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TECHNIQUES FOR DETERMINING EQUALITY OF THE MAXIMUM NULLITY

AND THE ZERO FORCING NUMBER OF A GRAPH∗

DEREK YOUNG†

Abstract. It is known that the zero forcing number of a graph is an upper bound for the maximum nullity of the graph

(see [AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. Cioabă, D. Cvetković, S. Fallat,

C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der

Holst, K. Vander Meulen, and A. Wangsness). Linear Algebra Appl., 428(7):1628–1648, 2008]). In this paper, we search for

characteristics of a graph that guarantee the maximum nullity of the graph and the zero forcing number of the graph are the

same by studying a variety of graph parameters that give lower bounds on the maximum nullity of a graph. In particular, we

introduce a new graph parameter which acts as a lower bound for the maximum nullity of the graph. As a result, we show

that the Aztec Diamond graph’s maximum nullity and zero forcing number are the same. Other graph parameters that are

considered are a Colin de Verdiére type parameter and vertex connectivity. We also use matrices, such as a divisor matrix of a

graph and an equitable partition of the adjacency matrix of a graph, to establish a lower bound for the nullity of the graph’s

adjacency matrix.

Key words. Maximum nullity, Zero forcing number, Nullity of a graph, Strong Arnold Property, Equitable partition,

Equitable decomposition.
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1. Introduction. The maximum nullity over the set of matrices described by a graph has been well

studied (see [3, 5, 13, 17]). There are graph parameters that allow us to bound the maximum nullity. For some

graphs, these bounds are enough to determine the maximum nullity. Unfortunately, the bounds available

are not enough to determine the maximum nullity for all graphs. The zero forcing number, described in

detail below, is an upper bound for maximum nullity. The problem of characterizing graphs for which the

maximum nullity of the graph is equal to zero forcing number of the graph was first posed in [3]. While this

problem is still open, there are many families of graphs that have their maximum nullity equal to their zero

forcing number. A list of families of graphs having this property can be found in [18] including trees, cycles,

complete graphs, complete bipartite graphs, completely subdivided graphs, and graphs with less than eight

vertices. Even though determining the zero forcing number of a graph is NP-complete (see [1, 2]), the zero

forcing number for some graphs can be computed using mathematical software. We were able to compute the

zero forcing number for some graphs containing 60 vertices. It is worth noting that some graphs containing

as many as 100,000 vertices which have small zero forcing number, such as a path, can be computed.

A graph, denoted by G, consists of a set V (G) called a vertex set and an edge set E(G) where the edge

set consists of two element subsets of the vertex set. For convenience, when {v, u} ∈ E(G) we may drop

the brackets and write vu. The order of a graph, denoted by |G|, is the number of vertices in the graph.

The spectrum of a symmetric matrix A, denoted by spec(A), is the multiset of eigenvalues of A. The nullity

of a symmetric matrix, denoted by null(A), is the number of times zero occurs in spec(A). The rank of a

symmetric matrix A, denoted by rank(A), is the dimension of the vector space spanned by the rows of A.
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The adjacency matrix of a graph G, denoted by A(G), is a (0, 1)−matrix such that the ij entries of the

matrix is 1 if and only if G contains the edge {i, j}. The set of symmetric matrices of a graph G over a

field F , denoted by S(F , G), is the set of symmetric matrices A = [aij ] having the same off-diagonal nonzero

pattern as A(G) with free diagonal entries (aii ∈ F). The maximum nullity of a graph G over a field F ,

denoted by M(F , G), is the maximum nullity over S(F , G). Let A ∈ S(R, G). Because the diagonal of a

matrix A ∈ S(R, G) is unrestricted, all eigenvalues of A are real, the algebraic and geometric multiplicity of

A are equal, and the nullity of A − λI is the multiplicity of λ as an eigenvalue of A. Thus, the maximum

multiplicity over matrices in S(R, G) is the same as the maximum nullity over S(R, G). The minimum rank

of a graph G over a field F , denoted by mr(F , G), is the minimum rank over S(F , G). Whenever the field

is not specified, the field is understood to be the real numbers R. Observe that mr(F , G) + M(F , G) = |G|,
where |G| is defined to be the number of vertices in the graph G. As a result, value of M(F , G) gives the

solution to the minimum rank problem of the graph G. See [13] for a discussion on the motivation of the

minimum rank problem.

Let Z be a subset of V (G) such that every vertex in Z is colored blue and all other vertices are colored

white. The color change rule for zero forcing is: A blue vertex can change a white vertex blue if the white

vertex is the only white vertex adjacent to the blue vertex. (Vertices v and u are said to be adjacent if and

only if {v, u} ∈ E(G).) In this case, we say that the blue vertex forced the white vertex blue. A zero forcing

set is a subset of V (G) such that after applying the color change rule until no more changes are possible,

all vertices in G are colored blue. The zero forcing number of a graph G, denoted by Z(G), is the minimum

cardinality over all zero forcing sets. A chronological list of forces is a sequence of forces performed in the

given order. The term zero forcing refers to forcing entries in the null vector to be zero, which leads to the

relationship that the maximum nullity of a graph is bounded above by the zero forcing number of the graph.

Proposition 1.1 ([3, Proposition 2.4]). Let G be a graph and let F be a field. Then

M(F , G) ≤ Z(G).

Note that A(G)−λI with λ ∈ Z can be viewed as a matrix over any field F . Thus, A(G)−λI ∈ S(F , G).

When we view A ∈ Fn×n we write rank(F , A). An optimal matrix over a field F is a matrix A ∈ S(G) such

that rank(F , A) = mr(F , G). We say that an integer matrix A ∈ S(F , G) that has entries −1, 0, 1 on the

off-diagonal is universally optimal if for all fields F , rank(F , A) = mr(F , G). The minimum rank of a graph

G is said to be field independent if for all fields F , mr(F , G) = mr(G). The minimum rank problem over

fields other than the real numbers was studied as early as 2004 by Wayne Barrett, Hein van der Holst, and

Raphael Loewy in [8]. In 2009, DeAlba et al. [12] used universally optimal matrices to establish minimum

rank field independence for many graphs listed in [18].

Proposition 1.2 ([12, Corollary 2.3]). If A ∈ Zn×n, then rank(Zp, A) ≤ rank(A) for every prime p.

Corollary 1.3. Let G be a graph having the property that for some λ ∈ Z, rank(A(G) − λI) = |G| −
Z(G), or equivalently, null(A(G) − λI) = Z(G). Then the minimum rank of G is field independent and

A(G)− λI is universally optimal, and M(F , G) = Z(G) for all fields F .

Proof. By Proposition 1.1, |G| −mr(F , G) = M(F , G) ≤ Z(G) and by Proposition 1.2, we have

rank(F , A(G)− λI) ≤ rank(A(G)− λI),

so null(A(G)− λI) ≤ null(F , A(G)− λI). It follows that

Z(G) ≥ M(F , G) ≥ null(F , A(G)− λI) ≥ null(A(G)− λI) = Z(G).
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Therefore, mr(F , G) = rank(F , A(G) + λI) = |G| − Z(G) which shows that G has field independent

minimum rank and A(G) + λI is universally optimal.

Observation 1.4. Let G be a graph. If there exists a prime p such that mr(Zp, G) 6= mr(G), then G

does not have field independent minimum rank.

