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Abstract. This paper examines the relationship between the companion forms of regular matrix polynomials with singular

leading coefficients. When two such polynomials have the same underlying finite and infinite Jordan structures, it is shown that

their companion forms are connected by a strict equivalence transformation that can be parameterized using the commutant

of the companion forms’ common Weierstrass canonical form. The process developed herein for generating such parameterized

transformations is applied to the useful class of diagonalizable quadratic polynomials.
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1. Introduction. We consider n × n matrix polynomials with degree `: P (λ) =
∑`
i=0Aiλ

i, where

Ai ∈ Cn×n and A` 6= 0. We restrict our attention to polynomials that are regular, i.e., polynomials for

which det (P (λ)) 6≡ 0. When the leading coefficient A` is singular, some of the eigenvalues of P (λ) are

infinite. The finite eigenvalues of P (λ) are those λ ∈ C such that det (P (λ)) = 0. The eigenvalue at infinity

corresponds to the zero eigenvalue of the reverse polynomial Prev(λ) =
∑`
i=0A`−iλ

i; the multiplicities of the

infinite eigenvalue of P (λ) and the zero eigenvalue of Prev(λ) are identical. Associated with P (λ) are the two

Jordan matrices JF and J∞, which we will often refer to as the finite Jordan form and infinite Jordan form,

respectively, of P (λ); JF contains Jordan blocks of the polynomial’s finite eigenvalues, while J∞ comprises

Jordan blocks of the reverse polynomial’s zero eigenvalue.

An `n × `n matrix pencil Aλ − B is called a linearization of a matrix polynomial P (λ) when there

exist unimodular polynomials E(λ) and F (λ) (that is, their determinants are nonzero constants) such that

E(λ)(Aλ − B)F (λ) = P (λ) ⊕ I, in which case Aλ − B has the same Jordan form as P (λ) for the finite

eigenvalues [8]. The pencil Aλ−B is said to be a strong linearization of P (λ) when, in addition to being a

linearization of P (λ), its reversal is a linearization of Prev(λ), thereby also preserving the Jordan structure

for the infinite eigenvalue of P (λ) [6, 10]. If Aλ−B is a strong linearization of P (λ) and its coefficients are

partitioned into n×n blocks that are each 0, ±I, or ±Ai, then we call this strong linearization a companion

form of P (λ).

We say two polynomials P (λ) and P̃ (λ) are isospectral when their finite and infinite Jordan structures

are identical. Suppose Aλ−B is a companion form of P (λ). We denote the same companion form of P̃ (λ)

by Ãλ − B̃; that is, to obtain Ãλ − B̃, we replace all matrix coefficients Ai of P (λ) in Aλ − B with the

corresponding coefficients Ãi of P̃ (λ). If P (λ) and P̃ (λ) are isospectral, then their companion forms are

strictly equivalent, i.e.,

(1.1) U(Aλ−B) = (Ãλ− B̃)V
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must hold for some invertible matrices U, V ∈ C`n×`n. This type of transformation is called a structure-

preserving transformation because it preserves the block structures of A and B. The objective of our paper

is to demonstrate that every nonsingular structure-preserving transformation (U, V ) relating a given pair

of isospectral polynomials can be generated from a matrix S that commutes with the common Weierstrass

canonical form W(λ) = (Iλ−JF )⊕ (J∞λ− I) = (I⊕J∞)λ− (JF ⊕ I) of the polynomials’ companion forms:

(1.2) Φ :=
{
S ∈ C`n×`n : SW(λ) = W(λ)S

}
.

We first show that a parameterized structure-preserving transformation is possible for regular matrix poly-

nomials over C and then specialize this result to polynomials with real coefficients. Because of their utility in

applications, we also examine parameterized structure-preserving transformations relating quadratic poly-

nomials to their diagonal forms (when diagonalization is possible).

Our findings herein are an extension of recent work in the area of parameterizing structure-preserving

transformations. Lancaster and Zaballa [11] considered the case when the leading coefficient A` is invertible,

i.e., when the eigenvalues of a matrix polynomial P (λ) are all finite. They developed in [11] a method

for characterizing structure-preserving transformations in terms of the centralizer S of the (finite) Jordan

form J shared by the isospectral polynomials P (λ) and P̃ (λ): SJ = JS. Note that this is the same as

S commuting with the common Weierstrass canonical form of the polynomials’ companion forms because

W(λ) = Iλ−JF = Iλ−J in this case. Our goal is to establish the equivalent result for the more general case

when A` is singular and to illustrate its application to diagonalizable quadratic polynomials. To strengthen

the connection between Lancaster and Zaballa’s work and ours, we follow a similar development and adopt

similar notation and language. We should point out that a noticeable difference between our work and [11]

is that Lancaster and Zaballa utilized a block-symmetric pencil

L(λ) =


A1 A2 · · · A`−1 A`
A2 A3 · · · A` 0
...

... . .
. ...

...

A`−1 A` · · · 0 0

A` 0 · · · 0 0

λ−

−A0 0 0 · · · 0

0 A2 A3 · · · A`
...

...
... . .

. ...

0 A`−1 A` · · · 0

0 A` 0 · · · 0

 ,

which is indeed a linearization of P (λ) when A` is invertible. However, for singular A`, this block-symmetric

pencil is not a linearization of P (λ) (see [13], especially Table 1 and Table 2 therein), and thus, it is not

an acceptable choice for the pencils Aλ − B and Ãλ − B̃ in (1.1). Moreover, our method of generating a

parameterized structure-preserving transformation is independent of the companion form of choice, but we

demonstrate its use with the strong linearizations that have come to be called the Fiedler companion pencils

[3] and with the special case of the familiar first companion form. Note that when A` is invertible, the

block-symmetric linearization L(λ) is strictly equivalent to any other linearization of P (λ), and so all results

presented herein reduce to those in [11].

