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PARAMETERIZED STRUCTURE-PRESERVING TRANSFORMATIONS
OF MATRIX POLYNOMIALS*
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Abstract. This paper examines the relationship between the companion forms of regular matrix polynomials with singular
leading coefficients. When two such polynomials have the same underlying finite and infinite Jordan structures, it is shown that
their companion forms are connected by a strict equivalence transformation that can be parameterized using the commutant
of the companion forms’ common Weierstrass canonical form. The process developed herein for generating such parameterized
transformations is applied to the useful class of diagonalizable quadratic polynomials.
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1. Introduction. We consider n x n matrix polynomials with degree ¢: P(\) = Zf:o A\, where
A; € C"*™ and Ay # 0. We restrict our attention to polynomials that are regular, i.e., polynomials for
which det (P(\)) # 0. When the leading coefficient Ay is singular, some of the eigenvalues of P(\) are
infinite. The finite eigenvalues of P(\) are those A € C such that det (P(A)) = 0. The eigenvalue at infinity
corresponds to the zero eigenvalue of the reverse polynomial Pey(\) = Zf:o Ap_;\%; the multiplicities of the
infinite eigenvalue of P()) and the zero eigenvalue of P, () are identical. Associated with P()) are the two
Jordan matrices Jr and J,, which we will often refer to as the finite Jordan form and infinite Jordan form,
respectively, of P(\); Jp contains Jordan blocks of the polynomial’s finite eigenvalues, while J, comprises
Jordan blocks of the reverse polynomial’s zero eigenvalue.

An /n x fn matrix pencil A\ — B is called a linearization of a matrix polynomial P(\) when there
exist unimodular polynomials E(X) and F()\) (that is, their determinants are nonzero constants) such that
E(A)(AXN — B)F(\) = P(A\) @ I, in which case AX — B has the same Jordan form as P(\) for the finite
eigenvalues [8]. The pencil A\ — B is said to be a strong linearization of P(A) when, in addition to being a
linearization of P()), its reversal is a linearization of Pe.()), thereby also preserving the Jordan structure
for the infinite eigenvalue of P(\) [6, 10]. If A\ — B is a strong linearization of P()\) and its coefficients are
partitioned into n x n blocks that are each 0, &1, or +A;, then we call this strong linearization a companion
form of P()).

We say two polynomials P(\) and P()\) are isospectral when their finite and infinite Jordan structures
are identical. Suppose AX — B is a companion form of P()). We denote the same companion form of P()\)
by AN — E; that is, to obtain AN — E, we replace all matrix coefficients A; of P()\) in A\ — B with the
corresponding coefficients A4; of ﬁ()\) If P()\) and ﬁ()\) are isospectral, then their companion forms are
strictly equivalent, i.e.,

(1.1) U(AX — B) = (AA— B)V
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must hold for some invertible matrices U,V € C*"  This type of transformation is called a structure-
preserving transformation because it preserves the block structures of A and B. The objective of our paper
is to demonstrate that every nonsingular structure-preserving transformation (U, V) relating a given pair
of isospectral polynomials can be generated from a matrix S that commutes with the common Weierstrass
canonical form 20(A) = (JA = Jp) ® (JooA —I) = (I ® Joo)A — (Jp © I) of the polynomials’ companion forms:

(1.2) P = {5 eCr i . SW(N) =W(N)S}.

We first show that a parameterized structure-preserving transformation is possible for regular matrix poly-
nomials over C and then specialize this result to polynomials with real coefficients. Because of their utility in
applications, we also examine parameterized structure-preserving transformations relating quadratic poly-
nomials to their diagonal forms (when diagonalization is possible).

Our findings herein are an extension of recent work in the area of parameterizing structure-preserving
transformations. Lancaster and Zaballa [11] considered the case when the leading coefficient A, is invertible,
i.e., when the eigenvalues of a matrix polynomial P(\) are all finite. They developed in [11] a method
for characterizing structure-preserving transformations in terms of the centralizer S of the (finite) Jordan
form J shared by the isospectral polynomials P(\) and P(A\): SJ = JS. Note that this is the same as
S commuting with the common Weierstrass canonical form of the polynomials’ companion forms because
W(A) = IN—Jp = IA—J in this case. Our goal is to establish the equivalent result for the more general case
when Ay is singular and to illustrate its application to diagonalizable quadratic polynomials. To strengthen
the connection between Lancaster and Zaballa’s work and ours, we follow a similar development and adopt
similar notation and language. We should point out that a noticeable difference between our work and [11]
is that Lancaster and Zaballa utilized a block-symmetric pencil

A Ay o Ay A ~Ay 0 0 - 0
Ay A - Ay 0 0 Ay A3 - Ay
L) =1 S A : TR I
Ag,1 Ag s 0 0 0 Ag,1 Ag s 0
Ay o -- 0 0 0 Ay o --- 0

which is indeed a linearization of P(\) when Ay is invertible. However, for singular Ay, this block-symmetric
pencil is not a linearization of P(\) (see [13], especially Table 1 and Table 2 therein), and thus, it is not
an acceptable choice for the pencils A\ — B and A\ — B in (1.1). Moreover, our method of generating a
parameterized structure-preserving transformation is independent of the companion form of choice, but we
demonstrate its use with the strong linearizations that have come to be called the Fiedler companion pencils
[3] and with the special case of the familiar first companion form. Note that when A, is invertible, the
block-symmetric linearization L(\) is strictly equivalent to any other linearization of P()), and so all results
presented herein reduce to those in [11].

We begin in Section 2 with a brief introduction of the companion forms that will appear throughout our
paper for illustrative purposes (Section 2.1), and we follow this with a discussion about how to construct a
structure-preserving transformation that relates two isospectral matrix polynomials with complex coefficients
(Section 2.2). We next parameterize this transformation in Section 2.3 and then wrap up Section 2 with a
detailed example in Section 2.4. In Section 3, we restrict our attention to real matrix polynomials, discussing
how the theory over C in Section 2 is modified to accommodate real coefficients and real arithmetic; we
demonstrate the usage of this modified theory with an example in Section 3.1. In Section 4, we give
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special attention to quadratic polynomials, either complex (Section 4.1) or real (Section 4.2), that can be
diagonalized and provide an accompanying example (Section 4.3). Our paper concludes in Section 5 with a
brief summary of key results.

2. Complex matrix polynomials. We first consider the general case when the coefficients of two
isospectral matrix polynomials P()) and P(\) are complex. We only require that the leading coefficients be
nonzero and that the polynomials be regular. Before we begin our work on parameterizing the structure-
preserving transformation defined by (1.1), we briefly discuss a family of companion forms that will later be
featured in illustrative examples.