A generalized Petersen Graph, denoted by P (n, k), is a graph having a labeled vertex set

{u0, u1, . . . un−1, v0, v1, . . . , vn−1},

and edge set
{
{uiui+1 mod n}, {vivi+k mod n}, {uivi} : i = 0, 1, 2, . . . , n−1

}
, for n ≥ 3 and k a positive integer

less than bn2 c (see [22]). In [4], the adjacency matrix was used to show that the maximum nullity is equal to

the zero forcing number for certain generalized Petersen graphs.

Theorem 1.5 ([4, Theorem 2.4]). Let r be a positive integer. Then

M(P (15r, 2)) = Z(P (15r, 2)) = 6 and M(P (24r, 5)) = Z(P (24r, 5)) = 12,

and the maximum nullity is attained by the adjacency matrix.

Corollary 1.6. Let r be a positive integer. Then P (15r, 2) and P (24r, 5) have field independent mini-

mum rank with universally optimal matrices. Moreover, for all fields F ,

M(F , P (15r, 2)) = Z(P (15r, 2)) and M(F , P (24r, 5)) = Z(P (24r, 5)).

The Cartesian product of the graphs G and H, denoted by G�H, has vertex set {(v, w)|v ∈ V (G), w ∈
V (H)} and edge set

{(v1, w1)(v2, w2) | (v1 = v2 and w1w2 ∈ E(H)) or (v1v2 ∈ E(G) and w1 = w2)}.

Theorem 1.7 ([3, Theorem 3.8]). Let k ≥ 3. Then M(Ck�Pt) = Z(Ck�Pt) = min{k, 2t}.

Example 1.8. By Theorem 1.7, M(C7�P2) = 4 which implies mr(C7�P2) = 10. By computation via

SageMath (see [23]), there does not exist a matrix in S(Z2, C7�P2) having rank equal to 10. Therefore by

Observation 1.4, C7�P2 does not have field independent minimum rank.

Example 1.8 shows that the generalized Petersen graphs do not have field independent minimum rank

since C7�P2 is isomorphic to P (7, 1). It is known that Cn�Pt does not have field independent minimum

rank (see [12, Example 3.5]).

2. An application of the nullity of a graph. In this section, we introduce a new combinatorial

approach for determining the nullity of the adjacency matrix of a graph, which naturally acts as a lower

bound for the maximum nullity of the graph. We use the nullity of a graph to give a combinatorial proof

of the nullity of the adjacency matrix for the Aztec diamond graphs. This result is used to show that the

maximum nullity and zero forcing number of Aztec diamond graphs are the same. We also give results for

some circulant graphs.

A general graph is a graph that may contain loops (edges of the form vv) and/or multi-edges (two edges

containing the same vertices u and v are called multi-edges). Let G be a general graph and let v, u ∈ V (G).

The neighborhood of v in a general graph G, denoted by NG(v), is a multiset containing vertices of V (G)

such that k copies of u are in NG(v) if and only if there are k copies of uv in E(G). Let X and Y be multisets
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Figure 1: This shows the graph G1+4−0.

containing elements of V (G). The general graph Gv+X is obtained from G by adding one edge vw for each

w ∈ NG(x) and for every x ∈ X (see Figure 1). Let v ∈ X and y ∈ Y . Suppose NGv+X
(y) ⊆ NGv+X

(v).

Then the general graph Gv+X−Y is obtained from Gv+X by deleting one edge vw for each w ∈ NGv+X
(y)

and for every y ∈ Y (see Figure 1). In the case that X and Y consist of a single vertex x or y, we write

Gv+x or Gv+x−y.

We define a color change rule as follows: In a graph G, having each vertex colored red or white, a white

vertex u can be colored red if there exists a white vertex v and multisets of white vertices X,Y such that

1. u /∈ {v} ∪X ∪ Y , and

2. NGu+Uk
(u) = NGv+X−Y

(v)

for some nonnegative integer k and the multiset Uk containing k copies of u (whenever k = 0, Uk is the

empty set and NGu+Uk
(u) = NG(u)). In this case, we say that u can be colored red by (v,X, Y, k).

Example 2.1. Figure 1 illustrates the process of creating G1+4−0. Moreover, vertices 1 and 3 have the

same neighborhood in G1+4−0, so vertex 3 can be colored red in G by (1, {4}, {0}, 0). We can also color

vertex 5 red. Consider the general graph G1+4−2 in which vertices 1 and 5 have the same neighborhood in

G1+4−2.

A set {v1, v2, . . . , vt} of red vertices is called a red set, denoted by R, if the vertices v1, v2, . . . , vt can be

sequentially colored red. The nullity of a graph G, denoted by N(G), is the maximum cardinality over the

set of all red sets.

Observation 2.2. Let u, v be white vertices of V (G), X and Y be multisets containing white vertices

of V (G), and k be a nonnegative integer. Then u can be colored red by (v,X, Y, k) if and only if

(1) (k + 1) · rowA(G)(u) = rowA(G)(v) +
∑
x∈X

rowA(G)(x)−
∑
y∈Y

rowA(G)(y).

Theorem 2.3. Let G be a simple graph. Then N(G) = null(A(G)).

Proof. Let G be a graph with all vertices initially colored white. Suppose that at some stage the

vertices u1, u2, . . . , uq−1 have been sequentially colored red, the remaining vertices colored white, and that

each rowA(G)(ui) can be expressed as a linear combination of rows indexed W = V (G) \ {u1, u2, . . . , uq−1}.
Suppose that v and the vertices of X,Y are white and uq can be colored red by (v,X, Y, k). We show

that rowA(G)(ui) for i = 1, 2, . . . , q can each be expressed as a linear combination of rows indexed by

W ′ = W \ {uq}.
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Let W ′ = {w1, w2, . . . , w`}. By (1), rowA(G)(uq) can be expressed as a linear combination of rows indexed

by W ′. We know that rowA(G)(ui) can be expressed as a linear combination of the rows associated with the

vertices in W = W ′ ∪{uq}. By substituting the expression for rowA(G)(uq) into that for rowA(G)(ui), we see

that rowA(G)(ui) is a linear combination of rows associated with vertices in W ′. At the conclusion of this

process rank(A(G)) ≤ n−N(G), so N(G) ≤ null(A(G)).

Let W be a set of linearly independent rows of A(G) that forms a basis for the row space of A(G).

Let r = |W | and let v1, v2, . . . , vr be the vertices associated with these rows. Then each row not in W ,

rowA(G)(vj) with j > r, can be written as

c1
d1

rowA(G)(v1) +
c2
d2

rowA(G)(v2) + · · ·+ cr
dr

rowA(G)(vr),

where ci, di ∈ Z and di > 0 for i = 1, . . . , r. By letting d = lcm(d1, d2, . . . , dr), we can write

(2) d · rowA(G)(vj) = c1s1 rowA(G)(v1) + c2s2 rowA(G)(v2) + · · ·+ crsr rowA(G)(vr),

where si = d/di ∈ Z. Fix vj corresponding to a row in W . Let ` ∈ {1, 2, . . . , r} such that c`s` > 0. Let X

be the multiset of vertices consisting of c`s` − 1 copies of v` and cisi copies of vi for i 6= ` and cisi > 0 and

let Y be the multiset of vertex consisting of cisi copies of vi for cisi < 0. Then vj can be colored red by

(v`, X, Y, d− 1). This implies N(G) ≥ n− r ≥ n− rank(A(G)) = null(A(G)).

