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ZERO-NONZERO PATTERNS THAT ALLOW OR REQUIRE AN INERTIA SET

RELATED TO DYNAMICAL SYSTEMS∗

WEI GAO† AND YANLING SHAO‡

Abstract. The inertia of an n × n real matrix B, denoted by i(B), is the ordered triple i(B) = (i+(B), i−(B), i0(B)),

in which i+(B), i−(B) and i0(B) are the numbers of its eigenvalues (counting multiplicities) with positive, negative and zero

real parts, respectively. The inertia of an n × n zero-nonzero pattern A is the set i(A) = {i(B) | B ∈ Q(A)}. For n ≥ 2,

let S∗n = {(0, n, 0), (0, n − 1, 1), (1, n − 1, 0), (n, 0, 0), (n − 1, 0, 1), (n − 1, 1, 0)}. An n × n zero-nonzero pattern A allows S∗n if

S∗n ⊆ i(A) and requires S∗n if S∗n = i(A). In this paper, it is shown that there are no zero-nonzero patterns for order n ≥ 2 that

require S∗n. Also, a complete characterization of zero-nonzero star patterns of order n ≥ 3 that allow S∗n is given.
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1. Introduction. An n×n zero-nonzero pattern is an n×n matrix A with entries from {∗, 0}, where ∗
is nonzero. A real matrix B = (bij) is a realization of A if bij 6= 0 if and only if the (i, j)-entry of A is ∗. The

zero-nonzero pattern class Q(A) is the set of all realizations of A. Two zero-nonzero patterns are equivalent

if one can be obtained from the other by any combination of transposition and permutation similarity. If we

assign each nonzero entry of A a sign (+ or −), then we can get a sign pattern B, whose entries come from

the set {+,−, 0}. The sign pattern B is called a signing of A.

The inertia of an n×n real matrix B, denoted by i(B), is the ordered triple i(B) = (i+(B), i−(B), i0(B)),

in which i+(B), i−(B) and i0(B) are the numbers of its eigenvalues (counting multiplicities) with positive,

negative and zero real parts, respectively. The inertia of an n× n zero-nonzero pattern A is the set i(A) =

{i(B) | B ∈ Q(A)} ([11]).

In [2], motivated by the possible onset of instability in dynamical systems associated with a zero eigen-

value, the inertia set Sn with n ≥ 2 is defined as

Sn = {(0, n, 0), (0, n− 1, 1), (1, n− 1, 0)}.

For a zero-nonzero pattern A, (i+, i−, i0) ∈ i(A) if and only if its reversal (i−, i+, i0) ∈ i(A). Thus, in [2],

the inertia set S∗
n = {(0, n, 0), (0, n− 1, 1), (1, n− 1, 0), (n, 0, 0), (n− 1, 0, 1), (n− 1, 1, 0)} was introduced.

An n×n zero-nonzero pattern (resp. sign pattern) A allows S∗n (resp. Sn) if S∗n ⊆ i(A) (resp. Sn ⊆ i(A)),

and requires S∗n (resp. Sn) if S∗n = i(A) (resp. Sn = i(A)).

A related set of refined inertias Hn was introduced for sign patterns in [3]. The refined inertia of a square

real matrix B, denoted by ri(B), is the ordered 4-tuple (n+(B), n−(B), nz(B), 2np(B)), where n+(B) (resp.,

n−(B)) is the number of eigenvalues of B with positive (resp., negative) real part, nz(B) is the number of
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zero eigenvalues of B, and 2np(B) is the number of pure imaginary (nonzero) eigenvalues of B. For n ≥ 2,

Hn = {(0, n, 0, 0), (0, n− 2, 0, 2), (2, n− 2, 0, 0)}. The set Hn can signal the onset of periodic solutions by a

pair of nonzero pure imaginary eigenvalues in dynamical systems. For further results on Hn, see [4, 5, 6, 8, 9].

In [1], the concept Hn for sign patterns is expanded to H∗
n for zero-nonzero patterns. For further results on

H∗
n, see [7].

A zero-nonzero pattern A is reducible if it is permutation similar to a pattern of the form[
A11 A12

0 A22

]
,

where A11, A22 are square and non-vacuous. A zero-nonzero pattern is irreducible if it is not reducible.