2.1. Fiedler companion pencils. In [1], Antoniou and Vologiannidis introduced a method for gen-
erating a family of companion forms of a regular polynomial P()) based on work by Fiedler concerning
companion matrices for scalar polynomials [4]. These companion forms, which were later termed the Fiedler
companion pencils (or Fiedler pencils for short) in [3], are obtained via multiplication of common factors in
different orders. Specifically, for an n x n polynomial with degree ¢, define the ¢ + 1 matrices M, € Ctn*én
(i=0,1,...,¢), or Fiedler factors, as follows:

Iéfl) 0 Ay 0
2.3 My = | (¢=bn M, =
(23) 0 [ 0 Ao} T [0 TI—1yn]’
Ig-p—1yn 0 O 0

0 —Ap I 0
2.4 My, = k=1,2,...,0-1
( ) k 0 I 0 0 ( 5 &y ’ )1

0 0 0 Ig-1n
where I, denotes the « x « identity matrix. For a permutation o = (ko,k1,...,ke—1) of the indices

(0,1,...,£—1), the Fiedler pencil associated with ¢ is given by
(25) CVF(7 (A) = MZA - MkoMk1 o Mk’(—l'

Owing to their structure, the Fiedler factors satisfy the commutativity relations M; M; = M; M, for |i—j| # 1,
implying that some Fiedler pencils associated with different permutations are the same. The set of Fiedler
pencils includes the familiar first companion form,

A 0 - 00 —Apr —Ape - AL Ao

0 I - 00 I 0 . 0 o0
(2.6) N =|: . oifa=| 0 o0 0|,

o 0 --- I 0 -

which arises from the permutation o = (/—1,£—2,...,0) [1, Lemma 2.1]: C1(\) = MpA—My_1My_o--- M.
The first companion form is well known to be a strong linearization of P(A) [6, Proposition 1.1]. Antoniou and
Vologiannidis showed that any Fiedler pencil (2.5) is strictly equivalent to the first companion form and thus
a strong linearization of P(\) [1, Theorem 2.3]. Generalizations of the Fiedler pencils have been developed
over the years (see [2, 3, 15]), but in the examples herein demonstrating our forthcoming parameterized
structure-preserving transformation, we limit our attention to the companion forms defined by (2.3)—(2.5).
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2.2. Establishing the structure-preserving transformation. Before we go about parameterizing
the structure-preserving transformation (U, V') defined in (1.1), we should first address how to determine
nonsingular U and V that satisfy (1.1), which is not obvious. To do so, we will rely on the general theory
of regular matrix polynomials developed by Gohberg, Kaashoek, and Lancaster in [6]. In what follows, T
is a Cauchy contour (i.e., the positively oriented boundary of a bounded Cauchy domain in C) with inner
domain Ay and outer domain A_ = C \ (AL UT), where 0 € A, Coo = CU{o0} is the extended complex
plane, and oo € A_ [6, pp. 793-794].

First, we recall some definitions from [6, p. 794]. A regular polynomial P()) is called T-regular if
it is invertible for every A € I'. Note that when P()\) is I'-regular, so is any strong linearization (and
thus any companion form) of P(X). A I'-decomposed pencil is a T'-regular pencil with the partitioned form
(IN—=T)) @ (TeA— 1) = (I ® To)\ — (T1 @ I), where Ty € C™*™ and T, € CUn—m)xn=m) for some
m € {0,1,...,¢n}, IN=T is invertible for every A € A_UT', and T>A — I is nonsingular for each A € A UT.

Next, because of its importance in establishing the main result in our paper, we restate (with some
rewording) Theorem 5.1 from [6].

THEOREM 2.1 (Theorem 5.1 of [6]). Let AN — B be an n x n matriz pencil that is T'-reqular. Then
AN — B is strictly equivalent to a I'-decomposed pencil:

(2.7) Y Y(AN— B)XY = [g ﬁj P [Tol ?] ,

where the invertible fn x {n matrix

1
2. X=—[(1-¢"A-DB)"'d
(25) o[-t By a
and the invertible matriz Y = [yl Yo o yen] € C* comprises a basis y; (i = 1,2,...,m) for the
image of the €n x €n matrix

1

2. =_— [ A(A&-B)"'d
(29) W= oo [ Atae— )

and a basis Ym+; (5 =1,2,...,¢n —m) for the kernel of W.

We refer the reader to the proof of Theorem 5.1 in [6] for explanations of why X and Y are nonsingular.
A useful corollary of Theorem 2.1 is as follows.

LEMMA 2.2. Let P(\) be an n X n matriz polynomial of degree £ that is T-reqular, has nonzero leading
coefficient, and has finite Jordan form Jp € C"F*"F qand infinite Jordan form Jo € Cm*"e_ where
np + Ne = ¢n. Define the Cauchy contour I' such that its inner domain contains the finite eigenvalues of
P(X). Let A\ — B be a strong linearization of P()\). Then AX — B s strictly equivalent to its Weierstrass
canonical form W) = (I & Joo)N— (Jp D I):

(2.10) Q Y(AN-B)R= [é Ji] A— [JOF ?] = W(N)

for the invertible fn x In matrices

(2.11) Q=YZ and R=XYZ,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 36, pp. 723-743, November 2020.

727 Parameterized Structure-preserving Transformations of Matrix Polynomials

where the In x €n invertible matrices X and Y are computed as in Theorem 2.1 and the invertible block-
diagonal matriz Z = (Zy ® Zy) € C*" s such that the matrices Z, € C'F*X"F and Zy € CroeXneo
satisfy Zl_lTlZl = Jr and Z2_1T2Z2 = Juo, for which Ty is the ngp X ng block in the upper-left corner of
Y IBXY € C"*" and Ty is the oo X Moo block in the lower-right corner of Y "TAXY € Ctmxn,

Proof. Any choice of strong linearization A\ — B is I'-regular because P()) is, and so A\ — B is strictly
equivalent to a I'-decomposed pencil, i.e., (2.7) holds. When the inner domain of I" includes the finite
eigenvalues of P()), the eigenvalues of T; are these eigenvalues and 0 is the only eigenvalue of Th (see [6,
p. 798]). Thus, because A\ — B and (I @ Ty)\ — (T) @ I) are strictly equivalent, Z;'T1Z; = Jr and
Zy T2 75 = Jo for some invertible Z; and Z,, where we see from (2.7) that Ty is the np x ng block in the
upper-left corner of Y "'BXY and Ty is the ns, X nee block in the lower-right corner of Y 'AXY. As a
result, by utilizing the invertible matrix Z = Z; @ Zs, we can rewrite (2.7) as

Y1 (AN — B)XY = Z (B JZJ \ [JOF ?D =

from which (2.10) and (2.11) follow. O

Consequently, it is now clear how we can compute a structure-preserving transformation relating two
isospectral polynomials for any choice of companion form.

