ZERO-NONZERO PATTERNS THAT ALLOW OR REQUIRE AN INERTIA SET RELATED TO DYNAMICAL SYSTEMS*

WEI GAO[†] AND YANLING SHAO[‡]

Abstract. The inertia of an $n \times n$ real matrix B, denoted by i(B), is the ordered triple $i(B) = (i_+(B), i_-(B), i_0(B))$, in which $i_+(B)$, $i_-(B)$ and $i_0(B)$ are the numbers of its eigenvalues (counting multiplicities) with positive, negative and zero real parts, respectively. The inertia of an $n \times n$ zero-nonzero pattern \mathcal{A} is the set $i(\mathcal{A}) = \{i(B) \mid B \in Q(\mathcal{A})\}$. For $n \geq 2$, let $\mathbb{S}_n^* = \{(0, n, 0), (0, n - 1, 1), (1, n - 1, 0), (n, 0, 0), (n - 1, 0, 1), (n - 1, 1, 0)\}$. An $n \times n$ zero-nonzero pattern \mathcal{A} allows \mathbb{S}_n^* if $\mathbb{S}_n^* \subseteq i(\mathcal{A})$ and requires \mathbb{S}_n^* if $\mathbb{S}_n^* = i(\mathcal{A})$. In this paper, it is shown that there are no zero-nonzero patterns for order $n \geq 2$ that require \mathbb{S}_n^* . Also, a complete characterization of zero-nonzero star patterns of order $n \geq 3$ that allow \mathbb{S}_n^* is given.

Key words. Zero-nonzero pattern, Eigenvalues, Inertia, Digraph.

AMS subject classifications. 15B35, 05C20, 15A18, 05C50.

1. Introduction. An $n \times n$ zero-nonzero pattern is an $n \times n$ matrix \mathcal{A} with entries from $\{*, 0\}$, where * is nonzero. A real matrix $\mathcal{B} = (b_{ij})$ is a realization of \mathcal{A} if $b_{ij} \neq 0$ if and only if the (i, j)-entry of \mathcal{A} is *. The zero-nonzero pattern class $Q(\mathcal{A})$ is the set of all realizations of \mathcal{A} . Two zero-nonzero patterns are equivalent if one can be obtained from the other by any combination of transposition and permutation similarity. If we assign each nonzero entry of \mathcal{A} a sign (+ or -), then we can get a sign pattern \mathcal{B} , whose entries come from the set $\{+, -, 0\}$. The sign pattern \mathcal{B} is called a signing of \mathcal{A} .

The *inertia* of an $n \times n$ real matrix B, denoted by i(B), is the ordered triple $i(B) = (i_+(B), i_-(B), i_0(B))$, in which $i_+(B)$, $i_-(B)$ and $i_0(B)$ are the numbers of its eigenvalues (counting multiplicities) with positive, negative and zero real parts, respectively. The *inertia* of an $n \times n$ zero-nonzero pattern \mathcal{A} is the set $i(\mathcal{A}) = \{i(B) \mid B \in Q(\mathcal{A})\}$ ([11]).

In [2], motivated by the possible onset of instability in dynamical systems associated with a zero eigenvalue, the inertia set S_n with $n \ge 2$ is defined as

$$\mathbb{S}_n = \{(0, n, 0), (0, n - 1, 1), (1, n - 1, 0)\}.$$

For a zero-nonzero pattern \mathcal{A} , $(i_+, i_-, i_0) \in i(\mathcal{A})$ if and only if its *reversal* $(i_-, i_+, i_0) \in i(\mathcal{A})$. Thus, in [2], the inertia set $S_n^* = \{(0, n, 0), (0, n-1, 1), (1, n-1, 0), (n, 0, 0), (n-1, 0, 1), (n-1, 1, 0)\}$ was introduced.

An $n \times n$ zero-nonzero pattern (resp. sign pattern) \mathcal{A} allows \mathbb{S}_n^* (resp. \mathbb{S}_n) if $\mathbb{S}_n^* \subseteq i(\mathcal{A})$ (resp. $\mathbb{S}_n \subseteq i(\mathcal{A})$), and requires \mathbb{S}_n^* (resp. \mathbb{S}_n) if $\mathbb{S}_n^* = i(\mathcal{A})$ (resp. $\mathbb{S}_n = i(\mathcal{A})$).