We begin in Section 2 with a brief introduction of the companion forms that will appear throughout our

paper for illustrative purposes (Section 2.1), and we follow this with a discussion about how to construct a

structure-preserving transformation that relates two isospectral matrix polynomials with complex coefficients

(Section 2.2). We next parameterize this transformation in Section 2.3 and then wrap up Section 2 with a

detailed example in Section 2.4. In Section 3, we restrict our attention to real matrix polynomials, discussing

how the theory over C in Section 2 is modified to accommodate real coefficients and real arithmetic; we

demonstrate the usage of this modified theory with an example in Section 3.1. In Section 4, we give
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special attention to quadratic polynomials, either complex (Section 4.1) or real (Section 4.2), that can be

diagonalized and provide an accompanying example (Section 4.3). Our paper concludes in Section 5 with a

brief summary of key results.

2. Complex matrix polynomials. We first consider the general case when the coefficients of two

isospectral matrix polynomials P (λ) and P̃ (λ) are complex. We only require that the leading coefficients be

nonzero and that the polynomials be regular. Before we begin our work on parameterizing the structure-

preserving transformation defined by (1.1), we briefly discuss a family of companion forms that will later be

featured in illustrative examples.

2.1. Fiedler companion pencils. In [1], Antoniou and Vologiannidis introduced a method for gen-

erating a family of companion forms of a regular polynomial P (λ) based on work by Fiedler concerning

companion matrices for scalar polynomials [4]. These companion forms, which were later termed the Fiedler

companion pencils (or Fiedler pencils for short) in [3], are obtained via multiplication of common factors in

different orders. Specifically, for an n× n polynomial with degree `, define the `+ 1 matrices Mi ∈ C`n×`n

(i = 0, 1, . . . , `), or Fiedler factors, as follows:

(2.3) M0 =

[
I(`−1)n 0

0 −A0

]
, M` =

[
A` 0

0 I(`−1)n

]
,

(2.4) Mk =


I(`−k−1)n 0 0 0

0 −Ak I 0

0 I 0 0

0 0 0 I(k−1)n

 (k = 1, 2, . . . , `− 1),

where Iα denotes the α × α identity matrix. For a permutation σ = (k0, k1, . . . , k`−1) of the indices

(0, 1, . . . , `− 1), the Fiedler pencil associated with σ is given by

(2.5) CFσ (λ) = M`λ−Mk0Mk1 · · ·Mk`−1
.

Owing to their structure, the Fiedler factors satisfy the commutativity relations MiMj = MjMi for |i−j| 6= 1,

implying that some Fiedler pencils associated with different permutations are the same. The set of Fiedler

pencils includes the familiar first companion form,

(2.6) C1(λ) =


A` 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

0 0 · · · 0 I

λ−

−A`−1 −A`−2 · · · −A1 −A0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 ,

which arises from the permutation σ = (`−1, `−2, . . . , 0) [1, Lemma 2.1]: C1(λ) = M`λ−M`−1M`−2 · · ·M0.

The first companion form is well known to be a strong linearization of P (λ) [6, Proposition 1.1]. Antoniou and

Vologiannidis showed that any Fiedler pencil (2.5) is strictly equivalent to the first companion form and thus

a strong linearization of P (λ) [1, Theorem 2.3]. Generalizations of the Fiedler pencils have been developed

over the years (see [2, 3, 15]), but in the examples herein demonstrating our forthcoming parameterized

structure-preserving transformation, we limit our attention to the companion forms defined by (2.3)–(2.5).
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2.2. Establishing the structure-preserving transformation. Before we go about parameterizing

the structure-preserving transformation (U, V ) defined in (1.1), we should first address how to determine

nonsingular U and V that satisfy (1.1), which is not obvious. To do so, we will rely on the general theory

of regular matrix polynomials developed by Gohberg, Kaashoek, and Lancaster in [6]. In what follows, Γ

is a Cauchy contour (i.e., the positively oriented boundary of a bounded Cauchy domain in C) with inner

domain ∆+ and outer domain ∆− = C∞ \ (∆+∪Γ), where 0 ∈ ∆+, C∞ = C∪{∞} is the extended complex

plane, and ∞ ∈ ∆− [6, pp. 793–794].

First, we recall some definitions from [6, p. 794]. A regular polynomial P (λ) is called Γ-regular if

it is invertible for every λ ∈ Γ. Note that when P (λ) is Γ-regular, so is any strong linearization (and

thus any companion form) of P (λ). A Γ-decomposed pencil is a Γ-regular pencil with the partitioned form

(Iλ − T1) ⊕ (T2λ − I) = (I ⊕ T2)λ − (T1 ⊕ I), where T1 ∈ Cm×m and T2 ∈ C(`n−m)×(`n−m) for some

m ∈ {0, 1, . . . , `n}, Iλ−T1 is invertible for every λ ∈ ∆−∪Γ, and T2λ−I is nonsingular for each λ ∈ ∆+∪Γ.

Next, because of its importance in establishing the main result in our paper, we restate (with some

rewording) Theorem 5.1 from [6].