There is a natural association between digraphs and zero-nonzero patterns. For an n × n zero-nonzero

pattern A, the associated digraph D(A) has n vertices v1, v2, . . . , vn, an arc from vertex vi to vertex vj if and

only if the (i, j)-entry of A is nonzero, and a loop at vertex vi if and only if the (i, i)-entry of A is nonzero.

Two digraphs are equivalent if and only if their associated zero-nonzero patterns are equivalent.

A simple cycle of length l or an l-cycle in a digraph D is a sequence of arcs of the form C = vi1vi2 , vi2vi3 ,

. . . , vilvi1 , where vi1 , . . . , vil are distinct vertices. A composite cycle C in a digraph D is a vertex disjoint

union of simple cycles, say C = C1 ∪C2 ∪ · · · ∪Ck. If the length of Ci is li, then the length of C is
∑k
i=1 li.

In [2], it is shown that a zero-nonzero pattern of order 2 allows S∗2 if and only if every entry in the

zero-nonzero pattern is ∗. The authors also describe all irreducible nonequivalent zero-nonzero patterns of

order 3 and 4 that allow S∗n. For zero-nonzero patterns requiring S∗n, it is proved that for 2 ≤ n ≤ 4, there

are no irreducible zero-nonzero patterns of order n that require S∗n. For n ≥ 5, this question is open.

In this paper, we study zero-nonzero patterns that allow or require S∗n. In Section 3, we first prove that

there are no irreducible zero-nonzero patterns of order n ≥ 5 that require S∗n. So together with the result in

[2], there are no irreducible zero-nonzero patterns of order n ≥ 2 that require S∗n. Moreover, we can prove

that there are no reducible zero-nonzero patterns of order n ≥ 2 that require S∗n. In Section 4, we give a

complete characterization of zero-nonzero star patterns of order n ≥ 3 that allow S∗n.

2. Preliminaries.

Remark 2.1. Let A be a zero-nonzero pattern of order n. If A requires S∗n, then by the definition of

S∗n, it is clear that for any B ∈ Q(A), either i+(B) ≤ 1 or i−(B) ≤ 1.

Lemma 2.2. Let n ≥ 4 and n× n matrix

B =


0 −1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 (n = 4), B =



0 1
. . .

. . .

. . .
. . .

. . . 1

1 0


(n ≥ 5).

Then i+(B) ≥ 2 and i−(B) ≥ 2.
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Proof. When n = 4, the characteristic polynomial of B is

det(λI −B) =

∣∣∣∣∣∣∣∣
λ 1 0 0

0 λ −1 0

0 0 λ −1

−1 0 0 λ

∣∣∣∣∣∣∣∣ = λ4 + 1 = (λ2 +
√

2λ+ 1)(λ2 −
√

2λ+ 1).

So, i(B) = (2, 2, 0, 0) and the lemma holds.

When n ≥ 5, the characteristic polynomial of B is

det(λI −B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
. . .

. . .

. . .
. . .

. . . −1

−1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λn − 1.

It is easy to see that σ(B) =
{

cos( 2kπ
n ) + i sin( 2kπ

n ) | k = 1, 2, . . . , n
}

, and so i+(B) ≥ 2 and i−(B) ≥ 2. The

lemma holds.

A zero-nonzero pattern B is a subpattern of a zero-nonzero pattern A if B is obtained from A by replacing

some (or possibly none) of the nonzero entries of A with zeros. A is a superpattern of B if B is a subpattern

of A.

Lemma 2.3. Let A be a zero-nonzero pattern of order n and A1 be a subpattern of A. If there exists

B0 ∈ Q(A1) such that i+(B0) ≥ 2 and i−(B0) ≥ 2, then A does not require S∗n.

Proof. Note that the eigenvalues of a matrix can be arranged so that they are continuous functions of

the entries ([10]). If the condition holds, then there exists a matrix B ∈ Q(A) such that i+(B) ≥ 2 and

i−(B) ≥ 2. So A does not require S∗n by Remark 2.1.