A related set of refined inertias \mathbb{H}_n was introduced for sign patterns in [3]. The refined inertia of a square real matrix B, denoted by $\operatorname{ri}(B)$, is the ordered 4-tuple $(n_+(B), n_-(B), n_z(B), 2n_p(B))$, where $n_+(B)$ (resp., $n_-(B)$) is the number of eigenvalues of B with positive (resp., negative) real part, $n_z(B)$ is the number of

^{*}Received by the editors on August 4, 2018. Accepted for publication on May 28, 2020. Handling Editor: Bryan L. Shader. Corresponding Author: Wei Gao.

[†]Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, 19001, USA (wvg5121@psu.edu). [‡]Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, P.R. China (ylshao@nuc.edu.cn).

Wei Gao and Yanling Shao

zero eigenvalues of B, and $2n_p(B)$ is the number of pure imaginary (nonzero) eigenvalues of B. For $n \ge 2$, $\mathbb{H}_n = \{(0, n, 0, 0), (0, n - 2, 0, 2), (2, n - 2, 0, 0)\}$. The set \mathbb{H}_n can signal the onset of periodic solutions by a pair of nonzero pure imaginary eigenvalues in dynamical systems. For further results on \mathbb{H}_n , see [4, 5, 6, 8, 9]. In [1], the concept \mathbb{H}_n for sign patterns is expanded to \mathbb{H}_n^* for zero-nonzero patterns. For further results on \mathbb{H}_n^* , see [7].

A zero-nonzero pattern \mathcal{A} is *reducible* if it is permutation similar to a pattern of the form

$$\left[\begin{array}{cc} \mathcal{A}_{11} & \mathcal{A}_{12} \\ 0 & \mathcal{A}_{22} \end{array}\right],$$

where \mathcal{A}_{11} , \mathcal{A}_{22} are square and non-vacuous. A zero-nonzero pattern is *irreducible* if it is not reducible.

There is a natural association between digraphs and zero-nonzero patterns. For an $n \times n$ zero-nonzero pattern \mathcal{A} , the associated digraph $D(\mathcal{A})$ has n vertices v_1, v_2, \ldots, v_n , an arc from vertex v_i to vertex v_j if and only if the (i, j)-entry of \mathcal{A} is nonzero, and a loop at vertex v_i if and only if the (i, i)-entry of \mathcal{A} is nonzero. Two digraphs are equivalent if and only if their associated zero-nonzero patterns are equivalent.

A simple cycle of length l or an l-cycle in a digraph D is a sequence of arcs of the form $C = v_{i_1}v_{i_2}, v_{i_2}v_{i_3}, \dots, v_{i_l}v_{i_1}$, where v_{i_1}, \dots, v_{i_l} are distinct vertices. A composite cycle C in a digraph D is a vertex disjoint union of simple cycles, say $C = C_1 \cup C_2 \cup \dots \cup C_k$. If the length of C_i is l_i , then the length of C is $\sum_{i=1}^k l_i$.

In [2], it is shown that a zero-nonzero pattern of order 2 allows \mathbb{S}_2^* if and only if every entry in the zero-nonzero pattern is *. The authors also describe all irreducible nonequivalent zero-nonzero patterns of order 3 and 4 that allow \mathbb{S}_n^* . For zero-nonzero patterns requiring \mathbb{S}_n^* , it is proved that for $2 \le n \le 4$, there are no irreducible zero-nonzero patterns of order n that require \mathbb{S}_n^* . For $n \ge 5$, this question is open.

In this paper, we study zero-nonzero patterns that allow or require \mathbb{S}_n^* . In Section 3, we first prove that there are no irreducible zero-nonzero patterns of order $n \ge 5$ that require \mathbb{S}_n^* . So together with the result in [2], there are no irreducible zero-nonzero patterns of order $n \ge 2$ that require \mathbb{S}_n^* . Moreover, we can prove that there are no reducible zero-nonzero patterns of order $n \ge 2$ that require \mathbb{S}_n^* . In Section 4, we give a complete characterization of zero-nonzero star patterns of order $n \ge 3$ that allow \mathbb{S}_n^* .

2. Preliminaries.

REMARK 2.1. Let \mathcal{A} be a zero-nonzero pattern of order n. If \mathcal{A} requires \mathbb{S}_n^* , then by the definition of \mathbb{S}_n^* , it is clear that for any $B \in Q(\mathcal{A})$, either $i_+(B) \leq 1$ or $i_-(B) \leq 1$.