Theorem 2.1 (Theorem 5.1 of [6]). Let Aλ − B be an `n × `n matrix pencil that is Γ-regular. Then

Aλ−B is strictly equivalent to a Γ-decomposed pencil:

(2.7) Y −1(Aλ−B)XY =

[
I 0

0 T2

]
λ−

[
T1 0

0 I

]
,

where the invertible `n× `n matrix

(2.8) X =
1

2πi

∫
Γ

(1− ξ−1)(Aξ −B)−1dξ

and the invertible matrix Y =
[
y1 y2 · · · y`n

]
∈ C`n×`n comprises a basis yi (i = 1, 2, . . . ,m) for the

image of the `n× `n matrix

(2.9) W =
1

2πi

∫
Γ

A(Aξ −B)−1dξ

and a basis ym+j (j = 1, 2, . . . , `n−m) for the kernel of W .

We refer the reader to the proof of Theorem 5.1 in [6] for explanations of why X and Y are nonsingular.

A useful corollary of Theorem 2.1 is as follows.

Lemma 2.2. Let P (λ) be an n× n matrix polynomial of degree ` that is Γ-regular, has nonzero leading

coefficient, and has finite Jordan form JF ∈ CnF×nF and infinite Jordan form J∞ ∈ Cn∞×n∞ , where

nF + n∞ = `n. Define the Cauchy contour Γ such that its inner domain contains the finite eigenvalues of

P (λ). Let Aλ − B be a strong linearization of P (λ). Then Aλ − B is strictly equivalent to its Weierstrass

canonical form W(λ) = (I ⊕ J∞)λ− (JF ⊕ I):

(2.10) Q−1(Aλ−B)R =

[
I 0

0 J∞

]
λ−

[
JF 0

0 I

]
= W(λ)

for the invertible `n× `n matrices

(2.11) Q = Y Z and R = XY Z,
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where the `n × `n invertible matrices X and Y are computed as in Theorem 2.1 and the invertible block-

diagonal matrix Z = (Z1 ⊕ Z2) ∈ C`n×`n is such that the matrices Z1 ∈ CnF×nF and Z2 ∈ Cn∞×n∞
satisfy Z−1

1 T1Z1 = JF and Z−1
2 T2Z2 = J∞, for which T1 is the nF × nF block in the upper-left corner of

Y −1BXY ∈ C`n×`n and T2 is the n∞ × n∞ block in the lower-right corner of Y −1AXY ∈ C`n×`n.

Proof. Any choice of strong linearization Aλ−B is Γ-regular because P (λ) is, and so Aλ−B is strictly

equivalent to a Γ-decomposed pencil, i.e., (2.7) holds. When the inner domain of Γ includes the finite

eigenvalues of P (λ), the eigenvalues of T1 are these eigenvalues and 0 is the only eigenvalue of T2 (see [6,

p. 798]). Thus, because Aλ − B and (I ⊕ T2)λ − (T1 ⊕ I) are strictly equivalent, Z−1
1 T1Z1 = JF and

Z−1
2 T2Z2 = J∞ for some invertible Z1 and Z2, where we see from (2.7) that T1 is the nF × nF block in the

upper-left corner of Y −1BXY and T2 is the n∞ × n∞ block in the lower-right corner of Y −1AXY . As a

result, by utilizing the invertible matrix Z = Z1 ⊕ Z2, we can rewrite (2.7) as

Y −1(Aλ−B)XY = Z

([
I 0

0 J∞

]
λ−

[
JF 0

0 I

])
Z−1,

from which (2.10) and (2.11) follow.

Consequently, it is now clear how we can compute a structure-preserving transformation relating two

isospectral polynomials for any choice of companion form.

Proposition 2.3. Let P (λ) and P̃ (λ) be n × n matrix polynomials of degree ` that are isospectral and

Γ-regular and have nonzero leading coefficients. Define the Cauchy contour Γ such that its inner domain

contains the finite eigenvalues of P (λ). Let Aλ − B and Ãλ − B̃ be companion forms of P (λ) and P̃ (λ),

respectively. Then (U, V ) = (Q̃Q−1, R̃R−1) is a structure-preserving transformation of P (λ) and P̃ (λ).

Proof. Because P (λ) and P̃ (λ) are isospectral, they have the same finite and infinite Jordan forms, and

so Q−1(Aλ−B)R = Q̃−1(Ãλ− B̃)R̃ from (2.10), where Q and R are computed according to the procedure

outlined in Theorem 2.1 and Lemma 2.2. Note that Q̃ and R̃ are obtained by the same process, with every

occurrence of A and B in the procedure replaced by Ã and B̃, respectively. With some rearranging, we

obtain (Q̃Q−1)(Aλ − B) = (Ãλ − B̃)(R̃R−1), and thus, by (1.1), Q̃Q−1 = U and R̃R−1 = V define a

structure-preserving transformation of P (λ) and P̃ (λ).

2.2.1. The first companion form. As far as we are aware, for any given companion form of a

polynomial P (λ), the transformation matrices Q and R in (2.10) generally do not have convenient structures

independent of the process described in Theorem 2.1 and Lemma 2.2. One known exception is for the first

companion form; from Chapter 7 of [8], it turns out that Q and R can be constructed from the coefficients

and spectral data of P (λ) and its reversal.

Suppose P (λ) has finite Jordan form JF ∈ CnF×nF and infinite Jordan form J∞ ∈ Cn∞×n∞ , where

nF +n∞ = `n. Let the matrix VF ∈ Cn×nF contain the Jordan chains associated with the finite eigenvalues

of P (λ); the arrangement of the Jordan chains in VF is conformable to the structure of JF . A Jordan chain

vkij (k = 1, 2, . . . , pij) for a distinct finite eigenvalue λi with jth partial multiplicity pij satisfies the system
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of equations [8, p. 25]

(2.12)


P (λi) 0 · · · 0

P ′(λi) P (λi) · · · 0
...

