —2,1),(n —2,1,1)} Ci(A), a contradiction. O

Theorems 3.2 and 3.3 give the main result of this section as follows.

THEOREM 3.4. There are no zero-nonzero patterns of order n > 2 that require S,.

4. Zero-nonzero star patterns that allow S;. Up to equivalence, an n X n zero-nonzero star pattern
can be represented in the following form

ail *k %
* a2
(4.1) A= . ) )
* QAnn

where a;; € {%,0} fori=1,2,...,n.

In [2], it is shown that a zero-nonzero pattern of order 2 allows S} if and only if every entry in the
zero-nonzero pattern is *. In this section, we give a complete characterization of zero-nonzero star patterns
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of order n > 3 that allow S},.

THEOREM 4.1. Let n > 3 and A be a zero-nonzero star pattern of order n.

only if A is equivalent to one of the following patterns

ok * %
ok *

A =| * and Ay = | : %
* * *

When A allows S}, A has a signing that allows S,,.

IL
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Then A allows S}, if and

Proof. Let A be a zero-nonzero star pattern of order n. Up to equivalence, we may assume that A is in

the form (4.1).

Necessity. If at least two of ass,...,a,, are equal to zero, then A is combinatorially singular, and A
doesn’t allow S} by Lemma 2.6. If exactly one of aga,...,an, is equal to zero, then A is combinatorially
nonsingular, and A doesn’t allow S} by Lemma 2.6. Thus, up to equivalence, we may assume a;; = * for

1=2,3,...,n, that is, A is equivalent to one of patterns A; and A,.
For sufficiency, we consider the following two cases.
Case 1. A is equivalent to Aj.

Without loss of generality, assume that A = A;. Take

fol@)=lal ~B|=| 1 7 +1

1 z+1
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By subtracting the second column from the kth column, k = 3,4, ..., n, respectively, we have
r—a —1 0 e 0
b rz+1 —(x+1) --- —(x+1)
f(x)= 1 z+1
1 r+1
b —(x+1) -+ —(z+1)
. 1 z+1
=(@—a)(z+1)"""+| .
1 z+1 o
n—>b—2 0 e 0
1 z+1
=(z—a)(z+1)""" + :
1 z+1 1

=(@—a)(z+ )"+ (n—-b-2)(x+1)"2
=@+D)" 2@+ (1-a)z+n—a—b—2).

(1) Ifa= 3 and b=n— 3, then fp(x) = (z+1)"%(z® + 2z + }), and so i(B) = (0,n,0).
(2)Ifa=3 and b=n— 2, then fp(z) = (z + 1)"%(2* + 1z), and so i(B) = (0,n — 1,1).

(3)Ifa=1and b =n—2, then fg(x) = (v + 1)""1(x — 1), and so i(B) = (1,n — 1,0). Thus, sgn(B)
allows S,,. By Lemma 2.7, A allows S}, and A has a signing that allows S,,.

Case 2. A is equivalent to As.

Without loss of generality, assume that A = Ay. Take

0 1 1 1
c —1

c=1| -1 -1 €Q(A),
-1 -1

where ¢ # 0. By the similar steps as in Case 1, we can get the characteristic polynomial of C'

fo@) =zl —C|=(x+1)" 2@ +x+n—c—2).

(1) If ¢ = 3, then fo(z) = (z +1)""2(2® + 2+ n — 2), and so i(C) = (0,n,0).
(2) If c=n — 2, then fo(x) = z(x+ 1)1, and so i(C) = (0,n — 1,1).

(3) If ¢ = n, then fo(z) = (x +1)""2(x +2)(z — 1), and so i(C) = (1,n — 1,0). Thus, sgn(C) allows S,,.
By Lemma 2.7, A allows S, and A has a signing that allows S,,. a0
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