Corollary 2.4. Let G be a bipartite graph with independent sets B and B̄ such that |B| = |B̄|. Let

R ⊆ B be a red set such that every vertex in R is colored with some (v,X, Y, k) where {v} ∪X ∪ Y contains

only vertices from B. Then 2|R| ≤ null(A(G)).

The Aztec diamond of order r is a diamond shape configuration of 2r(r+1) unit squares, as illustrated in

Figure 2. The Aztec diamond graph of order r, denoted by ADr, is the graph such that vertices v, u ∈ V (ADr)

are adjacent if and only if squares v and u share an edge in the Aztec diamond of order r. The vertices of

ADr are labeled by ordered pairs (i, j) where 1 ≤ i, j ≤ 2r, r + 1 ≤ i+ j ≤ 3r + 1, and 0 ≤ |j − i| ≤ r.

AD3
(1, 3) (1, 4)

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

Figure 2: The Aztec diamond of order 3 and the Aztec diamond graph AD3.
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Proposition 2.5. Let G be an Aztec diamond graph ADr. Then Z(G) ≤ 2r.

Proof. We show that the set Z = {(1, r), (2, r − 1), (3, r − 2), . . . , (r, 1)} ∪ {(1, r + 1), (2, r + 2), (3, r +

3), . . . , (r, 2r)} is a zero forcing set. For i ∈ {1, 2, . . . , r} in order (i, j) can force (i+ 1, j) as long as (i, j) and

(i+ 1, j) exist.

Theorem 2.6. Let ADr be an Aztec diamond graph of order r and F be an arbitrary field. Then

M(F ,ADr) = Z(ADr) = 2r,

and field independent minimum rank is established with the universally optimal matrix A(G).

Proof. Let D` = {(i + `, r + 2 + ` − i)|1 ≤ i ≤ r + 1} for 0 ≤ ` ≤ r − 1. Note that the D` are

independent sets and disjoint. Let B = D0 ∪ D1 ∪ D2 ∪ · · · ∪ D(r−1). We show that r vertices of B

can be colored red by other vertices of B. The vertex (r + 1, 1) in the set D0 can be colored red by(
(r, 2), {(i, j) ∈ D0|i < r, j is even}, {(i, j) ∈ D0|i < r, j is odd}, 0

)
. See Figure 3 for an example. Using

a similar argument, each D` has a vertex that can be colored red using only vertices from D`. Since B is

partitioned into r sets D`, a total of r vertices that can be colored red. By Corollary 2.4, 2r ≤ null(ADr).

By Theorem 2.3 and Proposition 2.5, 2r ≤ null(A(ADr)) ≤ M(ADr) ≤ Z(ADr) ≤ 2r.

A circulant graph, denoted by Circ[n, S], is a graph with vertex set {0, 1, . . . , n−1} ⊆ Z and a connection

set S ⊆ {1, 2, . . . , n2 } ⊆ Z, where the edge set of Circ[n, S] is precisely
{
{i, i± s} : s ∈ S}

}
with arithmetic

performed modulo n (see Figure 4). For any a ∈ [n], the graphs Circ[n, S] and Circ[n, aS] are isomorphic

whenever a and n are relatively prime. Thus, if there exists b ∈ S such that gcd(b, n) = 1, then 1 ∈ b−1S
and Circ[n, S] ∼= Circ[n, b−1S]. For simplicity, all circulant graphs considered here have 1 in the connection

set.

AD3(3,2)+(1,4)

(1, 3) (1, 4)

(2, 4)(2, 2) (2, 3) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

AD3(3,2)+(1,4)−(2,3)

(1, 3) (1, 4)

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

Figure 3: Coloring (4, 1) red with ((3, 2), {(1, 4)}, {(2, 3)}, 0) in the Aztec diamond graph AD3.
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Figure 4: The circulants Circ[8, {1, 2}] and Circ[8, {1, 3}].

Proposition 2.7. Let n be a multiple of 8. Then,

Z(Circ[n, {1, n2 − 1}]) ≤ n
2 + 2.

Proof. Let G = Circ[n, {1, n2 − 1}]. Then Z = {0, 1, 2, . . . , n2 , n − 1} is a zero forcing set with forces

0→ n/2 + 1, 1→ n/2 + 2, · · · , n/2− 3→ n− 2. This shows that Z(G) ≤ n
2 + 2

Theorem 2.8. Let n be a multiple of 8. Then,

M(Circ[n, {1, n2 − 1}]) = Z(Circ[n, {1, n2 − 1}]) = n
2 + 2,

and field independent minimum rank is established with the universally optimal matrix A(G).

Proof. First note that G is bipartite with partite set B = {2k | 0 ≤ k ≤ n
2 − 1} and B̄ = {2k + 1 | 0 ≤

k ≤ n
2 − 1}. We show that n

4 + 1 vertices from B can be colored red using only white vertices of B. Note

that for every vertex v in {0, 1, 2, . . . , n2 − 1}, v is adjacent to v + 1, v − 1, v + n
2 − 1, v + n

2 + 1, and v + n
2

is adjacent to v + n
2 + 1, v + n

2 − 1, v + n
2 + n

2 − 1 ≡ v − 1 mod n, v + n
2 + n

2 + 1 ≡ v + 1 mod n. Hence,

NG(v) = NG(v + n
2 ) and v can be colored red by (v + n

2 , ∅, ∅, 0) where v ∈ {0, 2, 4, . . . , n2 − 2}. This shows

that n
4 vertices from B can be colored red. The vertex n

2 can be colored red by (n2 + 2, {2i : 2|i and n
2 + 2 <

2i ≤ n− 1}, {2i : 2 - i and n
2 + 2 < 2i ≤ n− 1}, 0). Hence, the vertices of {0, 2, 4, . . . , n2 } can be colored red

with the vertices B \ {0, 2, 4, . . . , n2 }. By Corollary 2.4, 2(n4 + 1) = n
2 + 2 ≤ N(G). So by Theorem 2.3 and

by Proposition 2.7
n
2 + 2 ≤ null(A(G)) ≤ M(G) ≤ Z(G) ≤ n

2 + 2.

3. An application of the Strong Arnold Property (SAP). In this section, we use the Colin de

Verdière type parameter ξ to show that the maximum nullity and zero forcing number of various families of

graphs are equal.

A matrix A ∈ S(G) has the SAP if there does not exist a nonzero symmetric matrix X having the

following three properties: (1) AX = 0, (2) A ◦X = 0, (3) I ◦X = 0 where ◦ is the Hadamard (entrywise)

product. The Colin de Verdière type parameter associated with the maximum nullity is

ξ(G) = max{null(A) |A ∈ S(G) and A has the SAP}.

Clearly, ξ(G) ≤ M(G) ≤ Z(G) for all graphs G. The parameter ξ was introduced in 2005 in [6] to gain more

insight on the minimum rank of a graph.
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Example 3.1. Using SageMath (see [16]), A(C8�P3) has the SAP and null(A(C8�P3)) = 6. By Theo-

rem 1.7, M(C8�P3) = Z(C8�P3) = 6. Therefore, ξ(C8�P3) = M(C8�P3) = Z(C8�P3) = 6.