...
. . .

...

P (pij−1)(λi)

(pij − 1)!

P (pij−2)(λi)

(pij − 2)!
· · · P (λi)




v1
ij

v2
ij

...

v
pij
ij

 = 0,

where v1
ij 6= 0 is an eigenvector and vmij (m = 2, 3, . . . , pij) are generalized eigenvectors. Note that when

the polynomial’s degree ` > 1, the vectors of a Jordan chain do not need to be linearly independent, and

the zero vector is an acceptable generalized eigenvector [8, p. 24]. Similarly, let the matrix V∞ ∈ Cn×n∞
be populated, conformable to J∞, with the Jordan chains for the zero eigenvalue of the reverse polynomial

Prev(λ). If vk∞j (k = 1, 2, . . . , p∞j) form a Jordan chain for the zero eigenvalue with jth partial multiplicity

p∞j , then

(2.13)


Prev(0) 0 · · · 0

P ′rev(0) Prev(0) · · · 0
...

...
. . .

...

P
(p∞j−1)
rev (0)

(p∞j − 1)!

P
(p∞j−2)
rev (0)

(p∞j − 2)!
· · · Prev(0)




v1
∞j

v2
∞j
...

v
p∞j
∞j

 = 0,

where v1
∞j 6= 0 is an eigenvector and vm∞j (m = 2, 3, . . . , p∞j) are generalized eigenvectors. The matrix pairs

(VF , JF ) and (V∞, J∞) are known as, respectively, a finite Jordan pair of P (λ) and an infinite Jordan pair

of the same polynomial [8, pp. 184–185].

Now, by Theorem 7.3 of [8], the finite and infinite Jordan pairs comprise what is termed a decomposable

pair of P (λ),
([
VF V∞

]
, JF ⊕ J∞

)
. A decomposable pair is a generalization of the familiar standard pair

of a matrix polynomial with nonsingular leading coefficient; we refer the reader to Section 7.3 of [8] for a

complete description. Because we can generate a decomposable pair of P (λ) from its corresponding finite

and infinite spectral information, Theorem 7.6 of [8] provides the analogue of (2.10) applied to the first

companion form. For our representation of the first companion form in (2.6), it follows from Theorem 7.6

that

(2.14) Q =


A`VFJ

`−1
F −

∑`−1
i=0 AiV∞J

`−1−i
∞

VFJ
`−2
F V∞

VFJ
`−3
F V∞J∞
...

...

VF V∞J
`−2
∞

 and R =


VFJ

`−1
F V∞

VFJ
`−2
F V∞J∞
...

...

VF V∞J
`−1
∞

 ,

where the invertibility of Q and R are addressed in the proofs of Theorem 7.6 and Theorem 7.3, respectively.

2.3. Parameterizing the structure-preserving transformation. Having shown how to construct

a structure-preserving transformation (U, V ) of two isospectral matrix polynomials P (λ) and P̃ (λ), we now

wish to parameterize this transformation through the commutant S of their companion forms’ common

Weierstrass canonical form. That is, for two given isospectral polynomials, we seek an invertible mapping

that relates a nonsingular matrix S ∈ Φ to nonsingular matrices U and V that satisfy U(Aλ−B) = (Ãλ−B̃)V .

We shall first demonstrate that the commutant S has a special block-diagonal structure.
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Proposition 2.4. Let P (λ) be an n × n matrix polynomial of degree ` that is Γ-regular, has nonzero

leading coefficient, and has finite Jordan form JF ∈ CnF×nF and infinite Jordan form J∞ ∈ Cn∞×n∞ , where

nF + n∞ = `n. Define the Cauchy contour Γ such that its inner domain contains the finite eigenvalues of

P (λ). Denote the Weierstrass canonical form of any strong linearization of P (λ) as W(λ) = (Iλ − JF ) ⊕
(J∞λ− I), and let S ∈ C`n×`n. Then SW(λ) = W(λ)S if and only if

(2.15) S = SF ⊕ S∞, where SFJF = JFSF and S∞J∞ = J∞S∞.

Proof. First, suppose S is as given by (2.15). Consequently,

SW(λ) = SF (Iλ− JF )⊕ S∞(J∞λ− I) = (Iλ− JF )SF ⊕ (J∞λ− I)S∞ = W(λ)S.

Next, suppose SW(λ) = W(λ)S, where S =

[
S1 S2

S3 S4

]
with S1 ∈ CnF×nF and S4 ∈ Cn∞×n∞ . As a

result, we obtain the expressions

S1λ− S1JF = S1λ− JFS1 ⇒ S1JF = JFS1,(2.16)

S2J∞λ− S2 = S2λ− JFS2 ⇒ S2J∞ = S2 and S2 = JFS2,(2.17)

S3λ− S3JF = J∞S3λ− S3 ⇒ S3 = J∞S3 and S3JF = S3,(2.18)

S4J∞λ− S4 = J∞S4λ− S4 ⇒ S4J∞ = J∞S4.(2.19)

Now, from (2.17), the matrix S2 ∈ CnF×n∞ must satisfy S2J∞ = InF S2, where we have purposefully included

the nF × nF identity matrix InF . Because the infinite Jordan form J∞ comprises only Jordan blocks of a

zero eigenvalue, the spectra of J∞ and InF are disjoint. Therefore, from Section 1 of Chapter VIII in [5], we

must have S2 = 0, which also satisfies the second condition S2 = JFS2 in (2.17). By the same reasoning, the

only solution S3 ∈ Cn∞×nF to S3InF = J∞S3 in (2.18) is S3 = 0, and thus, the second condition S3JF = S3

is also satisfied. Consequently, S must be a block-diagonal matrix: S = S1 ⊕ S4, where the blocks S1 and

S4 are such that (2.16) and (2.19) hold, which coincides with (2.15) after some relabeling.