PROPOSITION 2.3. Let P(X\) and ]3()\) be n X n matriz polynomials of degree £ that are isospectral and
T-regular and have nonzero leading coefficients. Define the Cauchy contour T' such that its inner domain
contains the finite eigenvalues of P(\). Let A\ — B and AX — B be companion forms of P(\) and P()\),
respectively. Then (U, V) = (@Q’l,éR’l) is a structure-preserving transformation of P(\) and ]5()\)

Proof. Because P()\) and P()) are isospectral, they have the same finite and infinite Jordan forms, and
s0 Q Y (AN— B)R = @*l(ﬁ)\ — E)f{ from (2.10), where @ and R are computed according to the procedure
outlined in Theorem 2.1 and Lemma 2.2. Note that @ and R are obtained by the same process, with every
occurrence of A and B in the procedure replaced by A and £~3, respectively. With some rearranging, we
obtain (QQ~1)(AX — B) = (AX — B)(RR™!), and thus, by (1.1), QQ~* = U and RR™! = V define a
structure-preserving transformation of P(\) and P(\). |

2.2.1. The first companion form. As far as we are aware, for any given companion form of a
polynomial P()), the transformation matrices @ and R in (2.10) generally do not have convenient structures
independent of the process described in Theorem 2.1 and Lemma 2.2. One known exception is for the first
companion form; from Chapter 7 of [8], it turns out that @ and R can be constructed from the coefficients
and spectral data of P(\) and its reversal.

Suppose P(A) has finite Jordan form Jgp € C"F*"™F and infinite Jordan form J,, € C"e=*"_ where
ng 4+ neo = £n. Let the matrix Vi € C"*™F contain the Jordan chains associated with the finite eigenvalues
of P()); the arrangement of the Jordan chains in Vp is conformable to the structure of Jrp. A Jordan chain
’UF] (k=1,2,...,p;;) for a distinct finite eigenvalue \; with jth partial multiplicity p;; satisfies the system
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of equations [8, p. 25]
P/(/\i) 0 0 vilj
P'(N\) P(\) o 0 o2
(2.12) : : : Y=o,
P@i =1 (). P@ii—2)(\. :
( '1) ( 'l) P()\q/) ,Upij
(pij — 1)! (pij —2)! ij
where vilj # 0 is an eigenvector and v;} (m = 2,3,...,p;;) are generalized eigenvectors. Note that when

the polynomial’s degree ¢ > 1, the vectors of a Jordan chain do not need to be linearly independent, and
the zero vector is an acceptable generalized eigenvector [8, p. 24]. Similarly, let the matrix V,, € C"*"
be populated, conformable to J.,, with the Jordan chains for the zero eigenvalue of the reverse polynomial
Prev(N). If vlgoj (k=1,2,...,px;) form a Jordan chain for the zero eigenvalue with jth partial multiplicity

Docj, then
P, (0) 0 e 0 vl
Pr/ev(o) Prev (0) T 0 (2)0]
V.
(2.13) z : ST =0
(Pocj—1) (Poci—2) :
PI‘CV ’ 0 PTCV J 0
© © . g e
(pooj —1)! (pooj —-2)! ©0J
where vl ; # 0 is an eigenvector and v7}; (m=2,3,...,pxj) are generalized eigenvectors. The matrix pairs

(Vr, JJr) and (Voo, Joo) are known as, respectively, a finite Jordan pair of P(\) and an infinite Jordan pair
of the same polynomial [8, pp. 184-185].

Now, by Theorem 7.3 of [8], the finite and infinite Jordan pairs comprise what is termed a decomposable
pair of P(\), ([VF Voo} ,Jp @ Joo). A decomposable pair is a generalization of the familiar standard pair
of a matrix polynomial with nonsingular leading coefficient; we refer the reader to Section 7.3 of [8] for a
complete description. Because we can generate a decomposable pair of P()) from its corresponding finite
and infinite spectral information, Theorem 7.6 of [8] provides the analogue of (2.10) applied to the first
companion form. For our representation of the first companion form in (2.6), it follows from Theorem 7.6
that

AVpJEt = AV IS

VeJ5t Vi
Virdb 2 Vo e P
_ F oo oo
(2.14) Q= VFle; ° Voo doo and R = ,F . ,
V.F V. (.]272 Vi Vooj(ﬁo—l
echgiers]

where the invertibility of @) and R are addressed in the proofs of Theorem 7.6 and Theorem 7.3, respectively.

2.3. Parameterizing the structure-preserving transformation. Having shown how to construct
a structure-preserving transformation (U, V) of two isospectral matrix polynomials P(A) and P()), we now
wish to parameterize this transformation through the commutant S of their companion forms’ common
Weierstrass canonical form. That is, for two given isospectral polynomials, we seek an invertible mapping
that relates a nonsingular matrix S € ® to nonsingular matrices U and V that satisfy U(AA—B) = (AA—B)V.
We shall first demonstrate that the commutant S has a special block-diagonal structure.
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PROPOSITION 2.4. Let P(\) be an n X n matriz polynomial of degree ¢ that is I'-regular, has nonzero
leading coefficient, and has finite Jordan form Jgp € C"F*"F qgnd infinite Jordan form J, € CMee*"e qhere
ng + Neo = ¢n. Define the Cauchy contour I' such that its inner domain contains the finite eigenvalues of
P(X). Denote the Weierstrass canonical form of any strong linearization of P(\) as (N\) = (IX — Jp) &
(JoX = I), and let S € C¥. Then SAW(N\) = W(N\)S if and only if

(2.15) S=8Sr®Ss, where SpJr =JrSr and SscJoo = JooSoo-

Proof. First, suppose S is as given by (2.15). Consequently,
SW(A) = Sp(IA—Jr) @ Soc(JocA = I) = (IXN = Jp)SF & (JooA — I) S = (M) S.

S S

Next, suppose S2(\) = Q(A)S, where S =
S Sa

] with S; € C"F*"F and Sy € CleeXMe  Asg a

result, we obtain the expressions

(2.16) SIA—S1Jp =SIA—JpS1 = SiJp=JpSi,
(2.17) SodoA— Sy =SoA—JpSy = Sode =05 and Sy =JpSs,
(2.18) SsA— S3Jp = JooSsA— S35 = S3=JxS; and Ss3Jp =Ss,
(2.19) Sidoch— Si = JoSiA—Si = Sideo = JooSi.