An edge contraction of a graph G is defined to be a deletion of two adjacent vertices v1 and v2 and an

insertion of a vertex u such that uv ∈ E(G) if and only if vv1 ∈ E(G) or vv2 ∈ E(G). A graph H is a

minor of a graph G if H can be constructed from G by performing edge deletions, vertex deletions, and/or

contractions. We write H � G when H is a minor of G. Note that G � G′ � G′′ implies G � G′′.

Observation 3.2. Let 3 ≤ k ≤ n and 1 ≤ r ≤ t. Then Ck�Pr � Cn�Pt.

Theorem 3.3 ([6, Corollary 2.5]). If H is a minor of G, then ξ(H) ≤ ξ(G).

Definition 3.4. Let H be a minor of G. We say that H is a zero forcing minor of G if Z(G) ≤ Z(H).

Theorem 3.5. Let H be a zero forcing minor of G such that ξ(H) = Z(H). Then ξ(G) = M(G) =

Z(G) = Z(H).

Proof. Given that H is a zero forcing minor, Z(G) ≤ Z(H). By Theorem 3.3, ξ(H) ≤ ξ(G) and it follows

that

Z(H) = ξ(H) ≤ ξ(G) ≤ M(G) ≤ Z(G) ≤ Z(H).

Thus, the parameters ξ(G),M(G),Z(G), and Z(H) are equal.

Corollary 3.6. Let G = Cn�P3 such that 8 ≤ n. Then

ξ(G) = M(F , G) = Z(G) = 6.

A k-subdivision of an edge, say uv, is an operation on a graph in which edge uv is deleted, vertices

v1, v2, . . . , vk and edges uv1, v1v2, v2v3, . . . , vkv are added. We say the edge uv has been k-subdivided.

Whenever k = 1 we simply say that the edge uv has been subdivided. A k-subdivision edge insertion

on the edges uv and wx is an operation on a graph in which edges uv and wx are k-subdivided adding

vertices v1, v2, . . . , vk and x1, x2, . . . , xk, respectively, and edges v1x1, v2x2, . . . , vkxk are added. The cube

graph Q3 can be described by an 8-cycle containing a labeled vertex set {0, 1, . . . , 7} and added edges

{{0, 5}, {1, 4}, {2, 7}, {3, 6}} as shown in Figure 5.

Proposition 3.7 ([21, Lemma 8]). For the cube graph, ξ(Q3) = 4 = M(G) = Z(G).

01
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The cube graph
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Figure 5: Applying two vertical and one horizontal subdivision edge insertion on the cube graph gives

ECG(1, 2).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 295-315, April 2021.

303 Techniques for determining equality of the maximum nullity and the zero forcing number of a graph

Definition 3.8 (Extended cube graph). A vertical k−subdivision edge insertion on the cube graph is

a k−subdivision edge insertion on the edges {0, 1} and {4, 5}. A horizontal k−subdivision edge insertion on

the cube graph is a k−subdivision edge insertion on the edges {2, 3} and {6, 7}, with the numbering as in

Figure 5. An extended cube graph, denoted by ECG(t, k), is the cube graph with a horizontal t−subdivision

edge insertion, a vertical k−subdivision edge insertion, and a relabeling around the cycle containing vertex

set {0, 1, . . . , 7 + 2(t+ k)}.

Figure 5 shows ECG(1, 2). Notice that ECG(t, k) isomorphic to the graph ECG(k, t). For simplicity,

we consider the extended cube graphs with t ≤ k. The graph ECG(1, 1) is called the Bidiakis cube (see

[4]). It was shown in [4, Proposition 5.1] that the maximum nullity and zero forcing number of the Bidiakis

cube are the same, motivating the creation of the extended cube graphs. Observe that in ECG(t, k), as we

draw it, the top endpoints of the vertical edges are 0, . . . , k + 1, the left endpoints of the horizontal edges

are k + 2, . . . , t + k + 3, the lower endpoints of the vertical edges are t + k + 4, . . . , t + 2k + 5 = n − t − 3,

and the right endpoints of the horizontal edges are t+ 2k + 6, . . . , 2t+ 2k + 7 = n− 1.

Observation 3.9. Let G be a graph constructed from the graph H by performing a subdivision edge

insertion. Then H � G.

Proposition 3.10. Let G be an extended cube graph ECG(t, k). Then Z(G) ≤ 4.

Proof. Let n be the number of vertices of G and let r = n− t− 3. The set {0, r, r + 1, n− 1} is a zero

forcing set with simultaneous forces

0 → 1 → 2 → · · · → k + 2,

r → r − 1 → r − 2 → · · · → r − (k + 2) = k + t+ 3.

These forcing sequences run simultaneously in parallel, i.e., 0→ 1 and r → r − 1 are simultaneous, etc.

After the above forces are completed, the following forces run in parallel

(k + 2) → (k + 2) + 1 → (k + 2) + 3 → · · · → (k + 2) + t,

(n− 1) → (n− 1)− 1 → (n− 1)− 2 → · · · → (n− 1)− t = 2k + t+ 6.

Corollary 3.11. Let G be the extended cube graph ECG(t, k). Then

ξ(G) = M(G) = Z(G) = 4.

Proof. Let H be the cube graph. By Proposition 3.7, ξ(H) = Z(H) = 4. By Theorem 3.5, H is a zero

forcing minor of G. Thus, ξ(G) = M(G) = Z(G) = 4 by Theorem 3.5.

Observation 3.12. For positive integer k,

Circ[4k, {1, 3, . . . , 2k − 1}] = K2k,2k and Circ[4k + 2, {1, 3, . . . , 2k + 1}] = K2k+1,2k+1.

Proposition 3.13 and Theorem 4.4 below were found by several groups in 2009 and 2010 but not published.

Some of these results were also published in [11]. We state these results and give formal proofs of the results

for clarity.

Proposition 3.13 ([15, Proposition 2.1]). Let G be a circulant graph Circ[n, S] and let m = max{i|i ∈
S}. Then Z(G) ≤ 2m.
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Figure 6: By applying edge deletions to Circ[24, {1, 3}] and relabeling the vertices, it is clear that C8�P3 �
Circ[24, {1, 3}].

Proof. We will show that Z = {0, 1, . . . , 2m− 1} is a zero forcing set. Suppose s ∈ S and s 6= m. Then

1 ≤ s < m and it follows that m± s ∈ Z. If s = m, then m − s = m −m = 0 which implies m− s ∈ Z.

This shows that all neighbors of m except for 2m are in Z; clearly m ∈ Z. Hence m can force 2m. Using a

similar argument m+ i forces 2m+ i for i ∈ {1, 2, . . . , n− 2m− 1}. A forcing sequence is listed as

m→ 2m, m+ 1→ 2m+ 1, . . . , m+ (n− 2m− 1) = n−m− 1→ 2m+ (n− 2m− 1) = n− 1.

Observation 3.14. Let n be a multiple of k, G = Cn/k �Pk, and H = Circ[n, {1, k}]. Then G � H.

This is illustrated in Figure 6.

The next result may also be true for n < 24, but our proof needs n to be big enough to use results from

Z(C8�P3) = Z(Circ[24, {1, 3}]) = 6.