Next, what is the dimension of the linear space Φ defined in (1.2)? Let λi (i = 1, 2, . . . , s) be the

s distinct finite eigenvalues of a polynomial P (λ) with partial multiplicities pij (j = 1, 2, . . . , gi), where

pi1 ≥ pi2 ≥ · · · ≥ pigi . From (2.15) of Proposition 2.4, the matrix SF in the block-diagonal commutant

S = SF ⊕S∞ commutes with the finite Jordan form JF common to P (λ) and a polynomial P̃ (λ) isospectral

to it. Thus, we know that SF is a matrix of s blocks on its diagonal, consistent with the arrangement of

the Jordan blocks for λi on the diagonal of JF , where each of the s blocks in SF contains submatrices with

triangular Toeplitz structure (e.g., see Section 1 and Section 2 of Chapter VIII in [5] and Section 9.1 of [7]).

From [5, 11], the number of independent arbitrary parameters present in SF is given by

(2.20) NF =

s∑
i=1

gi∑
j=1

(2j − 1) pij .

Now, suppose the infinite eigenvalue of P (λ) has partial multiplicities p∞j (j = 1, 2, . . . , g∞), with p∞1 ≥
p∞2 ≥ · · · ≥ p∞g∞ . By (2.15), the matrix S∞ commutes with the polynomials’ shared infinite Jordan form

J∞, and so S∞ is similarly composed of submatrices with triangular Toeplitz structure. Therefore, analogous

to (2.20), S∞ contains

(2.21) N∞ =

g∞∑
j=1

(2j − 1) p∞j
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free parameters. Finally, because the matrix S ∈ Φ has the block-diagonal structure S = SF ⊕ S∞, it

comprises NF +N∞ independent parameters, making the dimension of the linear space Φ also NF +N∞.

Moving on, denote the set of all structure-preserving transformations (U, V ) relating two isospectral

polynomials P (λ) and P̃ (λ) as Ξ:

(2.22) Ξ :=
{

(U, V ) ∈ C`n×`n × C`n×`n : U(Aλ−B) = (Ãλ− B̃)V
}
,

which is a linear space. We then arrive at the following statement that is a direct generalization of Theorem

2.2 in [11].

Theorem 2.5. Let P (λ) and P̃ (λ) be n × n matrix polynomials of degree ` that are isospectral and

Γ-regular, have nonzero leading coefficients, and have shared finite Jordan form JF ∈ CnF×nF and infinite

Jordan form J∞ ∈ Cn∞×n∞ , where nF +n∞ = `n. Define the Cauchy contour Γ such that its inner domain

contains the finite eigenvalues of P (λ). Let Aλ − B and Ãλ − B̃ be companion forms of P (λ) and P̃ (λ),

respectively. Define the sets Φ and Ξ according to (1.2) and (2.22), respectively. Let Q and R be the invertible

matrices of (2.11) that satisfy (2.10), and similarly for Q̃ and R̃. Then the mapping ψ : Φ→ Ξ defined by

ψ(S) = (Q̃SQ−1, R̃SR−1)

is an isomorphism of linear spaces with dimension NF + N∞, where NF and N∞ are given by (2.20) and

(2.21), respectively.

Proof. First, note from (2.10) that

(2.23) Q−1AR =

[
I 0

0 J∞

]
and Q−1BR =

[
JF 0

0 I

]
.

Now, if U = Q̃SQ−1 and V = R̃SR−1, where S ∈ Φ must have the block-diagonal structure in (2.15) by

Proposition 2.4, then repeated use of (2.23) reveals that

UA = (Q̃SQ−1)A UB = (Q̃SQ−1)B

= Q̃S(Q−1AR)R−1 = Q̃S(Q−1BR)R−1

= Q̃

[
SF 0

0 S∞

] [
I 0

0 J∞

]
R−1 = Q̃

[
SF 0

0 S∞

] [
JF 0

0 I

]
R−1

= Q̃

[
I 0

0 J∞

] [
SF 0

0 S∞

]
R−1 = Q̃

[
JF 0

0 I

] [
SF 0

0 S∞

]
R−1

= Q̃(Q̃−1ÃR̃)SR−1 = Q̃(Q̃−1B̃R̃)SR−1

= Ã(R̃SR−1) = B̃(R̃SR−1)

= ÃV, = B̃V.

Consequently, (Q̃SQ−1)(Aλ− B) = (Ãλ− B̃)(R̃SR−1), and so (Q̃SQ−1, R̃SR−1) ∈ Ξ. Thus, the mapping

ψ is well defined.

Next, we show that the mapping ψ is bijective. Because the transformation matrices Q, R, Q̃, and R̃

are invertible, ψ is injective. To demonstrative surjectivity of ψ, start by letting some (U, V ) ∈ Ξ so that

U(Aλ−B) = (Ãλ− B̃)V . Apply (2.23)1 to UA = ÃV and rearrange the result to obtain

(2.24) (Q̃−1UQ)

[
I 0

0 J∞

]
=

[
I 0

0 J∞

]
(R̃−1V R).
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Likewise, manipulating UB = B̃V after applying (2.23)2 yields

(2.25) (Q̃−1UQ)

[
JF 0

0 I

]
=

[
JF 0

0 I

]
(R̃−1V R).