LEMMA 2.2. Let $n \ge 4$ and $n \times n$ matrix

$$B = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} (n = 4), \quad B = \begin{bmatrix} 0 & 1 \\ & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & \ddots & 1 \\ 1 & & & & 0 \end{bmatrix} (n \ge 5).$$

Then $i_{+}(B) \ge 2$ and $i_{-}(B) \ge 2$.

505 Zero-nonzero Patterns that Allow or Require an Inertia Set Related to Dynamical Systems

Proof. When n = 4, the characteristic polynomial of B is

$$\det(\lambda I - B) = \begin{vmatrix} \lambda & 1 & 0 & 0\\ 0 & \lambda & -1 & 0\\ 0 & 0 & \lambda & -1\\ -1 & 0 & 0 & \lambda \end{vmatrix} = \lambda^4 + 1 = (\lambda^2 + \sqrt{2}\lambda + 1)(\lambda^2 - \sqrt{2}\lambda + 1)$$

So, i(B) = (2, 2, 0, 0) and the lemma holds.

When $n \geq 5$, the characteristic polynomial of B is

$$\det(\lambda I - B) = \begin{vmatrix} \lambda & -1 & & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & \ddots & -1 \\ -1 & & & \lambda \end{vmatrix} = \lambda^n - 1.$$

It is easy to see that $\sigma(B) = \left\{ \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n}) \mid k = 1, 2, ..., n \right\}$, and so $i_+(B) \ge 2$ and $i_-(B) \ge 2$. The lemma holds.

A zero-nonzero pattern \mathcal{B} is a *subpattern* of a zero-nonzero pattern \mathcal{A} if \mathcal{B} is obtained from \mathcal{A} by replacing some (or possibly none) of the nonzero entries of \mathcal{A} with zeros. \mathcal{A} is a *superpattern* of \mathcal{B} if \mathcal{B} is a subpattern of \mathcal{A} .

LEMMA 2.3. Let \mathcal{A} be a zero-nonzero pattern of order n and \mathcal{A}_1 be a subpattern of \mathcal{A} . If there exists $B_0 \in Q(\mathcal{A}_1)$ such that $i_+(B_0) \ge 2$ and $i_-(B_0) \ge 2$, then \mathcal{A} does not require \mathbb{S}_n^* .

Proof. Note that the eigenvalues of a matrix can be arranged so that they are continuous functions of the entries ([10]). If the condition holds, then there exists a matrix $B \in Q(\mathcal{A})$ such that $i_+(B) \ge 2$ and $i_-(B) \ge 2$. So \mathcal{A} does not require \mathbb{S}_n^* by Remark 2.1.

LEMMA 2.4. Let \mathcal{A} be a zero-nonzero pattern of order n and assume that \mathcal{A} has k nonzero diagonal entries. If \mathcal{A} requires \mathbb{S}_n^* , then $1 \leq k \leq 3$.

Proof. First suppose k = 0. Since the trace of \mathcal{A} is zero, it is impossible to find $B \in Q(\mathcal{A})$ with i(B) = (0, n - 1, 1). This contradicts to \mathcal{A} requiring \mathbb{S}_n^* .

Now suppose k > 4. Without loss of generality, assume that the nonzero diagonal entries of \mathcal{A} are $a_{11}, a_{22}, \ldots, a_{kk}$. By emphasizing $a_{11}, a_{22}, a_{33}, a_{44}$ and taking $a_{11} > 0, a_{22} > 0, a_{33} < 0, a_{44} < 0$, we can get a matrix $B \in Q(\mathcal{A})$ such that $i_+(B) \ge 2$ and $i_-(B) \ge 2$. By Remark 2.1, \mathcal{A} does not require \mathbb{S}_n^* . Thus, the result follows.

LEMMA 2.5. Let \mathcal{A} be a zero-nonzero pattern of order n. If $D(\mathcal{A})$ contains a composite cycle that consists of one 2-cycle and two loops, then \mathcal{A} does not require \mathbb{S}_n^* .