Lemma 2.4. Let A be a zero-nonzero pattern of order n and assume that A has k nonzero diagonal

entries. If A requires S∗n, then 1 ≤ k ≤ 3.

Proof. First suppose k = 0. Since the trace of A is zero, it is impossible to find B ∈ Q(A) with

i(B) = (0, n− 1, 1). This contradicts to A requiring S∗n.

Now suppose k > 4. Without loss of generality, assume that the nonzero diagonal entries of A are

a11, a22, . . . , akk. By emphasizing a11, a22, a33, a44 and taking a11 > 0, a22 > 0, a33 < 0, a44 < 0, we can get

a matrix B ∈ Q(A) such that i+(B) ≥ 2 and i−(B) ≥ 2. By Remark 2.1, A does not require S∗n. Thus, the

result follows.

Lemma 2.5. Let A be a zero-nonzero pattern of order n. If D(A) contains a composite cycle that

consists of one 2-cycle and two loops, then A does not require S∗n.

Proof. Without loss of generality, assume that the 2-cycle is v1v2v1 and two loops are on v3 and v4.

Take an n × n matrix B0 = (bij) with b12 = b21 = b33 = 1, b44 = −1, and other entries equal to zero. It is

clear that i+(B0) = 2 and i−(B0) = 2. Thus, A does not require S∗n by Lemma 2.3.

A zero-nonzero pattern A is combinatorially singular if B is singular for all B ∈ Q(A), and A is

combinatorially nonsingular if B is nonsingular for all B ∈ Q(A).
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Lemma 2.6. ([2]) If an n×n zero-nonzero pattern A requires or allows S∗n, then A is not combinatorially

singular, and not combinatorially nonsingular.

Lemma 2.7. If an n × n zero-nonzero pattern A allows Sn, then A allows S∗n. And if an n × n sign

pattern A allows or requires Sn, then the associated zero-nonzero pattern allows S∗n.

Proof. Note that for zero-nonzero pattern A, the inertia (i+, i−, i0) ∈ i(A) if and only if its reversal

(i−, i+, i0) ∈ i(A).

3. Zero-nonzero patterns of order n do not require S∗n.

Lemma 3.1. Let A be a zero-nonzero pattern of order n ≥ 5. If D(A) satisfies one of the following two

conditions, then A does not require S∗n.

(1) D(A) contains a s-cycle with s ≥ 4;

(2) D(A) contains a k-cycle and a t-cycle that are vertex disjoint with 1 ≤ k, t ≤ 3 and k + t ≥ 4.

Proof. Denote V (D(A)) = {v1, v2, . . . , vn}. Consider the following two cases.

Case 1. D(A) contains a s-cycle Cs with s ≥ 4.

Without loss of generality, assume that Cs = v1v2 · · · vsv1. If s = 4, then take an n×n matrix B0 = (bij)

with b12 = −1, b23 = · · · = bs−1,s = bs,1 = 1, and the other entries of B0 equal to zero. If s > 4, then take

an n × n matrix B0 = (bij) with b12 = b23 = · · · = bs−1,s = bs,1 = 1, and the other entries of B0 equal to

zero. By Lemma 2.2, i+(B0) ≥ 2 and i−(B0) ≥ 2. Thus, A does not require S∗n by Lemma 2.3.

Case 2. D(A) contains a k-cycle Ck and a t-cycle Ct that are vertex disjoint with 1 ≤ k, t ≤ 3 and

k + t ≥ 4.

Without loss of generality, assume that Ck = v1v2 · · · vkv1 and Ct = vk+1vk+2 · · · vk+tvk+1. Up to

equivalence, there are the following four cases.

• k = 3 and t = 1;

• k = 2 and t = 2;

• k = 2 and t = 3;

• k = 3 and t = 3.

If k = 3 and t = 1, take an n × n matrix B0 = (bij) with b12 = b23 = b31 = 1, b44 = 1 and the other

entries equal to zero. Then i+(B0) = 2 and i−(B0) = 2, and A does not require S∗n by Lemma 2.3.

If k = 2 and t = 2, take an n×n matrix B0 = (bij) with b12 = b21 = b34 = b43 = 1, and the other entries

equal to zero. Then i+(B0) = 2 and i−(B0) = 2, and A does not require S∗n by Lemma 2.3.