Now, let Q̃−1UQ =

[
W1 W2

W3 W4

]
and R̃−1V R =

[
X1 X2

X3 X4

]
, where W1, X1 ∈ CnF×nF and W4, X4 ∈ Cn∞×n∞ .

Therefore, from (2.24) and (2.25), respectively,

(2.26)

[
W1 W2J∞
W3 W4J∞

]
=

[
X1 X2

J∞X3 J∞X4

]
and

[
W1JF W2

W3JF W4

]
=

[
JFX1 JFX2

X3 X4

]
.

We immediately see in (2.26) that W1 = X1 and W4 = X4 (i.e., Q̃−1UQ and R̃−1V R have the same blocks

on their diagonals), and hence,

(2.27) W1JF = JFW1 and W4J∞ = J∞W4.

Also note from (2.26) that

(2.28) X2 = W2J∞ and W2 = JFX2.

Let w2i (i = 1, 2, . . . , n∞) denote the nF -dimensional columns of W2 ∈ CnF×n∞ . At worst, J∞ is a single

n∞ × n∞ Jordan block with eigenvalue 0, and so, from (2.28)1,

X2 =
[
w21 w22 w23 · · · w2n∞

]


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

 =
[
0 w21 w22 · · · w2(n∞−1)

]
∈ CnF×n∞ .

We then find from (2.28)2 that[
w21 w22 w23 · · · w2n∞

]
= JF

[
0 w21 w22 · · · w2(n∞−1)

]
=
[
0 JFw21 JFw22 · · · JFw2(n∞−1)

]
.

The result w21 = 0 begins a chain reaction leading to w22 = w23 = · · · = w2n∞ = 0, and thus, W2 = X2 = 0.

Returning to (2.26), we also have the following conditions relating W3 ∈ Cn∞×nF and X3 ∈ Cn∞×nF :

(2.29) W3 = J∞X3 and X3 = W3JF .

Let x3i be the nF -dimensional rows of X3 so that, from (2.29)1,

W3 =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0




x31

x32

...

x3(n∞−1)

x3n∞

 =


x32

x33

...

x3n∞

0

 .
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Therefore, (2.29)2 yields 
x31

x32

...

x3(n∞−1)

x3n∞

 =


x32

x33

...

x3n∞

0

 JF =


x32JF
x33JF
...

x3n∞JF
0

 .

Similar to the case of W2 and X2, we see that x3n∞ = 0 initiates a chain reaction resulting in x3(n∞−1) =

x3(n∞−2) = · · · = x31 = 0, and so W3 = X3 = 0 as well. In general, J∞ is an n∞ × n∞ block-diagonal

matrix of zero-eigenvalue Jordan blocks, so any J∞ can be formed by appropriately removing 1’s from the

superdiagonal of a single n∞ × n∞ Jordan block. Thus, W2, W3, X2, and X3 will always be zero matrices,

regardless of the number and sizes of the Jordan blocks that comprise J∞. Consequently, Q̃−1UQ and

R̃−1V R are identical block-diagonal matrices: Q̃−1UQ = R̃−1V R = SF ⊕ S∞, with some renaming, where

(2.27) requires that SFJF = JFSF and S∞J∞ = J∞S∞. Taking S = SF ⊕ S∞ and recalling Proposition

2.4, we then have S ∈ Φ, U = Q̃SQ−1, and V = R̃SR−1, as desired.

Thus, so long as the commutant S = SF ⊕ S∞ is chosen to be invertible, the matrices U and V will

also be invertible, and hence, (U, V ) will be a structure-preserving transformation of two isospectral matrix

polynomials. What is the general form of S? First, for the s distinct finite eigenvalues λi (i = 1, 2, . . . , s)

with partial multiplicities pij (j = 1, 2, . . . , gi) arranged by decreasing size, construct the finite Jordan form

JF according to

(2.30) JF =

s⊕
i=1

 gi⊕
j=1

Jij

 , where Jij =


λi 1 0 · · · 0

0 λi 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λi 1

0 0 · · · 0 λi

 ∈ Cpij×pij .

Next, for the eigenvalue at infinity with partial multiplicities p∞j (j = 1, 2, . . . , g∞), also ordered from largest

to smallest, build the infinite Jordan form J∞ from Jordan blocks with eigenvalue 0 as follows:

(2.31) J∞ =

g∞⊕
j=1

J∞j , where J∞j =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

 ∈ Rp∞j×p∞j .

As mentioned earlier, because SF and S∞ commute with the Jordan forms JF and J∞, respectively, these

components of the commutant S are composed of submatrices with triangular Toeplitz structure. Specifically

(see Section 1 and Section 2 of Chapter VIII in [5] and Section 9.1 of [7]), for the finite eigenvalues,

(2.32) SF =

s⊕
i=1

Si, where Si = [Si,jk] (j, k = 1, 2, . . . , gi)
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and

(2.33) Si,jk =



1αi,jk 2αi,jk · · · pikαi,jk
0 1αi,jk · · · pik−1αi,jk
...

...
. . .

...

0 0 · · · 1αi,jk
0 0 · · · 0
...

...
...

0 0 · · · 0


∈ Cpij×pik if j < k,

(2.34) Si,jk =


1αi,jk 2αi,jk · · · pijαi,jk

0 1αi,jk · · · pij−1αi,jk
...

...
. . .