Proof. Without loss of generality, assume that the 2-cycle is $v_1v_2v_1$ and two loops are on v_3 and v_4 . Take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{21} = b_{33} = 1$, $b_{44} = -1$, and other entries equal to zero. It is clear that $i_+(B_0) = 2$ and $i_-(B_0) = 2$. Thus, \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

A zero-nonzero pattern \mathcal{A} is combinatorially singular if B is singular for all $B \in Q(\mathcal{A})$, and \mathcal{A} is combinatorially nonsingular if B is nonsingular for all $B \in Q(\mathcal{A})$.

506

LEMMA 2.6. ([2]) If an $n \times n$ zero-nonzero pattern \mathcal{A} requires or allows \mathbb{S}_n^* , then \mathcal{A} is not combinatorially singular, and not combinatorially nonsingular.

LEMMA 2.7. If an $n \times n$ zero-nonzero pattern \mathcal{A} allows \mathbb{S}_n , then \mathcal{A} allows \mathbb{S}_n^* . And if an $n \times n$ sign pattern \mathcal{A} allows or requires \mathbb{S}_n , then the associated zero-nonzero pattern allows \mathbb{S}_n^* .

Proof. Note that for zero-nonzero pattern \mathcal{A} , the inertia $(i_+, i_-, i_0) \in i(\mathcal{A})$ if and only if its reversal $(i_-, i_+, i_0) \in i(\mathcal{A})$.

3. Zero-nonzero patterns of order *n* do not require \mathbb{S}_n^* .

LEMMA 3.1. Let \mathcal{A} be a zero-nonzero pattern of order $n \geq 5$. If $D(\mathcal{A})$ satisfies one of the following two conditions, then \mathcal{A} does not require \mathbb{S}_n^* .

(1) $D(\mathcal{A})$ contains a s-cycle with $s \geq 4$;

(2) $D(\mathcal{A})$ contains a k-cycle and a t-cycle that are vertex disjoint with $1 \le k, t \le 3$ and $k+t \ge 4$.

Proof. Denote $V(D(\mathcal{A})) = \{v_1, v_2, \dots, v_n\}$. Consider the following two cases.

Case 1. $D(\mathcal{A})$ contains a s-cycle C_s with $s \geq 4$.

Without loss of generality, assume that $C_s = v_1 v_2 \cdots v_s v_1$. If s = 4, then take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = -1$, $b_{23} = \cdots = b_{s-1,s} = b_{s,1} = 1$, and the other entries of B_0 equal to zero. If s > 4, then take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{23} = \cdots = b_{s-1,s} = b_{s,1} = 1$, and the other entries of B_0 equal to zero. By Lemma 2.2, $i_+(B_0) \ge 2$ and $i_-(B_0) \ge 2$. Thus, \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

Case 2. $D(\mathcal{A})$ contains a k-cycle C_k and a t-cycle C_t that are vertex disjoint with $1 \leq k, t \leq 3$ and $k+t \geq 4$.

Without loss of generality, assume that $C_k = v_1 v_2 \cdots v_k v_1$ and $C_t = v_{k+1} v_{k+2} \cdots v_{k+t} v_{k+1}$. Up to equivalence, there are the following four cases.

- k = 3 and t = 1;
- k = 2 and t = 2;
- k = 2 and t = 3;
- k = 3 and t = 3.

If k = 3 and t = 1, take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{23} = b_{31} = 1$, $b_{44} = 1$ and the other entries equal to zero. Then $i_+(B_0) = 2$ and $i_-(B_0) = 2$, and \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

If k = 2 and t = 2, take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{21} = b_{34} = b_{43} = 1$, and the other entries equal to zero. Then $i_+(B_0) = 2$ and $i_-(B_0) = 2$, and \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

If k = 2 and t = 3, take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{21} = b_{34} = b_{45} = b_{53} = 1$, and the other entries equal to zero. Then $i_+(B_0) = 2$ and $i_-(B_0) = 3$, and \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

If k = 3 and t = 3, take an $n \times n$ matrix $B_0 = (b_{ij})$ with $b_{12} = b_{23} = b_{31} = 1$, $b_{45} = b_{56} = b_{64} = -1$, and the other entries equal to zero. Then $i_+(B_0) = 3$ and $i_-(B_0) = 3$, and \mathcal{A} does not require \mathbb{S}_n^* by Lemma 2.3.

THEOREM 3.2. There are no irreducible zero-nonzero patterns of order $n \geq 2$ that require \mathbb{S}_n^* .