Now, from (2.17), the matrix Sy € C™¥ *"== must satisfy SoJo = IpS2, where we have purposefully included
the np X np identity matrix I, .. Because the infinite Jordan form J., comprises only Jordan blocks of a
zero eigenvalue, the spectra of J, and I,,,. are disjoint. Therefore, from Section 1 of Chapter VIII in [5], we
must have Sy = 0, which also satisfies the second condition Sy = JgSs in (2.17). By the same reasoning, the
only solution S5 € C"*"F to S31I,,,. = JooS3 in (2.18) is S5 = 0, and thus, the second condition S5Jp = S
is also satisfied. Consequently, S must be a block-diagonal matrix: S = 57 & S4, where the blocks S; and
Sy are such that (2.16) and (2.19) hold, which coincides with (2.15) after some relabeling. ad

Next, what is the dimension of the linear space ® defined in (1.2)? Let A\; (i = 1,2,...,s) be the
s distinct finite eigenvalues of a polynomial P(A\) with partial multiplicities p;; (j = 1,2,...,¢;), where
Pi1 > Piz > -+ > Pig;. From (2.15) of Proposition 2.4, the matrix Sp in the block-diagonal commutant
S = Sp® Se commutes with the finite Jordan form Jp common to P()) and a polynomial P()) isospectral
to it. Thus, we know that Sg is a matrix of s blocks on its diagonal, consistent with the arrangement of
the Jordan blocks for A; on the diagonal of Jr, where each of the s blocks in Sr contains submatrices with
triangular Toeplitz structure (e.g., see Section 1 and Section 2 of Chapter VIII in [5] and Section 9.1 of [7]).
From [5, 11], the number of independent arbitrary parameters present in Sg is given by

s 9

(2:20) Ne =2 (25— 1) pij.

i=1 j=1
Now, suppose the infinite eigenvalue of P(\) has partial multiplicities poo; (7 = 1,2, ..., goo), With pec1 >
Poo2 =+ 2 Pooges - By (2.15), the matrix So, commutes with the polynomials’ shared infinite Jordan form
Joo, and 80 S is similarly composed of submatrices with triangular Toeplitz structure. Therefore, analogous
to (2.20), So contains

Yoo

(2.21) Noo = Z (25 — 1)pooj

j=1
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free parameters. Finally, because the matrix S € & has the block-diagonal structure S = Sp @ S, it
comprises Np + N, independent parameters, making the dimension of the linear space ® also Np + No.

Moving on, denote the set of all structure-preserving transformations (U, V) relating two isospectral
polynomials P(\) and P()) as Z:

(2.22) == {(U, V) € ComXn 5 ¢t (AN — B) = (AN — E)V} ,

which is a linear space. We then arrive at the following statement that is a direct generalization of Theorem
2.2 in [11].

THEOREM 2.5. Let P(\) and ﬁ()\) be n X n matriz polynomials of degree ¢ that are isospectral and
T'-regular, have nonzero leading coefficients, and have shared finite Jordan form Jp € C"F*"F and infinite
Jordan form Jo, € Ce=*" where ng +nee = €n. Define the Cauchy contour I' such that its inner domain
contains the finite eigenvalues of P()\). Let AN — B and AN — B be companion forms of P(\) and 13()\),
respectively. Define the sets ® and Z according to (1.2) and (2.22), respectively. Let Q) and R be the invertible
matrices of (2.11) that satisfy (2.10), and similarly for @ and R. Then the mapping ¢ : ® — E defined by

P(S) = (QSQ™', RSR™')

is an isomorphism of linear spaces with dimension Ng + N, where Ng and Ny are given by (2.20) and
(2.21), respectively.

Proof. First, note from (2.10) that

I 0

1 o
(2.23) Q AR{O I

} and QIBR{JF O}

0o I

Now, if U = @SQ‘l and V = ESR_l, where S € ® must have the block-diagonal structure in (2.15) by
Proposition 2.4, then repeated use of (2.23) reveals that

UA=(QSQ ™A UB = (QSQ™")B
=QS(Q 'AR)R™! = QS(Q'BR)R™!
= Se 01T 07, < [Se 0][Jr 0] ,_,
=7 sllo )7 -7 o) [T i
= 07[Sr 07 - = [Jr O] Sk O] ,_
~afy )T sl oy T sl
=Q(Q 'AR)SR™! = Q(Q 'BR)SR™!
= A(RSR™) = B(RSR™Y)
= AV, = BV.

Consequently, (QSQ~1)(AX — B) = (AX — B)(RSR™1), and so (QSQ !, RSR™!) € E. Thus, the mapping
1 is well defined.

Next, we show that the mapping v is bijective. Because the transformation matrices @, R, @, and R
are invertible, v is injective. To demonstrative surjectivity of ¢, start by letting some (U, V) € = so that
U(AX — B) = (AN — B)V. Apply (2.23); to UA = AV and rearrange the result to obtain

(2.24) (G-1UQ) B J?J _ [é J(Zo] (B-'VR).
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Likewise, manipulating UB = BV after applying (2.23)9 yields

~ Jr 0 Jr 0] 5
1 F o F —1
(2.25) (QTUQ) {0 I} = [0 I} (R™"VR).
~ Wy W ~ X X
Now, let Q~'UQ = {W; Wj and R'VR = {X; Xj , where Wy, Xy € C*"F*"F and Wy, Xy € Clhoe XMoo,

Therefore, from (2.24) and (2.25), respectively,

(2.26) [Wl W2J°°] :{ X1 X ] and [WlJF Wz} _ |:JFX1 JFX2:|.

Wiz Widso Joo X3 JooXy WsJr Wi | X3 Xy

We immediately see in (2.26) that W7 = X; and Wy = X4 (i.e., @flUQ and R~V R have the same blocks
on their diagonals), and hence,

(2.27) W1JF = JFW1 and W4Joo = JOOW4.
Also note from (2.26) that
(2.28) Xg = WQJOO and W2 = JFXQ.

Let wo; (1 =1, 2, ...,ns) denote the np-dimensional columns of Wy € C™F*"e=. At worst, J, is a single
Noo X Moo Jordan block with eigenvalue 0, and so, from (2.28);,

o1 0 --- 0
0 0 1 0
Xo=|wa wy waz -+ Wy ] |i T 1 . 1| =0 wa wy - w2(noc_1)] € CriXiee,

0 0 O 1
0 0 0 0

We then find from (2.28)5 that

[w21 W22 W23 - w2noo] =Jr [0 w1 W22 - w2(n0071)]
=[0 Jrwy Jpwe -+ Jpwon._1)]-
The result we; = 0 begins a chain reaction leading to woe = wag = - - - = way,__ = 0, and thus, Wy = X2 = 0.

Returning to (2.26), we also have the following conditions relating W3 € C"=*"F and X3z € Ce*"r:
(229) W3 = Jong and X3 = WgJF.