Theorem 3.15. Let n ≥ 24 be a multiple of 3 and let G = Circ[n, {1, 3}]. Then ξ(G) = M(G) = Z(G) =

6.

Proof. In Example 3.1, we showed that 6 = ξ(C8�P3). By Observations 3.2 and 3.14 C8�P3 �
Cn/3�P3 � G, and Z(G) ≤ 6 by Proposition 3.13. Therefore, C8�P3 is a zero forcing minor of G, and

ξ(G) = M(G) = Z(G) = 6 by Theorem 3.5.

Remark 3.16. For every positive integer t, Circ[2t, {1, t}] is the Moebius ladder graph. The edges

{i, i+ t} of Circ[2t, {1, t}] are the rungs in the Moebius ladder. It was shown in [3, Proposition 3.9] that all

Moebius ladder graphs have both their maximum nullity and zero forcing number equal to 4.

4. An application of vertex connectivity. In this section, we use known results for the vertex

connectivity of a graph to show that the maximum nullity and zero forcing number for some circulant

graphs are the same.
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The vertex connectivity, denoted by κ(G), of a graph is the smallest number of vertices needed to be

deleted to disconnect a noncomplete graph and κ(Kn) = n−1. In 2007, building on the work of Lovász, Saks,

Schrijver [20], [19], Hein van der Holst [21] showed that the vertex connectivity of a graph is a lower bound

for the maximum nullity of a graph. Although not published, it is worth noting that in a AIM workshop the

minimum degree and vertex connectivity of a graph were used to show that the maximum nullity is equal

to the zero forcing number for certain circulant graphs.

Theorem 4.1 ([21, Theorem 4]). Let G be a graph. Then κ(G) ≤ ξ(G).

Corollary 4.2. Let G be a graph. Then κ(G) ≤ ξ(G) ≤ M(G) ≤ Z(G).

Observation 4.3. Let G be a circulant graph Circ[n, S] such that S does not contain n
2 . Then δ(G) =

2|S|.

The circulant graph Circ[n, {1, 2, . . . , t}] is called a consecutive circulant. It is shown in [22, Theorem

4.1.5] that the vertex connectivity and the minimum degree of a consecutive circulant are equal.

Theorem 4.4 ([15, Corollary 2.2]). Let 2t+ 1 ≤ n and let G = Circ[n, {1, 2, . . . , t}]. Then

κ(G) = δ(G) = ξ(G) = M(G) = Z(G) = 2t.

Proof. By Observation 4.3, δ(G) = 2t. Since G is a consecutive circulant, κ(G) = δ(G). By Corollary 4.2,

we have the following inequalities κ(G) = δ(G) ≤ ξ(G) ≤ M(G) ≤ Z(G). An upper bound for the zero forcing

number ofG is 2t, which is given by Proposition 3.13. Therefore, κ(G) = δ(G) = ξ(G) = M(G) = Z(G) = 2t.

When n is odd and t = bn2 c the circulant Circ[n, {1, 2, . . . , t}] = Kn. The equality of κ, δ, ξ, and,Z shown

for consecutive circulants in Theorem 4.4 is not true for all circulant graphs as shown in the next example.

Example 4.5. Let G be the graph Circ[8, {1, 3}] = K4,4. By considering G = K4,4, we see that κ(G) =

δ(G) = 4 and Z(G) = 6, since Z(Ka,b) = a + b − 2. It was shown in [6, Corollary 2.8] that ξ(G) =

min{4, 4}+ 1 = 5.

For n = 2m + 1, if n is prime, gcd(m − 1, n) = gcd(m,n) = 1. So Circ[n, {1, . . . ,m − 2,m}] ∼=
Kn−Cn ∼= Circ[n, [m−1]]. However, Circ[22, {1, 2, 3, 4, 5, 6, 7, 8, 10}] � Circ[22, {1, 2, 3, 4, 5, 6, 7, 8, 9}]. Thus,

the discussion below covers graphs that are not consecutive circulants.

Proposition 4.6. Let H = Circ[n, [m]\{m−1}] where n > 9 and m = dn/2e−1. Then Z(H) ≤ 2(m−1).

Proof. Observe first that 2(m− 1) = δ(H) ≤ Z(H). We first consider the case when n is odd first. Then

n = 2m+1. Since m−1 is not in the connection set, i is not adjacent to i+ (m− 1) or i− (m− 1). Note that

i−(m−1) ≡ i+n−(m−1) ≡ i+2m+1−(m−1) ≡ i+m+2 mod n. It follows that 0 is not adjacent to m− 1

or m+ 2, and 3 is not adjacent to m+ 2 or m+ 5. Consider the set Z = V (H) \ {m− 2,m− 1,m+ 2}.
Then 0 → m− 2 and 3 → m− 1. After these two forces, any vertex adjacent to m+ 2 can force m+ 2,

which shows that Z is a zero forcing set.

When n is even, n = 2m + 2. Since m − 1 and n
2 are not in the connection set, i is not adjacent to

i+ (m− 1), i− (m− 1) ≡ i+m+3 or i+n/2 ≡ i+(m+1). It follows that 0 is not adjacent to m− 1, m+1,

or m+ 3, and 2 is not adjacent m+ 1, m+ 3, or m+ 5. Consider the set Z = V (H) \ {2,m− 1,m+ 3}.
Then 0 → 2 and 2 → m− 1. Any vertex adjacent to m+ 3 can force m+ 3, which shows that Z is a zero

forcing set.
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Theorem 4.7 ([9, Theorem 1]). Let G be a circulant graph Circ[n, {s1, s2, . . . , sk}]. There exists a

proper divisor d of n such that the number of distinct positive residues modulo d of s1, s2, . . . , sk, n− sk, n−
sk−1, . . . , n− s1 is less than min{d− 1, δ(G)

n d} if and only if κ(G) < δ(G).

Theorem 4.8. Let H = Circ[n, [m] \ {m− 1}] where n ≥ 10 and m = dn/2e − 1. Then κ(G) = δ(G) =

ξ(G) = M(G) = Z(G) = 2(m− 1).

Proof. Since 2(m − 1) = δ(G) = Z(G), we need only to show κ(G) = δ(G). Let d be a positive divisor

of n and let S′ = {1, 2, . . . ,m − 2,m, n −m,n − (m − 2), . . . , n − 1}. If d < m, then d − 1 ≤ m − 2 and

1, 2, . . . , d − 1 are d − 1 distinct residue of S′ modulo d. Note that d = m is impossible since m does not

divide 2m+ 1 or 2m+ 2, as m ≥ 3. If n is even and d = n
2 , then δ(G)

n d = δ(G)
2 = 2(m−1)

2 = m− 1 < d− 1.

Furthermore 1, 2, . . . ,m − 2,m are m − 1 distinct residue of S′ modulo d which is greater than or equal to
δ(G)
n d. Therefore, by Theorem 4.7 it must be the case that κ(G) = δ(G).

5. An application of equitable partitions. In this section, we use an equitable partition of a

circulant graph to bound the nullity of the graph. It fact, the lower bound is obtained from the nullity of a

circulant graph of small order which possesses the same connection set as the circulant graph of interest.