Proof. Based on the result in [2], we only need to prove the result when $n \ge 5$.

507 Zero-nonzero Patterns that Allow or Require an Inertia Set Related to Dynamical Systems

Let $D(\mathcal{A})$ be the associated digraph of \mathcal{A} with vertex set $\{v_1, v_2, \ldots, v_n\}$. By Lemma 2.6, we may assume that \mathcal{A} is not combinatorially singular. Thus, there exists a composite cycle $C = C_1 \cup C_2 \cup \cdots \cup C_k$ of length n in $D(\mathcal{A})$. Denote the lengths of C_1, C_2, \ldots, C_k by l_1, \ldots, l_k , respectively. Without loss of generality, assume that $l_1 \leq \cdots \leq l_k$.

Consider the following four cases.

Case 1. $l_k \geq 4$. Then \mathcal{A} does not require \mathbb{S}_n^* by Lemma 3.1.

Case 2. $l_k = 3$. Note that $k \ge 2$ since $n \ge 5$. Then \mathcal{A} does not require \mathbb{S}_n^* by Lemma 3.1.

Case 3. $l_k = 2$. If $l_{k-1} = 2$, then $D(\mathcal{A})$ contains two vertex disjoint 2-cycles that do not have common vertices. By Lemma 3.1, \mathcal{A} does not require \mathbb{S}_n^* . Otherwise, since $n \geq 5$, it is clear that $D(\mathcal{A})$ contains a composite cycle that consists of one 2-cycle and two loops. By Lemma 2.5, \mathcal{A} does not require \mathbb{S}_n^* .

Case 4. $l_k = 1$. Since $n \ge 5$, \mathcal{A} has at least five nonzero diagonal vertices. By Lemma 2.4, \mathcal{A} does not require \mathbb{S}_n^* .

THEOREM 3.3. There are no reducible zero-nonzero patterns of order $n \geq 2$ that require \mathbb{S}_n^* .

Proof. Let \mathcal{A} be a reducible zero-nonzero pattern of order n. Then there is a permutation zero-nonzero pattern \mathcal{P} such that

$$\mathcal{P}^T \mathcal{A} \mathcal{P} = \left[\begin{array}{cc} \mathcal{A}_m & \# \\ 0 & \mathcal{A}_{n-m} \end{array} \right],$$

where # is an $m \times (n - m)$ zero-nonzero pattern and $1 \le m \le n - 1$.

Suppose that \mathcal{A} requires \mathbb{S}_n^* . Then $\{(0, n, 0), (n, 0, 0)\} \subseteq i(\mathcal{A})$, and so $\{(0, m, 0), (m, 0, 0)\} \subseteq i(\mathcal{A}_m)$ and $\{(0, n-m, 0), (n-m, 0, 0)\} \subseteq i(\mathcal{A}_{n-m})$. Thus, $\{(m, n-m, 0), (n-m, m, 0)\} \subseteq i(\mathcal{A})$. So m = 1 or n-m = 1.

If m = 1 and n - m = 1, then n = 2, and $\mathcal{A}_m = \mathcal{A}_{n-m} = (*)$. Thus, $i(\mathcal{A}) = \{(0, 2, 0), (1, 1, 0), (2, 0, 0)\}$, and so \mathcal{A} does not require \mathbb{S}_n^* .

If only one of m and n-m is equal to one, then $n \ge 3$. Without loss of generality, assume m = 1, that is, $\mathcal{A}_m = (*)$. Then $i(\mathcal{A}_m) = \{(1,0,0), (0,1,0)\}$. Since \mathcal{A} requires \mathbb{S}_n^* , we must have $\{(0, n-2, 1), (n-2, 0, 1)\} \subseteq i(\mathcal{A}_{n-m})$. Thus, $\{(1, n-2, 1), (n-2, 1, 1)\} \subseteq i(\mathcal{A})$, a contradiction.

Theorems 3.2 and 3.3 give the main result of this section as follows.

THEOREM 3.4. There are no zero-nonzero patterns of order $n \geq 2$ that require \mathbb{S}_n^* .