Let x3; be the np-dimensional rows of X3 so that, from (2.29);,

o1 0 --- 0 31 Z32

0 0 1 0 32 33
Wy= i : -

0 0 O 1 |23(nee—1) T3n.,

0 0 O 0 T3ng, 0
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Therefore, (2.29)5 yields
31 T32 x32JF
T32 33 z33JF
= JF =
T3(noo—1) T3n . x3n&JF
T3n o 0 0

Similar to the case of W and X», we see that x3, = 0 initiates a chain reaction resulting in z3¢, __1) =
T3(no—2) = -+ = w31 = 0, and so W3 = X3 = 0 as well. In general, J is an n X ne block-diagonal
matrix of zero-eigenvalue Jordan blocks, so any J., can be formed by appropriately removing 1’s from the
superdiagonal of a single n., X ny, Jordan block. Thus, Wy, W3, X5, and X3 will always be zero matrices,
regardless of the number and sizes of the Jordan blocks that comprise J,,. Consequently, @*1U @ and
R='VR are identical block-diagonal matrices: Q*IUQ =R WR=5r® Seo, With some renaming, where
(2.27) requires that SpJrp = JpSp and SocJoo = JooSs. Taking S = Sp @ S and recalling Proposition
2.4, we then have S € &, U = @SQ‘l, and V = ESR_l, as desired. 0

Thus, so long as the commutant S = Sp @ S is chosen to be invertible, the matrices U and V will
also be invertible, and hence, (U, V) will be a structure-preserving transformation of two isospectral matrix
polynomials. What is the general form of S? First, for the s distinct finite eigenvalues A; (i = 1,2,...,s)
with partial multiplicities p;; (j = 1,2,..., ;) arranged by decreasing size, construct the finite Jordan form
Jr according to

A1 0 -0
s [ 0 A 1 - 0
(2.30) Jr= |EPJi;|. where Jyy=|: = . . 1| eCrurrs,
=1 \s=t 0 0 - N 1
0 0 N
Next, for the eigenvalue at infinity with partial multiplicities pooj (j = 1,2, ..., goo), also ordered from largest

to smallest, build the infinite Jordan form J, from Jordan blocks with eigenvalue 0 as follows:

0 1 0
. 00 1 0

(2.31) Joo =P Jooj, Where Juj=|i 1 1 . 1] € RPwiPes
=t 000 1
00 0 0

As mentioned earlier, because S and S, commute with the Jordan forms Jg and J,, respectively, these
components of the commutant S are composed of submatrices with triangular Toeplitz structure. Specifically
(see Section 1 and Section 2 of Chapter VIII in [5] and Section 9.1 of [7]), for the finite eigenvalues,

(2.32) Sp=EDSi, where S;=I[Siu] (k=12..,4)

i=1
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and
-1041',jk 20 5k pir Yijk 1
0 1Q4,5k  * pie—10% ik
(233) Si,jk = 0 0 S 1045k € CPis *Pik if j <k,
0 0 0
| 0 0 0 |
1k 206k 0 gk ]
0 1045k " pi—1Q% jk
(2.34) Sigk=1 . O T € CPuxPii if j =k,
L O 0 104 5k
0 -+ 0 10uge 20k - py gk
0 - 0 0 a0 o py—10k
(2.35) Sijk = |. . . . . T € CPis¥Pik i j > k.
0 --- 0 0 0 10k

We are free to choose the values of the parameters ,,a; ;i € C. Likewise, Soc = [Socjk] (J,E=1,2,...,0c)
for the eigenvalue at infinity, where So ;i are constructed in the same manner as S; j, in (2.33)—(2.35).

We next illustrate with a simple example the process for generating a parameterized structure-preserving
transformation that connects two isospectral polynomials.

2.4. An example. Consider the cubic matrix polynomial

10 11 11 10
— A3 2 _ 3 2
P(X) = AgX® 4+ A0 + A1\ + Ag L O]A +[ . J)\ +{0 0]/\+[0 0},

which has two distinct finite eigenvalues that each form a 2 x 2 Jordan block: —1 (g1 = 1 and py; = 2) and
0 (g2 = 1 and po; = 2). The eigenvalue at infinity happens to form a 2 x 2 Jordan block as well (goo = 1
and poo1 = 2). Thus, using (2.30) and (2.31),

11 00
1 17 _[o 1 0 -1 0 0 0 1
= - d oo =
Jr [0 —1}@[0 0] o o0 o 1| ™ [o 0]
0 0 0 0

are, respectively, finite and infinite Jordan forms of P()A). The polynomial
~ ~ ~ ~ ~ 1 0 1 1 0 0 0 0
— 3 2 _ 3 2

is isospectral to P(\). We now follow the process described in Theorem 2.1 and Lemma 2.2 to generate
the matrices that comprise a parameterized structure-preserving transformation of P()\) and P()). In this



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society

Volume 36, pp. 723-743, November 2020.

Daniel T. Kawano

example, our strong linearization of choice is the Fiedler pencil

C(F ()\) = Mg)\ — M2MOM1 =

in which case

(2.36)

is the corresponding companion form of P()).

o

AN—B =

o O O = =

0

O O O O o o

SO O O = O O

o O = O O O

o = O O o o

_ o O O O O

As

0
0

00

I 0| Xx—

0 I
-1 -1
1 -1
1 0
0 1
0 0
0 0

o O O O

o

O O O O

IL
AS

734

o O

o O O = O

0

Using any Cauchy contour I' whose inner domain contains

the finite eigenvalues —1 and 0, we find from (2.8) and (2.9) that

-3
-8
1
4
0
0

2
3
-1
-2
0
0

-1
-3
1

1
0
0

-1
—4

2
0
0

1
4
0
-1
1
0

1 9 1 -1 -1 1 -1
) 2 1 -1 -1 1 -1
0 1 -1 1 0 0 0
e W=t 0 g
0 O 0 0 0 1 0
1] 0 0 0 0 0 1

where rank(TW) = 4. We then use Gaussian elimination to determine bases for the image and kernel of W:

Consequently,

Y TAXY

and we find that

-2 1 1 =1]|0 -1
-2 1 1 -=1|1 =1
1 -1 0 011 0
Y_3—1—1101
0 0 1 010 o0
(0 0 0 1|0 O]
1 0 0 0l 0 O] [—2 1 1 0]0 0]
01 0 0]0 0 0 00 1/0 0
001 0]0 O . /-1 10 0[0 0
00010 0 YBXY_OOOOOO
000 0|0 O 0 00 0|1 0
00 0 0|-1 0] | 0 0 0 0[0 1]
(I 0 o
0 Tn|’ Lo I}’
11 1 =2
00 1 -1 0 1
2= g g | nd 22[1 0}
000 1
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result in ZflTlZl = Jr and Z{ngZg = J. With Z = Z; & Z, evaluating (2.11) gives

We then repeat this process with the corresponding companion form of ]3()\),

-1
1

S = N =

O = = OO

0 0 1
0 0 1
0 -1 0
1 -2 -1
1 -2 0
0 1 0

1 0 0
0 00
~ = 0 0 1
2. AN— B =
(2.37) A 00 0
000
0 0 0
from which we ultimately obtain
-1 -1 0 1 1
0O 0 0 0 ©
~ 1 2 1 =2 0
@= 0 -1 0 1 -1
0 0 0 1 0
0 -1 -1 1 0

S O O = = O

O O = O O O
o= O O O O
_ O O O o o

_ o O = =

and R =

and R =

[l eell .