...

0 0 · · · 1αi,jk

 ∈ Cpij×pij if j = k,

(2.35) Si,jk =


0 · · · 0 1αi,jk 2αi,jk · · · pijαi,jk
0 · · · 0 0 1αi,jk · · · pij−1αi,jk
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · 1αi,jk

 ∈ Cpij×pik if j > k.

We are free to choose the values of the parameters mαi,jk ∈ C. Likewise, S∞ = [S∞,jk] (j, k = 1, 2, . . . , g∞)

for the eigenvalue at infinity, where S∞,jk are constructed in the same manner as Si,jk in (2.33)–(2.35).

We next illustrate with a simple example the process for generating a parameterized structure-preserving

transformation that connects two isospectral polynomials.

2.4. An example. Consider the cubic matrix polynomial

P (λ) = A3λ
3 +A2λ

2 +A1λ+A0 =

[
1 0

1 0

]
λ3 +

[
1 1

−1 1

]
λ2 +

[
1 1

0 0

]
λ+

[
1 0

0 0

]
,

which has two distinct finite eigenvalues that each form a 2× 2 Jordan block: −1 (g1 = 1 and p11 = 2) and

0 (g2 = 1 and p21 = 2). The eigenvalue at infinity happens to form a 2 × 2 Jordan block as well (g∞ = 1

and p∞1 = 2). Thus, using (2.30) and (2.31),

JF =

[
−1 1

0 −1

]
⊕
[
0 1

0 0

]
=


−1 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 0

 and J∞ =

[
0 1

0 0

]

are, respectively, finite and infinite Jordan forms of P (λ). The polynomial

P̃ (λ) = Ã3λ
3 + Ã2λ

2 + Ã1λ+ Ã0 =

[
1 0

0 0

]
λ3 +

[
1 1

−1 0

]
λ2 +

[
0 0

−1 0

]
λ+

[
0 0

0 1

]
is isospectral to P (λ). We now follow the process described in Theorem 2.1 and Lemma 2.2 to generate

the matrices that comprise a parameterized structure-preserving transformation of P (λ) and P̃ (λ). In this
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example, our strong linearization of choice is the Fiedler pencil

CFσ (λ) = M3λ−M2M0M1 =

A3 0 0

0 I 0

0 0 I

λ−
−A2 −A1 I

I 0 0

0 −A0 0

 ,
in which case

(2.36) Aλ−B =



1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


λ−



−1 −1 −1 −1 1 0

1 −1 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0


is the corresponding companion form of P (λ). Using any Cauchy contour Γ whose inner domain contains

the finite eigenvalues −1 and 0, we find from (2.8) and (2.9) that

X =



−3 2 −1 −1 1 −1

−8 3 −3 −4 4 −2

1 −1 1 0 0 0

4 −2 1 2 −1 1

0 0 0 0 1 0

0 0 0 0 0 1


and W =



−2 1 −1 −1 1 −1

−2 1 −1 −1 1 −1

1 −1 1 0 0 0

3 −1 1 2 −1 1

0 0 0 0 1 0

0 0 0 0 0 1


,

where rank(W ) = 4. We then use Gaussian elimination to determine bases for the image and kernel of W :

Y =



−2 1 1 −1 0 −1

−2 1 1 −1 1 −1

1 −1 0 0 1 0

3 −1 −1 1 0 1

0 0 1 0 0 0

0 0 0 1 0 0


.

Consequently,

Y −1AXY =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 −1 0


Y −1BXY =



−2 1 1 0 0 0

0 0 0 1 0 0

−1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


=

[
I 0

0 T2

]
, =

[
T1 0

0 I

]
,

and we find that

Z1 =


1 1 1 −2

0 0 1 −1

1 2 1 −2

0 0 0 1

 and Z2 =

[
0 1

−1 0

]
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result in Z−1
1 T1Z1 = JF and Z−1

2 T2Z2 = J∞. With Z = Z1 ⊕ Z2, evaluating (2.11) gives

Q =



−1 0 0 0 1 0

−1 0 0 0 1 1

1 1 0 −1 0 1

2 1 1 −2 −1 0

1 2 1 −2 0 0

0 0 0 1 0 0


and R =



−1 0 0 0 0 1

−2 1 0 1 −1 0

1 1 0 −1 0 0

2 1 1 −2 0 −1

1 2 1 −2 0 0

0 0 0 1 0 0


.

We then repeat this process with the corresponding companion form of P̃ (λ),

(2.37) Ãλ− B̃ =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


λ−



−1 −1 0 0 1 0

1 0 1 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0


,

from which we ultimately obtain

Q̃ =



−1 −1 0 1 1 −1

0 0 0 0 0 1

1 2 1 −2 0 1

0 −1 0 1 −1 0

0 0 0 1 0 0

0 −1 −1 1 0 1


and R̃ =



−1 −1 0 1 0 1

0 1 0 0 −1 0

1 2 1 −2 0 0

0 −1 0 1 0 −1

0 0 0 1 0 0

0 −1 −1 1 0 0


.