An equitable partition of a graph is a partition of the vertex set V0, V1, . . . , Vk such that for all v ∈ Vi
the number bij of neighbors in Vj is constant for all Vj . Let V0, V1, . . . , Vk be an equitable partition of V (G).

We say a divisor of G is a weighted directed graph with vertex set V0, V1, . . . , Vk and arc (Vi, Vj) having

weight bij if and only if bij 6= 0. The matrix [bij ] is the divisor matrix associated with the equitable partition

V0, V1, . . . , Vk. It is known that an equitable partition of a graph G can be used to find specific eigenvalues

of A(G) (see [10]).

Example 5.1. Figure 7 shows the graph of the circulant Circ[24, {1, 3}]. By partitioning the vertex set

of Circ[24, {1, 3}] as in Figure 7, it is clear that the partition Vi = {i, i′, i′′} for i = 0, 1, . . . , 7 is an equitable

partition of Circ[24, {1, 3}].

Proposition 5.2 ([14, Page 196]). Let φ be an automorphism of G. Then the orbits of φ give an

equitable partition of V (G).
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Figure 7: Circ[24, {1, 3}] and a relabeling showing how the vertices can be equitably partitioned.
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Note that the equitable partition in Example 5.1 is obtained from the automorphism ϕ(i) = i+ 8.

Theorem 5.3 ([10, Theorem 3.9.5]). Let G be a graph and let D be a divisor matrix of some equitable

partition of V (G). Then the eigenvalues of D are eigenvalues of A(G) (including multiplicity).

Theorem 5.4. Let G be the circulant graph Circ[nk, S] where k is a positive integer and S ⊆
[⌈
n
2

⌉
− 1
]
.

Then the adjacency matrix of the circulant graph Circ[n, S] is a divisor matrix of G.

Proof. The orbits of the automorphism ϕ(t) ≡ t+ n mod nk of G are

Vi = {r ∈ V (Circ[nk, S]) | r ≡ i mod n}.

Hence, the partition V0, V1, . . . , Vn−1 is an equitable partition of G.

Let [bij ] be the divisor matrix of G with respect to the given equitable partition and let [aij ] be the

adjacency matrix of Circ[n, S]. It suffices to show for all i and j, bij ≤ 1 and bij is nonzero if and only

if aij is nonzero. Suppose s1 and s2 are distinct elements in S, ViVj is an arc, and i+ s1 ∈ Vj . Since

s1, s2 ∈
[⌈
n
2

⌉
− 1
]
, s1 ± s2 6≡ 0 mod n which implies i + s1 6≡ i ± s2 mod n and i ± s2 6≡ j mod n. Hence

i± s2 /∈ Vj . Also s1 ∈
[⌈
n
2

⌉
−1
]
, so 2s1 6≡ 0 mod n which implies i+s1 6≡ i−s1 mod n and i−s1 6≡ j mod n.

This shows that i− s1, i+ s2, i− s2 /∈ Vj . Hence bij ≤ 1 for all i and j.

Suppose Vi is adjacent to Vj . Then there exists a vertex ` ∈ Vi and p ∈ Vj such that ` is adjacent to

p, in G. Thus, ` − p ≡ i − j mod n. By definition of adjacency in G, for some s ∈ S, ` ≡ p + s mod nk

or ` ≡ p − s mod nk. Hence ` − p ≡ s mod nk or p − ` ≡ s mod nk. Thus, i − j ≡ ` − p ≡ s mod n

or i − j ≡ ` − p ≡ −s mod n. In either case, i is adjacent to j in Circ[n, S]. Now suppose i is adjacent

to j in Circ[n, S] where 0 ≤ i, j ≤ n − 1 as integers. Then it must be the case that j = i + s mod n or

j = i − s mod n. In Circ[nk, S], i ∈ Vi and i+ s ∈ Vj or i− s ∈ Vj . In either case, bij 6= 0 in the divisor

matrix of G.

When n is even in Theorem 5.4, the connection set cannot be extended to include n
2 .

Example 5.5. Let G = Circ[12, {1, 3}] and H = Circ[6, {1, 3}] = K3,3. Furthermore, using the equitable

partition described in the proof of Theorem 5.4,

V0 = {0, 6}, V1 = {1, 7}, V2 = {2, 8}, V3 = {3, 9},

b0,1 = 1, b0,2 = 0, b0,3 = 2,

[bij ] =



0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0


,

and A(Circ[6, {1, 3}]) is not the divisor matrix of G. By computation, the eigenvalues of A(G) are

±4,±
√

3,±1, 0,

and H is bipartite and 3 - regular which implies ±3 are eigenvalues of H. This shows that the adjacency

matrix of H is not a divisor matrix of G.

The next corollary is a direct result of Theorems 5.3 and 5.4.
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Corollary 5.6. Consider the circulant graph Circ[nk, S] where k is a positive integer and S ⊆
[⌈
n
2

⌉
−1
]
.

Then

spec(A(Circ[n, S])) ⊆ spec(A(Circ[nk, S])),

and null(A(Circ[n, S])) ≤ null(A(Circ[nk, S])).

It was shown in Theorem 3.15 that M(Circ[3k, {1, 3}]) = Z(Circ[3k, {1, 3}]) = 6 for k ≥ 8. The next

result establishes field independence, in addition to showing that the maximum nullity equals the zero forcing

number for many additional circulants..

Theorem 5.7. Let k be a positive integer and let ` be an odd integer between 3 and 21. Then

M(Circ[(`2 − 1)k, {1, `}]) = Z(Circ[(`2 − 1)k, {1, `}]) = 2`,

Circ[(`2−1)k, {1, `}] has field independent minimum rank, and its adjacency matrix is an universally optimal

matrix.

Proof. Let n = `2 − 1, S = {1, `}, and G = Circ[nk, S] for k ≥ 1. By Proposition 3.13 and Proposition

1.1, M(G) ≤ Z(G) ≤ 2`. Thus, it suffices to show that null(A(Circ[n, S])) = 2`. This is easily verified using

computer software. (SageMath offers commands for computing the adjacency matrix of a graph and its

nullity.)

Conjecture 5.8. For all positive values of k and odd `,

M(Circ[(`2 − 1)k, {1, `}]) = Z(Circ[(`2 − 1)k, {1, `}]) = 2`,

and field independent minimum rank with universally optimal matrix A(G).

6. An application of equitable decompositions. In this section, we use the equitable decompo-

sition, introduced in [7], of the adjacency matrix to establish field independent minimum rank of a graph.

The graphs of interest are the extended cube graphs ECG(6q + 1, 6q + 1) where q is a nonnegative integer.

An automorphism of a graph G is an isomorphism φ from V (G) to V (G) such that φ(i) is adjacent to

φ(j) if and only if i is adjacent to j. Let G be a graph with v, u ∈ V (G) and let φ be an automorphism of

G. Define the relation ≈ on the vertices of G by v ≈ u if and only if there exists a nonnegative integer j for

which v = φj(u). This relation is an equivalence relation on the vertices of G and the equivalence classes

are the orbits of φ. Let φ be an uniform automorphism of G with orbit size k where 1 < k. A transversal

of φ is a subset of V (G) containing exactly one vertex from each orbit of φ. The `-power of transversal T is

defined to be the following transversal:

T` = {φ`(v) | v ∈ T},
for ` ∈ {0, 1, 2, . . . , k − 1}. It is straightforward to see that T` is a transversal and ∪k−1`=0T` = V (G).