-1 0
-2 1
1 1
2 1
1 2
0 0

O = = O o O

-1 0 O
0 1 0
0 0 O
1 0 O
0 0 0
0 0 -1
-1 -1 0
0 1 0
1 2 1
0 -1 0
0 0 0
0o -1 -1

O O O O O
o O O O = O

e
0
0
-1
0
0_
0 1]
-1 0
0 0
0 -1
0 0
0 0]

Now, according to (2.20) and (2.21), the dimension of ® is 6. Indeed, following (2.32)—(2.35), we have

a b c
SF{O a}@[o

|

o O O e

o o e o

o 0 O O
o Qo O

for the commutant S = Sp & S, where the 6 free parameters can be any combination of real and nonreal
numbers that makes S invertible. Therefore, by Theorem 2.5, all structure-preserving transformations (U, V')
connecting the isospectral polynomials P(\) and P(\) through their respective companion forms (2.36) and

(2.37) are computed from

[—a 4+ b+ 4e— f
—e
—b—e

— 0 -1 _
U=QSQ =1 3047

a—2e+ f
e
—a+c+e
e—f
0
—c+e

—a—+e
0
a—c
—e
0
c

b+e
0
—a—b+c
a—e

—b—e
0
a+b
—a+e

—a—i—c—i—e_
0
a—c+d
c—e
c
—d
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and
b+ 2e 0 —a+e b+e —b—e —a+c+e]
—a+3—-2f e 2e—f —a+3e—f a—3e+f e—f
V — BSR1 — —a—b+c 0 a—-c —a-b+c a+b a—c+d
a— 2e 0 —e a—e —a+e c—e
0 0 0 0 0 c
i a—c 0 a—c —a —-d

3. Real matrix polynomials. When two isospectral polynomials P(A) and P (M) are real, we can use
a real commutant S of a real Weierstrass canonical form 20(\) = (I ® Joo)A — (Jr @ I) to parameterize all
real structure-preserving transformations relating P(\) and ﬁ()\) Note that Theorem 2.5 still applies when
we restrict our attention to real matrices so long as we use a real finite Jordan form Jg of P(\) and P()\);
no change is required for the infinite Jordan form J, because it is always real. While no separate statement
is needed to accommodate the case of real polynomials, several modifications to our procedure outlined in
Section 2.3 must be made.

First, because the nonreal finite eigenvalues for a real polynomial P(A) must occur in conjugate pairs,
it is convenient to index the finite eigenvalues as follows. Let A\; (¢ = 1,2,...,7) denote the r distinct real
eigenvalues, and let A,y ; = oy qj +iw,y; (5 =1,2,...,¢), with w,4; > 0, and A, 4, be the 2¢ distinct nonreal
eigenvalues that form ¢ conjugate pairs. Associated with each finite eigenvalue \; (i = 1,2,...,7r +¢) is a
set of partial multiplicities p;; (j = 1,2,...,¢;) arranged in order of decreasing size: p;1 > pia > -+ > pig, -
Instead of (2.30), we now use

r+c 9i
i=1 \ j=1

to construct a real finite Jordan form. In (3.38), J;; is the familiar p;; x p;; Jordan block for the real
eigenvalues (i = 1,2,...,r); for the nonreal eigenvalues (i =7+ 1,7 +2,...,r +¢), J;; is a 2p;; x 2p;; real
Jordan block:

¢, I 0 --- 0
o ¢ I --- 0
(3.39) Jyj=1|+ + .. .. 1|, where C;= {ai wl} € R?x2,
S : —w; o
0 0 C 1
0 0 0 G

Second, we must update our process for generating the commutant component Sg so that it is real and
conformable to the revised structure of the real finite Jordan form Jp given by (3.38) and (3.39):

r4+c
(340) SF = @Si, Where Si = [Si,jk} (],kZ 1,2,...,gi),
i=1
instead of (2.32). For the real eigenvalues (i = 1,2,...,r), we construct the submatrices S; j; in the same

manner as in the case of complex polynomials (see (2.33)—(2.35)), except S; ji are now real because the free
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parameters contained therein are taken to be real. For the nonreal eigenvalues (i =r+ 1,7 +2,...,r +¢),
[Aije 24 o paAigk |
0 adige o pu—1Aige
(341) Si,jk = 0 0 cee lAi,jk S R2p”><2pik lf] < k,
0 0 e 0
| O 0 0 i
1Aijie 2Aige - piAigk
0 ik po—14ijk
(3.42) Sk = " L S S T
0 0 e 1A
0 - 0 1Ak 24igr - pyAige
0 --- 0 0 ik po14i ik
(3.43) Sijk = . . v . P T e R2Pi X 2pin if j >k,
0 --- 0 0 0 VAi ik
where
(3.44) i = |k ~(mBige)| o paxe.

mBijk  mQjk

Let us now demonstrate the procedure for constructing a real parameterized structure-preserving trans-
formation with an example.

3.1. An example. Suppose

11 10 10 0 0
_ 3 2 _ 3 2
P(A\) = AsX® + Ao \* + Aid+ Ap = L J A%+ [1 0} AY+ [1 1] A+ [1 0} .
The finite eigenvalues of this polynomial are 0, which forms a 2 x 2 Jordan block (g1 = 1 and p1; = 2), and
+i, both of which are simple (g; =1 (¢ = 2,3) and p;; = 1). The infinite eigenvalue also forms a 2 x 2 Jordan
block (goo = 1 and peo1 = 2). Therefore, from (2.31), (3.38), and (3.39), we have that real finite and infinite
Jordan forms of P(\) are, respectively,

=l =[]

o O O

0 1
d Jo = .
an i

o O O O
o O O =
O = O O
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Isospectral to P()\) is the polynomial

~ ~ ~ ~ ~ 0 1 1 0 0 1 1 O
3 2 3 2

For this example, we will generate a real parameterized structure-preserving transformation of P(A) and