4. Zero-nonzero star patterns that allow \mathbb{S}_n^* . Up to equivalence, an $n \times n$ zero-nonzero star pattern can be represented in the following form

(4.1)
$$\mathcal{A} = \begin{bmatrix} a_{11} & * & \cdots & * \\ * & a_{22} & & \\ \vdots & & \ddots & \\ * & & & a_{nn} \end{bmatrix},$$

where $a_{ii} \in \{*, 0\}$ for i = 1, 2, ..., n.

In [2], it is shown that a zero-nonzero pattern of order 2 allows S_2^* if and only if every entry in the zero-nonzero pattern is *. In this section, we give a complete characterization of zero-nonzero star patterns

I L
AS

Wei Gao and Yanling Shao

of order $n \geq 3$ that allow \mathbb{S}_n^* .

THEOREM 4.1. Let $n \geq 3$ and \mathcal{A} be a zero-nonzero star pattern of order n. Then \mathcal{A} allows \mathbb{S}_n^* if and only if \mathcal{A} is equivalent to one of the following patterns

$$\mathcal{A}_{1} = \begin{bmatrix} * & * & \cdots & * \\ * & * & & \\ \vdots & * & & \\ \vdots & & \ddots & \\ * & & & * \end{bmatrix} \quad and \quad \mathcal{A}_{2} = \begin{bmatrix} 0 & * & \cdots & * \\ * & * & & \\ \vdots & * & & \\ \vdots & & \ddots & \\ * & & & * \end{bmatrix}.$$

When \mathcal{A} allows \mathbb{S}_n^* , \mathcal{A} has a signing that allows \mathbb{S}_n .

Proof. Let \mathcal{A} be a zero-nonzero star pattern of order n. Up to equivalence, we may assume that \mathcal{A} is in the form (4.1).

Necessity. If at least two of a_{22}, \ldots, a_{nn} are equal to zero, then \mathcal{A} is combinatorially singular, and \mathcal{A} doesn't allow \mathbb{S}_n^* by Lemma 2.6. If exactly one of a_{22}, \ldots, a_{nn} is equal to zero, then \mathcal{A} is combinatorially nonsingular, and \mathcal{A} doesn't allow \mathbb{S}_n^* by Lemma 2.6. Thus, up to equivalence, we may assume $a_{ii} = *$ for $i = 2, 3, \ldots, n$, that is, \mathcal{A} is equivalent to one of patterns \mathcal{A}_1 and \mathcal{A}_2 .

For sufficiency, we consider the following two cases.

Case 1. \mathcal{A} is equivalent to \mathcal{A}_1 .

Without loss of generality, assume that $\mathcal{A} = \mathcal{A}_1$. Take

$$B = \begin{bmatrix} a & 1 & 1 & \cdots & 1 \\ b & -1 & & & \\ -1 & -1 & & & \\ \vdots & & \ddots & & \\ -1 & & & -1 \end{bmatrix} \in Q(\mathcal{A}),$$

where $a \neq 0$ and $b \neq 0$. Then the characteristic polynomial of B is

$$f_B(x) = |xI - B| = \begin{vmatrix} x - a & -1 & -1 & \cdots & -1 \\ -b & x + 1 & & & \\ 1 & & x + 1 & & \\ \vdots & & & \ddots & \\ 1 & & & & x + 1 \end{vmatrix}.$$

508

509 Zero-nonzero Patterns that Allow or Require an Inertia Set Related to Dynamical Systems

By subtracting the second column from the kth column, $k = 3, 4, \ldots, n$, respectively, we have

$$f_B(x) = \begin{vmatrix} x - a & -1 & 0 & \cdots & 0 \\ -b & x + 1 & -(x + 1) & \cdots & -(x + 1) \\ 1 & x + 1 & & \\ \vdots & & \ddots & \\ 1 & & x + 1 \end{vmatrix}$$
$$= (x - a)(x + 1)^{n-1} + \begin{vmatrix} -b & -(x + 1) & \cdots & -(x + 1) \\ 1 & x + 1 & \\ \vdots & \ddots & \\ 1 & & x + 1 \end{vmatrix} \Big|_{n-1}$$
$$= (x - a)(x + 1)^{n-1} + \begin{vmatrix} n - b - 2 & 0 & \cdots & 0 \\ 1 & x + 1 & \\ \vdots & \ddots & \\ 1 & & x + 1 \end{vmatrix} \Big|_{n-1}$$
$$= (x - a)(x + 1)^{n-1} + (n - b - 2)(x + 1)^{n-2}$$
$$= (x + 1)^{n-2}(x^2 + (1 - a)x + n - a - b - 2).$$

(1) If $a = \frac{1}{3}$ and $b = n - \frac{5}{2}$, then $f_B(x) = (x+1)^{n-2}(x^2 + \frac{2}{3}x + \frac{1}{6})$, and so i(B) = (0, n, 0). (2) If $a = \frac{1}{2}$ and $b = n - \frac{5}{2}$, then $f_B(x) = (x+1)^{n-2}(x^2 + \frac{1}{2}x)$, and so i(B) = (0, n-1, 1).