Given an automorphism φ, an n × n matrix A = [aij ] associated with the graph G on n vertices such

that

aφ(i),φ(j) = aij ,

for all i, j ∈ {1, 2, . . . , n}, is called φ−compatible. An n× n matrix A associated with the graph G is called

φ−automorphism compatible if it is φ−compatible for every automorphism φ of G. Recently in 2017, Barrett

et al. used equitable partitions of a graph in [7] to decompose A(G). This decomposition can be used to

determine all eigenvalues of A(G). As a result, this decomposition is useful for determining a lower bound for

the maximum nullity. Moreover, it can be used to establish a potential candidate for an universally optimal

matrix.
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Example 6.1. In general, the extended cube graphs do not have field independent minimum rank. Some

extended cube graphs are isomorphic to the Cartesian product of a cycle and a path. For instance, ECG(0, 3)

is isomorphic to C7�P2. It was shown in Example 1.8 that mr(Z2, C7�P2) 6= mr(C7�P2).

Observation 6.2. The adjacency matrix of a graph is automorphism compatible.

The next theorem is stated in [7] for automorphism compatible matrices, but as noted there it could be

stated for a φ−compatible matrix and we do so.

Theorem 6.3 ([7, Theorem 3.8]). Let G be a graph on n vertices, let φ be an uniform automorphism

of G of orbit size k, let T0 be a transversal of the orbits of φ, and let A be an φ−compatible matrix in S(G).

Set A` = A[T0,T`], ` = 0, 1, . . . , k − 1, let ω = e2πi/k, and define

Bj =

k−1∑
`=0

ωj`A`, j = 0, 1, . . . , k − 1.

Then for some invertible matrix S

(3) S−1AS = B0 ⊕B1 ⊕ · · · ⊕Bk−1,

and

σ(A) = σ(B0) ∪ σ(B1) ∪ · · · ∪ σ(Bk−1).

The decomposition in (3) is called an equitable decomposition of A.

Observation 6.4. Let G be an extended cube graph ECG(t, t) on n vertices and let r = n
4 . Then the

function ϕ(x) ≡ x + r mod n is a uniform automorphism for G. The function ϕ can also be written as a

permutation,

φ = (0, 0 + r, 0 + 2r, 0 + 3r)(1, 1 + r, 1 + 2r, 1 + 3r) · · · (r − 1, r − 1 + r, r − 1 + 2r, r − 1 + 3r).

Furthermore, T0 = {0, 1, . . . , r − 1} is a transversal.

Example 6.5. The following is an example of constructing the eigenvalues of ECG(1, 1) using an equi-

table decomposition. As in Observation 6.4,

ϕ(x) ≡ x+ 3 mod 12,

is an automorphism with permutation representation φ = (0, 3, 6, 9)(1, 4, 7, 10)(2, 5, 8, 11), and the transver-

sals are T0 = {0, 1, 2}, T1 = {3, 4, 5}, T2 = {6, 7, 8}, T3 = {9, 10, 11}. Let

A0 =

φ0(0) = 0 φ0(1) = 1 φ0(2) = 2 0 0 1 0

1 1 0 1

2 0 1 0

, A1 =

φ1(0) = 3 φ1(1) = 4 φ1(2) = 5 0 0 0 0

1 0 0 0

2 1 0 0

,

A2 =

φ2(0) = 6 φ2(1) = 7 φ2(2) = 8 0 0 0 1

1 0 1 0

2 1 0 0

, and A3 =

φ3(0) = 9 φ3(1) = 10 φ3(2) = 11 0 0 0 1

1 0 0 0

2 0 0 0

.
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Hence

B0 = A0 +A1 +A2 +A3 =

0 1 2

1 1 1

2 1 0

 ,

and it follows that the spectrum of B0 is {3, 0,−2} with eigenvector x0 = [1,−2, 1]T corresponding to the

eigenvalue 0. Also,

B1 = A0 + iA1 −A2 − iA3 =

 0 1 −1− i
1 −1 1

−1 + i 1 0

 ,

and the spectrum of B1 is approximately {1.561552, 0,−2.561552} with eigenvector x1 = [i, 1 + i, 1]T corre-

sponding to the eigenvalue 0,

B2 = A0 −A1 +A2 −A3 =

0 1 0

1 1 1

0 1 0

 ,

has spectrum {2, 0,−1} with eigenvector x2 = [1, 0,−1]T corresponding to the eigenvalue 0, and

B3 = A0 − iA1 −A2 + iA3 =

 0 1 −1 + i

1 1 1

−1− i 1 0

 ,

has spectrum approximately {1.561552, 0,−2.561552} with eigenvector x3 = [−1,−1−i, i]T corresponding to

the eigenvalue 0. Using SageMath (see [23]), we compute the eigenvalues of ECG(1, 1) to be approximately

{3, 2, 1.561552, 1.561552, 0, 0, 0, 0,−1,−2,−2.561552,−2.561552},

which is the union of the spectra of B0, B1, B2, B3.

Theorem 6.6. Let G be an extended cube graph ECG(6q + 1, 6q + 1) for some nonnegative integer q.

Then G has field independent minimum rank and A(G) is a universally optimal matrix.

Proof. First we will show that the adjacency matrix of each such extended cube graph has nullity at

least 4. Hence by Corollary 3.11 the adjacency matrix realizes the maximum nullity.

It was shown in Example 6.5 that the nullity of ECG(1, 1) has nullity equal to 4, so we assume q > 0.

Let G be an extended cube graph ECG(6q + 1, 6q + 1) and let n be the number of vertices of G. Consider

the uniform automorphism

ϕ(x) = x+ r mod n,

where r = n
4 given by Observation 6.4. By Theorem 6.3, G has the following spectrum:

spec(A(G)) = spec(B0) ∪ spec(B1) ∪ spec(B2) ∪ spec(B3),

for the matrices Bi corresponding to ϕ. We show that B0, B1, B2, B3 each have nullity at least 1, which

implies A(G) has nullity at least 4.

The transversals with respect to ϕ are T0 = {0, 1, 2, . . . , r − 1}, T1 = {r, r + 1, r + 2, . . . , 2r − 1},
T2 = {2r, 2r + 1, 2r + 2, . . . , 3r − 1}, T3 = {3r, 3r + 1, 3r + 2, . . . , 4r − 1}. Hence k = 4 and ω = e2πi/4 = i.
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For the graph ECG(1, 1), let Ã0, Ã1, Ã2, Ã3 be the corresponding matrices used in Theorem 6.3 to construct

B̃0, B̃1, B̃2, B̃3 such that

spec(A(ECG(1, 1))) = spec(B̃0) ∪ spec(B̃1) ∪ spec(B̃2) ∪ spec(B̃3),

and B̃0 = Ã0+Ã1+Ã2+Ã3. Also, let x̃0, x̃1, x̃2 be the eigenvectors of B̃0, B̃1, B̃2, respectively, corresponding

to the eigenvalue 0. It follows that A0, A1, A2, A3 are the matrices

A0 =



Ã0 Ã1 0 0 0 · · · 0

Ã3 Ã0 Ã1 0 0 · · · 0

0 Ã3 Ã0 Ã1 0 · · · 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 Ã3 Ã0 Ã1 0

0 · · · 0 0 Ã3 Ã0 Ã1

0 · · · 0 0 0 Ã3 Ã0


,

A1 =



0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

Ã1 0 0 0 0 · · · 0


,

A2 =



0 0 0 · · · 0 0 Ã2

0 0 0 · · · 0 Ã2 0

0 0 0 · · · Ã2 0 0
...