P()\) using the Fiedler pencil

A3 0 O —Ay I 0
Cp,(A\)=MsAN—MiMgMa=|0 I O|A—|—-A1 0 —Ap|,
0 0 I I 0 0

and so the associated companion forms of P()\) and ﬁ()\) are, respectively,

110000 -1 0 10 0 O
1100 0 0 -1 0 01 0 O
001 000 -1 0 00 0 O
3.45 AN— B = A—
(3.45) 000100 -1 -1 00 -1 0
000010 1 0 00 0 O
00 0 0 0 1} i 1 00 0 O
and
[0 1 0 0 0 0] [1 0o 1 0 0 O]
000 O0O0O0 0 0 01 0 O
~  ~ 1001000 0 -1 00 -1 0
4 AN—B= A —
(3.46) 000100 1 0 00 0 O
000010 1 0 00 0 O
0 0 0 0 0 1} 01 00 0 O]

In our previous example in Section 2.4, we provided a detailed illustration of the method in Theorem 2.1
and Lemma 2.2 for obtaining a structure-preserving transformation’s component matrices. For brevity in
this example, we simply state our findings for the strong linearizations (3.45) and (3.46), and we encourage
the reader to confirm our results using (2.10):

0 -1 1 1 1 0 O 0 1 0 -1 1
0 -1 1 1 1 -1 0 -1 0 1 1 0
o 0 0 1 1 -1 O 0 0 1 o0 1
=19 0 01 0o ol %o 0o 01 0o ol
0 1 0 -1 -1 1 0 1 0 -1 0 -1
-1 -1 1 0 1 0] -1 -1 1 0 0 1|
0 1 -1 0 1 0] (0 0 0o o0 1 0]
O 0 0 0 0 1 0 1 -1 0 0 1
~ o 0o 0 -1 0 -2 -~ o o 0 -1 0 0
@=1g 0 0o o0 1 ol ™ =1y o o 0 01
0 -1 0 0 1 0 0 -1 0 0 0 1
10 0 1 0 1] 1 0 0 1 00
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Now, by (2.20) and (2.21), the dimension of ® is 6, which is consistent with the 6 free parameters that
comprise the commutant S = Sg @ Soo:

a b 0 O
) c —d| [0 a 0 O _le f
SF_[O a]@[d c}_ 0 0 ¢ —d and SOO_[O e]’
0 0 d ¢

where we used a combination of (2.32)—(2.35) and (3.40)—(3.44). So long as these parameters are real and
chosen to make S invertible, the matrices

e+ f —c—e—f a+e d—e a—c 0
e —e 0 0 0 0
~ —2e —d + 2e 0 —c —d 0
_ 1 _
U=Q5Q" = e+ f —e— f e —e 0 0
e+ f —e— f —a+e —e —a 0
la+e d—e b —a+c b+d —a]
and
[0 e e+f —e—f e 0]
—c —c a+e d—e a—c 0
~ —d —d 0 —c —d 0
_ -1 _
V= RSR™ = 0 0 e —e 0 0
0 0 —a+e —e —a 0
la+d a+d b —a+c b+d —a]

of Theorem 2.5 define all real structure-preserving transformations that relate the isospectral polynomials
P(X) and P(A) through their companion forms (3.45) and (3.46), respectively.

4. Diagonalizable quadratic matrix polynomials. We now discuss the special case of isospectral
matrix polynomials P(\) and P()) that have degree two and where P()) is diagonal; we say P()) is
diagonalizable in this case. With regard to applications, the issue of diagonalizability arises in the analysis of
small-amplitude oscillatory behavior (e.g., see [14]). A typical approach involves transforming the governing
system of linear second-order differential equations into a set of mutually independent equations for further
analysis. These systems of equations are intimately related to isospectral quadratic polynomials, so the
transformation involved is one that converts a quadratic polynomial into diagonal form while preserving its
finite and infinite Jordan structures. In fact, we considered this very topic in an earlier work [9] for real
quadratic polynomials, which we later discuss in Section 4.2.

4.1. Complex matrix polynomials. When the leading coefficient of a complex quadratic polynomial
P()) is singular, Ziiiiga Anaya demonstrated in [16] that a diagonal quadratic polynomial P()) isospectral to
P()) exists if and only if the following conditions hold (see Theorem 2 in [16] and Ziniga Anaya’s discussion
of its proof):

(i) the Jordan blocks of all eigenvalues (finite and infinite) must be no larger than 2 x 2; and
(ii) excluding the 2 x 2 Jordan blocks, all remaining eigenvalues, which necessarily have unit partial
multiplicities, must form pairs of differing eigenvalues.
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These restrictions on the shared finite and infinite Jordan structures of P(\) and P()) mean that the
eigenvalues form pairs in such a way that the diagonal of P()) is populated by three types of terms [16]:

(i) A quadratic term formed by a pairing of two finite eigenvalues: (A—X;)(A—=Xg) = A% —(\j + A\p) A+
AjAk, where \; is the eigenvalue in the jth row and column of the finite Jordan form Jp, and
similarly for A;. This pair of finite eigenvalues (\;, A\x) can consist of different eigenvalues with unit
partial multiplicities (A\; # Ax) or identical eigenvalues associated with a 2 x 2 Jordan block (i.e.,
Aj = A = Aj1).

(ii) A linear term, A — A;, resulting from pairing a finite eigenvalue A\; with an eigenvalue at infinity
that corresponds to the zero eigenvalue in the kth row and column of the infinite Jordan form J
(Aj,00%). Both of these eigenvalues have unit partial multiplicity.

(ili) A constant entry of 1 that arises from pairing a defective infinite eigenvalue with itself: (co;,00;41).
These infinite eigenvalues are associated with the 2 x 2 zero-eigenvalue Jordan block occupying rows
and columns j and j + 1 of J

In general, the pairing of eigenvalues for a diagonalizable polynomial P(\) is not unique. Moreover, the
order in which the quadratic, linear, and constant terms appear on the diagonal of ]5()\) is arbitrary. While
P()\) might not be unique, all possible forms are members of an equivalence class because P(\) and P())
are isospectral.

4.1.1. The first companion form. Recall from Section 2.2.1 that when our strong linearization of
choice is the first companion form (2.6), the matrices @ and R that comprise the corresponding structure-
preserving transformation can be formed from the coefficients and spectral data of a polynomial P(\) and
its reversal Prev(A); the same is true of the matrices Q and R for a polynomial P()\) isospectral to P().
Featured in Q and R are the matrices Vp and V that contain, respectively, the Jordan chains associated
with the finite eigenvalues of P()\) and the zero eigenvalue of the reverse polynomial Prev()\) (see Section
2.2.1). Let e; (i = 1,2,...,n) be an n-dimensional vector of zeros except for a 1 in the ¢th row. When
ﬁ(/\) is quadratic and diagonal, all of its eigenvalues form Jordan blocks no larger than 2 x 2, and so it
is straightforward to show that we can always take e; as eigenvectors and 0 as generalized eigenvectors.
Consequently, ‘71: and ‘700 have very simple forms in this case, and we build these matrices as follows.
Suppose p;(A) is the scalar polynomial in the ith row and column of P()):

(1) I pi(A) = (A= A;)(A — M), then place e; in the jth and kth columns of Vr when Aj # Ak, or place
e; in the jth column and 0 in column k = j + 1 when A\; = A;.
(ii) If p;(A) = XA — A;, then place e; in the jth column of Ve and in the kth column of V.
(iii) If p;(A) = 1, then make the ith row of Vp a row of zeros, and place e; in the jth column of Vs and
0 in column j + 1.