If k = 2 and t = 3, take an n× n matrix B0 = (bij) with b12 = b21 = b34 = b45 = b53 = 1, and the other

entries equal to zero. Then i+(B0) = 2 and i−(B0) = 3, and A does not require S∗n by Lemma 2.3.

If k = 3 and t = 3, take an n× n matrix B0 = (bij) with b12 = b23 = b31 = 1, b45 = b56 = b64 = −1, and

the other entries equal to zero. Then i+(B0) = 3 and i−(B0) = 3, and A does not require S∗n by Lemma

2.3.

Theorem 3.2. There are no irreducible zero-nonzero patterns of order n ≥ 2 that require S∗n.

Proof. Based on the result in [2], we only need to prove the result when n ≥ 5.
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Let D(A) be the associated digraph of A with vertex set {v1, v2, . . . , vn}. By Lemma 2.6, we may assume

that A is not combinatorially singular. Thus, there exists a composite cycle C = C1∪C2∪· · ·∪Ck of length n

in D(A). Denote the lengths of C1, C2, . . . , Ck by l1, . . . , lk, respectively. Without loss of generality, assume

that l1 ≤ · · · ≤ lk.

Consider the following four cases.

Case 1. lk ≥ 4. Then A does not require S∗n by Lemma 3.1.

Case 2. lk = 3. Note that k ≥ 2 since n ≥ 5. Then A does not require S∗n by Lemma 3.1.

Case 3. lk = 2. If lk−1 = 2, then D(A) contains two vertex disjoint 2-cycles that do not have common

vertices. By Lemma 3.1, A does not require S∗n. Otherwise, since n ≥ 5, it is clear that D(A) contains a

composite cycle that consists of one 2-cycle and two loops. By Lemma 2.5, A does not require S∗n.

Case 4. lk = 1. Since n ≥ 5, A has at least five nonzero diagonal vertices. By Lemma 2.4, A does not

require S∗n.

Theorem 3.3. There are no reducible zero-nonzero patterns of order n ≥ 2 that require S∗n.

Proof. Let A be a reducible zero-nonzero pattern of order n. Then there is a permutation zero-nonzero

pattern P such that

PTAP =

[
Am #

0 An−m

]
,

where # is an m× (n−m) zero-nonzero pattern and 1 ≤ m ≤ n− 1.

Suppose that A requires S∗n. Then {(0, n, 0), (n, 0, 0)} ⊆ i(A), and so {(0,m, 0), (m, 0, 0)} ⊆ i(Am) and

{(0, n−m, 0), (n−m, 0, 0)} ⊆ i(An−m). Thus, {(m,n−m, 0), (n−m,m, 0)} ⊆ i(A). So m = 1 or n−m = 1.

If m = 1 and n−m = 1, then n = 2, and Am = An−m = (∗). Thus, i(A) = {(0, 2, 0), (1, 1, 0), (2, 0, 0)},
and so A does not require S∗n.

If only one of m and n−m is equal to one, then n ≥ 3. Without loss of generality, assume m = 1, that is,

Am = (∗). Then i(Am) = {(1, 0, 0), (0, 1, 0)}. Since A requires S∗n, we must have {(0, n−2, 1), (n−2, 0, 1)} ⊆
i(An−m). Thus, {(1, n− 2, 1), (n− 2, 1, 1)} ⊆ i(A), a contradiction.

Theorems 3.2 and 3.3 give the main result of this section as follows.

Theorem 3.4. There are no zero-nonzero patterns of order n ≥ 2 that require S∗n.

4. Zero-nonzero star patterns that allow S∗n. Up to equivalence, an n×n zero-nonzero star pattern

can be represented in the following form

(4.1) A =


a11 ∗ · · · ∗
∗ a22
...

. . .

∗ ann

 ,
where aii ∈ {∗, 0} for i = 1, 2, . . . , n.

In [2], it is shown that a zero-nonzero pattern of order 2 allows S∗2 if and only if every entry in the

zero-nonzero pattern is ∗. In this section, we give a complete characterization of zero-nonzero star patterns
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of order n ≥ 3 that allow S∗n.