...
...

...
...

...
...

0 0 Ã2 · · · 0 0 0

0 Ã2 0 · · · 0 0 0

Ã2 0 0 · · · 0 0 0


, and A3 = AT1 .

By definition,

(4) Bj = i0jA0 + ijA1 + i2jA2 + i3jA3 = A0 + ijA1 + (−1)jA2 + i3jA3,

for j = 0, 1, 2, 3, so the following matrices are constructed:

B0 = A0 +A1 +A2 +A3 B1 = A0 + iA1 −A2 − iA3

B2 = A0 −A1 +A2 −A3 B3 = A0 − iA1 −A2 + iA3.
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Writing Bj in terms of the matrices Ã0, Ã1, Ã2, Ã3, we get the following matrix

Ã0 Ã1 0 0 0 0 ··· 0 0 0 (−1)jÃ2+i
3jÃ3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 (−1)jÃ2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 (−1)jÃ2 0 0

...
. . .

. . .
. . .

...
...

0 ··· 0 Ã3 Ã0 Ã1 (−1)jÃ2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+(−1)jÃ2 i0jÃ1 0 0 ··· 0

0 ··· 0 0 (−1)jÃ2 Ã3 Ã0 Ã1 0 ··· 0

...
...

. . .
. . .

. . .
...

0 0 (−1)jÃ2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 (−1)jÃ2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

ijÃ1+(−1)jÃ2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


.

For simplicity of notation let x̂1 = −Ã2x̃1 and x̂2 = −x̃2. We show that x0 =
⊕2q+1

m=1 x̃0, x1 =⊕q
m=1(x̃1 ⊕ x̂1)⊕ x̃1, and x2 =

⊕q
m=1(x̃2 ⊕ x̂2)⊕ x̃2 are eigenvectors corresponding to eigenvalue 0 for B0,

B1, and B2, respectively. Since B3 = BT1 it follows that B3 also has a zero eigenvalue so we omit showing

that B3 has an eigenvalue of zero. Observe that

B0 =



Ã0 Ã1 0 0 0 0 ··· 0 0 0 Ã2+Ã3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 Ã2 0 0

...
. . .

. . .
. . .

...
...

0 ··· 0 Ã3 Ã0 Ã1 Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 Ã2 Ã3 Ã0 Ã1 0 ··· 0

...
...

. . .
. . .

. . .
...

0 0 Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

Ã1+Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


.

The product B0x0 reduces down to the following vector:
Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0
Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0

...

Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0
Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0

 =


B̃0x̃0
B̃0x̃0

...

B̃0x̃0
B̃0x̃0

 = 0,

since B̃0 = Ã0 + Ã1 + Ã2 + Ã3.

To compute B1x1, consider the fact that x̃1 = [i, 1 + i, 1]T is an eigenvector for B̃1. So by definition,

x̂1 = [−1,−1− i,−i]T and

Ã0x̂1 =

0 1 0

1 0 1

0 1 0

 −1

−1− i
−i

 = −A0x̃1,

Ã1x̂1 =

0 0 0

0 0 0

1 0 0

 −1

−1− i
−i

 =

 0

0

−1

 = i

0 0 0

0 0 0

1 0 0

 i

1 + i

1

 = iÃ1x̃1.
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Since Ã2
2 = I it follows that Ã2x̂1 = −x̃1. Also,

Ã3x̂1 =

0 0 1

0 0 0

0 0 0

 −1

−1− i
−i

 =

−i0
0

 = −i

0 0 1

0 0 0

0 0 0

 i

1 + i

1

 = −iÃ3x̃1.

In other words,

Ã0x̂1 = (−1− i)1T , Ã1x̂1 = iÃ1x̃1 , Ã2x̂1 = −x̃1 , and Ã3x̂1 = −iÃ3x̃1,

and these values are used to reduce the entries of the next product. We have that B1x1 is



Ã0 Ã1 0 0 0 0 ··· 0 0 0 −Ã2−iÃ3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 −Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 −Ã2 0 0

...
. . .

. . .
. . .

...
...

0 ··· 0 Ã3 Ã0 Ã1 −Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+−Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 −Ã2 Ã3 Ã0 Ã1 0 ··· 0

...
...

. . .
. . .

. . .
...

0 0 −Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 −Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

iÃ1+−Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


x1.

We show that the product B1x1 is given by the vector,



Ã0x̃1 + Ã1x̂1 + (−Ã1 − iÃ3)x̃1
−−−−−−−−−−−−−−−
Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)
...

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

−−−−−−−−−−−−−−−
Ã3x̂1 + (Ã0 − Ã2)x̃1 + Ã1x̂1

−−−−−−−−−−−−−−−
Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)
...

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

−−−−−−−−−−−−−−−
(iÃ1 − Ã2)x̃1 + Ã3x̂1 + Ã0x̃1



= 0,
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which implies that both matrices B1 and B3 have a zero eigenvalue. Note that each entry in the product

takes on one of the following values:

Ã0x̃1 + Ã1x̂1 + (−Ã2 − iÃ3)x̃1 = Ã0x̃1 + iÃ1x̃1 − Ã2x̃1 − iÃ3x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1) = (1, 0, 0)T + (−1− i,−1− i,−1− i)T

+ (0, 0, i)T + (i, 1 + i, 1)T = 0

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1) = −iÃ3x̃1 + Ã0x̃1 + iÃ1x̃1 − Ã2x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0

Ã3x̂1 + (Ã0 − Ã2)x̃1 + Ã1x̂1 = 0 by (4)

(iÃ1 − Ã2)x̃1 + Ã3x̂1 + Ã0x̃1 = iÃ1x̃1 − Ã2x̃1 − iÃ3x̃1 + Ã0x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0.

Finally, we compute B2x2,



Ã0 Ã1 0 0 0 0 ··· 0 0 0 Ã2−Ã3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 Ã2 0 0

...
. . .

. . .
. . .

...
...

0 ··· 0 Ã3 Ã0 Ã1 Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 Ã2 Ã3 Ã0 Ã1 0 ··· 0

...
...

. . .
. . .

. . .
...

0 0 Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

−Ã1+Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


x2 =



Ã0x̃2+Ã1(−x̃2)+(Ã2−Ã3)x̃2

−−−−−−−−−−−−−−−
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)

Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)

Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

...
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)

Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

−−−−−−−−−−−−−−−
Ã3(−x̃2)+(Ã0+Ã2)x̃2+Ã1(−x̃2)
−−−−−−−−−−−−−−−

Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)

...
Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)
−−−−−−−−−−−−−−−

(−Ã1+Ã2)x̃2+Ã3(−x̃2)+Ã0x̃2



.

Each entry in the previous vector is (Ã0 − Ã1 + Ã2 − Ã3)x̃2 which is zero. This shows that B2x2 = 0.

Since the adjacency matrix of G was used to establish M(G) = Z(G), by Corollary 1.3 the graph G has field

independent minimum rank and A(G) is universally optimal matrix.
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