2. Real matrix polynomials. If a real quadratic polynomial P()) is diagonalizable, then the spec-
trum of P()\) is subject to an additional constraint: the conjugate pairs of nonreal eigenvalues must be
semisimple [12, Theorem 7]. Consequently, nonreal eigenvalues are associated only with quadratic terms in
a real diagonal polynomial }5()\) isospectral to P()), and the only 2 x 2 Jordan blocks allowed are those
formed by real eigenvalues and the eigenvalue at infinity [9, Corollary 3.3].

4.2.1. The first companion form. Suppose we choose to construct a real parameterized structure-
preserving transformation that diagonalizes a real quadratic P(A) through its first companion form; this
transformation utilizes the Jordan chains associated with P(\), P(A), and their reversals. The Jordan



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I
Volume 36, pp. 723-743, November 2020.

741 Parameterized Structure-preserving Transformations of Matrix Polynomials

chains for the finite eigenvalues of P()) are still computed according to (2.12), but we form the matrix Vg
using only real vectors. The eigenvectors and generalized eigenvectors for a real finite eigenvalue can always
be taken to be real when P()) is real. Because the nonreal finite eigenvalues occur in conjugate pairs, so do
their corresponding eigenvectors and generalized eigenvectors. If v; € C™ is an eigenvector (or generalized
eigenvector) associated with a nonreal eigenvalue \;, then we replace v; and its conjugate T; with the real
and imaginary parts of v;, respectively. The infinite Jordan form J, is always real, so the associated Jordan
chains in V can also be chosen to be real vectors. The process described in Section 4.1.1 for building the
matrices ‘7F and 1700 remains valid.

4.3. An example. Consider the quadratic matrix polynomial

0 0 10 1 -1
P(A) = AN + A1\ + Ag = A2 A :
(A) = A2A" + 1A + Ao {01/2] +{11] +[1 0]
The finite eigenvalues of P(\) are —1 and —1 £ i, all of which are simple (¢, =1 (i = 1,2,3) and p;; = 1),
and thus, the eigenvalue at infinity occurs only once (goo = 1 and poo; = 1). Choosing to represent the
Jordan matrix of the finite eigenvalues in real form, from (2.31), (3.38), and (3.39), we have

11 -1 0 0
JF=—169[_1 ]: 0 -1 1 and Joo =0
0o -1 -1

as real finite and infinite Jordan forms of P(\), respectively. We can diagonalize P(\) because its eigenvalues
form the admissible pairs (—1 41, —1 — i) and (—1, 00), in which case a diagonal polynomial isospectral to
P()\) is

S [M+2x+2 07 1 0], ,[2 0 2 0] _ 5.2, % =

This polynomial is actually unique up to scaling and permutation of its diagonal entries because (—1+i, —1—1)
and (—1,00) are the only allowable eigenvalue pairs. In this example, we will construct a real parameterized
structure-preserving transformation of P(A) and P()) through their first companion forms:

0O 0 0 O -1 0 -1 1
Ay 0 —-A; —Ap 0 1/2 0 0 -1 -1 -1 0
4.47 AN— B = A — = A—
( ) {0 I] {I 0 0O 0 1 0 1 0 0 O
0 0 0 1 0 1 0 O
and
1 0 0 0 -2 0 -2 0
~ ~ 0 0 0 O o -1 0 -1
(4.48) AN— B = 00 1 0 A— 1 0 ol
0 0 0 1 0 1 0 0

respectively, from (2.6). Consequently, we will need the Jordan chains associated with Jz and J, for both
P(A) and P()\). For P(\), we follow Section 2.2.1 and find from (2.12) that [1,0]7 and [1, 4] are eigenvectors
that correspond to the finite eigenvalues —1 and —1 = i, respectively, while [1,0]7 is an eigenvector for the
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infinite eigenvalue according to (2.13). Therefore, in real form,

1 1 0 1
VF—[O 0 1] and VOO—[O]

For P()\), we have from Section 4.1.1 that

As a result, by (2.14), the transformation matrices

0 0 0 -1 -1 -1 1 1
o —12 —12 1 o -1 -1 0
Q_l 1 0 1’R_1 1 0 0|’

0 0 1 0 0 1 0

0 =2 0 0 0 -2 0 0
~ o o0 o - |-1 0 o0 1
Q=1p 1 1 coand R=1 0

1 0 0 1 1 0 00

Now, evaluating (2.20) and (2.21) reveals that the dimension of ® is 4, which we observe from the 4 free
parameters present in the commutant S = Sp @ S that we obtain from a combination of (2.32)—(2.35) and
(3.40)~(3.44):

0 0
b —c and S =d.
c

a
SF:aEB[b _C:|= 0
0 b

c b

Thus, if we limit these 4 parameters to real values that make S nonsingular, then we have from Theorem
2.5 that all real structure-preserving transformations (U, V) connecting P(\) and its diagonal form P())
through their respective first companion forms (4.47) and (4.48) are generated from

—4b 4b 0 2b+2c
~ d 0 0 0
_ -1 _
U=Q5e" = 2b+2¢ —-2b—2c¢ O —2¢
—a—d 2a a a
and
0 2b 0 2b + 2¢
~ d —a —a+d —a-—d
_ 1 _
Vi=RSR = 0 -b—c 0 —2¢
0 a a a

5. Closing remarks. We have shown that the strict equivalence transformation relating the companion
forms of two regular and isospectral matrix polynomials can be parameterized by a matrix that commutes
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with the companion forms’ shared Weierstrass canonical form; this commutant must be a block-diagonal
matrix Sgp @ So whose blocks Sp and S, separately commute with the polynomials’ common finite and
infinite Jordan forms, respectively. Our result is a direct generalization of prior work by Lancaster and
Zaballa [11] for the case when the polynomials’ leading coefficients are invertible, and it holds for any choice
of companion form. We demonstrated this generality through several examples that each utilized a different
Fiedler pencil, one being the familiar first companion form. Moreover, we illustrated how to accommodate
diagonalizable quadratic polynomials that arise in various applications.
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