(3) If a = 1 and b = n - 2, then $f_B(x) = (x + 1)^{n-1}(x - 1)$, and so i(B) = (1, n - 1, 0). Thus, sgn(B) allows \mathbb{S}_n . By Lemma 2.7, \mathcal{A} allows \mathbb{S}_n^* , and \mathcal{A} has a signing that allows \mathbb{S}_n .

Case 2. \mathcal{A} is equivalent to \mathcal{A}_2 .

Without loss of generality, assume that $\mathcal{A} = \mathcal{A}_2$. Take

$$C = \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ c & -1 & & & \\ -1 & -1 & & & \\ \vdots & & \ddots & \\ -1 & & & -1 \end{bmatrix} \in Q(\mathcal{A}),$$

where $c \neq 0$. By the similar steps as in Case 1, we can get the characteristic polynomial of C

$$f_C(x) = |xI - C| = (x+1)^{n-2}(x^2 + x + n - c - 2).$$

- (1) If $c = \frac{1}{2}$, then $f_C(x) = (x+1)^{n-2}(x^2+x+n-\frac{5}{2})$, and so i(C) = (0, n, 0).
- (2) If c = n 2, then $f_C(x) = x(x+1)^{n-1}$, and so i(C) = (0, n-1, 1).

(3) If c = n, then $f_C(x) = (x+1)^{n-2}(x+2)(x-1)$, and so i(C) = (1, n-1, 0). Thus, sgn(C) allows \mathbb{S}_n . By Lemma 2.7, \mathcal{A} allows \mathbb{S}_n^* , and \mathcal{A} has a signing that allows \mathbb{S}_n .

510

Acknowledgements. The authors would like to thank the anonymous referee for valuable suggestions which greatly improved the exposition of the paper.

REFERENCES

- A.H. Berliner, D.D. Olesky, and P. van den Driessche. Sets of refined inertias of zero-nonzero patterns. Linear Algebra and its Applications, 516:243-263, 2017.
- [2] A.H. Berliner, D.D. Olesky, and P. van den Driessche. Inertia sets allowed by matrix patterns. *Electronic Journal of Linear Algebra*, 34:343–355, 2018.
- [3] E. Bodine, L. Deaett, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Sign patterns that require or allow particular refined inertias. *Linear Algebra and its Applications*, 437(9):2228–2242, 2012.
- [4] W. Gao, Z. Li, and L. Zhang. Sign patterns that require \mathbb{H}_n exist for each $n \ge 4$. Linear Algebra and its Applications, 489:15–23, 2016.
- [5] W. Gao, Z. Li, and L. Zhang. Characterization of star sign patterns that require \mathbb{H}_n . Linear Algebra and its Applications, 499:43–65, 2016.
- [6] W. Gao and Z. Li. Path sign patterns of order $n \ge 5$ do not require \mathbb{H}_n . Linear Algebra and its Applications, 532:99–126, 2017.
- [7] W. Gao. Zero-nonzero patterns of order $n \geq 4$ do not require \mathbb{H}_n^* . Linear Algebra and its Applications, 554:1-14, 2018.
- [8] C. Garnett, D.D. Olesky, and P. van den Driessche. Refined inertias of tree sign patterns. Electronic Journal of Linear Algebra, 26:620–635, 2013.
- C. Garnett, D.D. Olesky, and P. van den Driessche. A note on sign patterns of order 3 that require particular refined inertias. *Linear Algebra and its Applications*, 450:293–300, 2014.
- [10] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
- [11] I.-J. Kim, J.J. McDonald, D.D. Olesky, and P. van den Driessche. Inertias of zero-nonzero patterns. Linear and Multilinear Algebra, 55(3):229–238, 2007.