Theorem 4.1. Let n ≥ 3 and A be a zero-nonzero star pattern of order n. Then A allows S∗n if and

only if A is equivalent to one of the following patterns

A1 =



∗ ∗ · · · · · · ∗
∗ ∗
... ∗
...

. . .

∗ ∗


and A2 =



0 ∗ · · · · · · ∗
∗ ∗
... ∗
...

. . .

∗ ∗


.

When A allows S∗n, A has a signing that allows Sn.

Proof. Let A be a zero-nonzero star pattern of order n. Up to equivalence, we may assume that A is in

the form (4.1).

Necessity. If at least two of a22, . . . , ann are equal to zero, then A is combinatorially singular, and A
doesn’t allow S∗n by Lemma 2.6. If exactly one of a22, . . . , ann is equal to zero, then A is combinatorially

nonsingular, and A doesn’t allow S∗n by Lemma 2.6. Thus, up to equivalence, we may assume aii = ∗ for

i = 2, 3, . . . , n, that is, A is equivalent to one of patterns A1 and A2.

For sufficiency, we consider the following two cases.

Case 1. A is equivalent to A1.

Without loss of generality, assume that A = A1. Take

B =


a 1 1 · · · 1

b −1

−1 −1
...

. . .

−1 −1

 ∈ Q(A),

where a 6= 0 and b 6= 0. Then the characteristic polynomial of B is

fB(x) = |xI −B| =

∣∣∣∣∣∣∣∣∣∣∣∣

x− a −1 −1 · · · −1

−b x+ 1

1 x+ 1
...

. . .

1 x+ 1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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By subtracting the second column from the kth column, k = 3, 4, . . . , n, respectively, we have

fB(x)=

∣∣∣∣∣∣∣∣∣∣∣∣

x− a −1 0 · · · 0

−b x+ 1 −(x+ 1) · · · −(x+ 1)

1 x+ 1
...

. . .

1 x+ 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (x− a)(x+ 1)n−1 +

∣∣∣∣∣∣∣∣∣
−b −(x+ 1) · · · −(x+ 1)

1 x+ 1
...

. . .

1 x+ 1

∣∣∣∣∣∣∣∣∣
n−1

= (x− a)(x+ 1)n−1 +

∣∣∣∣∣∣∣∣∣
n− b− 2 0 · · · 0

1 x+ 1
...

. . .

1 x+ 1

∣∣∣∣∣∣∣∣∣
n−1

= (x− a)(x+ 1)n−1 + (n− b− 2)(x+ 1)n−2

= (x+ 1)n−2(x2 + (1− a)x+ n− a− b− 2).

(1) If a = 1
3 and b = n− 5

2 , then fB(x) = (x+ 1)n−2(x2 + 2
3x+ 1

6 ), and so i(B) = (0, n, 0).

(2) If a = 1
2 and b = n− 5

2 , then fB(x) = (x+ 1)n−2(x2 + 1
2x), and so i(B) = (0, n− 1, 1).

(3) If a = 1 and b = n − 2, then fB(x) = (x + 1)n−1(x − 1), and so i(B) = (1, n − 1, 0). Thus, sgn(B)

allows Sn. By Lemma 2.7, A allows S∗n, and A has a signing that allows Sn.

Case 2. A is equivalent to A2.

Without loss of generality, assume that A = A2. Take

C =


0 1 1 · · · 1

c −1

−1 −1
...

. . .

−1 −1

 ∈ Q(A),

where c 6= 0. By the similar steps as in Case 1, we can get the characteristic polynomial of C

fC(x) = |xI − C| = (x+ 1)n−2(x2 + x+ n− c− 2).

(1) If c = 1
2 , then fC(x) = (x+ 1)n−2(x2 + x+ n− 5

2 ), and so i(C) = (0, n, 0).

(2) If c = n− 2, then fC(x) = x(x+ 1)n−1, and so i(C) = (0, n− 1, 1).

(3) If c = n, then fC(x) = (x+ 1)n−2(x+ 2)(x− 1), and so i(C) = (1, n− 1, 0). Thus, sgn(C) allows Sn.

By Lemma 2.7, A allows S∗n, and A has a signing that allows Sn.
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