Now, according to (2.20) and (2.21), the dimension of Φ is 6. Indeed, following (2.32)–(2.35), we have

SF =

[
a b

0 a

]
⊕
[
c d

0 c

]
=


a b 0 0

0 a 0 0

0 0 c d

0 0 0 c

 and S∞ =

[
e f

0 e

]

for the commutant S = SF ⊕ S∞, where the 6 free parameters can be any combination of real and nonreal

numbers that makes S invertible. Therefore, by Theorem 2.5, all structure-preserving transformations (U, V )

connecting the isospectral polynomials P (λ) and P̃ (λ) through their respective companion forms (2.36) and

(2.37) are computed from

U = Q̃SQ−1 =



−a+ b+ 4e− f a− 2e+ f −a+ e b+ e −b− e −a+ c+ e

−e e 0 0 0 0

−b− e −a+ c+ e a− c −a− b+ c a+ b a− c+ d

a− 3e+ f e− f −e a− e −a+ e c− e
0 0 0 0 0 c

a− e −c+ e c a− c −a −d


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and

V = R̃SR−1 =



b+ 2e 0 −a+ e b+ e −b− e −a+ c+ e

−a+ 3e− 2f e 2e− f −a+ 3e− f a− 3e+ f e− f
−a− b+ c 0 a− c −a− b+ c a+ b a− c+ d

a− 2e 0 −e a− e −a+ e c− e
0 0 0 0 0 c

a− c 0 c a− c −a −d


.

3. Real matrix polynomials. When two isospectral polynomials P (λ) and P̃ (λ) are real, we can use

a real commutant S of a real Weierstrass canonical form W(λ) = (I ⊕ J∞)λ− (JF ⊕ I) to parameterize all

real structure-preserving transformations relating P (λ) and P̃ (λ). Note that Theorem 2.5 still applies when

we restrict our attention to real matrices so long as we use a real finite Jordan form JF of P (λ) and P̃ (λ);

no change is required for the infinite Jordan form J∞ because it is always real. While no separate statement

is needed to accommodate the case of real polynomials, several modifications to our procedure outlined in

Section 2.3 must be made.

First, because the nonreal finite eigenvalues for a real polynomial P (λ) must occur in conjugate pairs,

it is convenient to index the finite eigenvalues as follows. Let λi (i = 1, 2, . . . , r) denote the r distinct real

eigenvalues, and let λr+j = σr+j +iωr+j (j = 1, 2, . . . , c), with ωr+j > 0, and λr+j be the 2c distinct nonreal

eigenvalues that form c conjugate pairs. Associated with each finite eigenvalue λi (i = 1, 2, . . . , r + c) is a

set of partial multiplicities pij (j = 1, 2, . . . , gi) arranged in order of decreasing size: pi1 ≥ pi2 ≥ · · · ≥ pigi .

Instead of (2.30), we now use

(3.38) JF =

r+c⊕
i=1

 gi⊕
j=1

Jij


to construct a real finite Jordan form. In (3.38), Jij is the familiar pij × pij Jordan block for the real

eigenvalues (i = 1, 2, . . . , r); for the nonreal eigenvalues (i = r + 1, r + 2, . . . , r + c), Jij is a 2pij × 2pij real

Jordan block:

(3.39) Jij =


Ci I 0 · · · 0

0 Ci I · · · 0
...

...
. . .

. . .
...

0 0 · · · Ci I

0 0 · · · 0 Ci

 , where Ci =

[
σi ωi
−ωi σi

]
∈ R2×2.

Second, we must update our process for generating the commutant component SF so that it is real and

conformable to the revised structure of the real finite Jordan form JF given by (3.38) and (3.39):

(3.40) SF =

r+c⊕
i=1

Si, where Si = [Si,jk] (j, k = 1, 2, . . . , gi),

instead of (2.32). For the real eigenvalues (i = 1, 2, . . . , r), we construct the submatrices Si,jk in the same

manner as in the case of complex polynomials (see (2.33)–(2.35)), except Si,jk are now real because the free
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parameters contained therein are taken to be real. For the nonreal eigenvalues (i = r + 1, r + 2, . . . , r + c),

(3.41) Si,jk =



1Ai,jk 2Ai,jk · · · pikAi,jk
0 1Ai,jk · · · pik−1Ai,jk
...

...
. . .

...

0 0 · · · 1Ai,jk
0 0 · · · 0
...

...
...

0 0 · · · 0


∈ R2pij×2pik if j < k,

(3.42) Si,jk =


1Ai,jk 2Ai,jk · · · pijAi,jk

0 1Ai,jk · · · pij−1Ai,jk
...

...
. . .

...

0 0 · · · 1Ai,jk

 ∈ R2pij×2pij if j = k,

(3.43) Si,jk =


0 · · · 0 1Ai,jk 2Ai,jk · · · pijAi,jk
0 · · · 0 0 1Ai,jk · · · pij−1Ai,jk
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · 1Ai,jk

 ∈ R2pij×2pik if j > k,

where

(3.44) mAi,jk =

[
mαi,jk −(mβi,jk)

mβi,jk mαi,jk

]
∈ R2×2.

Let us now demonstrate the procedure for constructing a real parameterized structure-preserving trans-

formation with an example.

3.1. An example. Suppose

P (λ) = A3λ
3 +A2λ

2 +A1λ+A0 =

[
1 1

1 1

]
λ3 +

[
1 0

1 0

]
λ2 +

[
1 0

1 1

]
λ+

[
0 0

1 0

]
.

The finite eigenvalues of this polynomial are 0, which forms a 2× 2 Jordan block (g1 = 1 and p11 = 2), and

±i, both of which are simple (gi = 1 (i = 2, 3) and pi1 = 1). The infinite eigenvalue also forms a 2×2 Jordan

block (g∞ = 1 and p∞1 = 2). Therefore, from (2.31), (3.38), and (3.39), we have that real finite and infinite

Jordan forms of P (λ) are, respectively,

JF =

[
0 1

0 0

]
⊕
[

0 1

−1 0

]
=


0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 and J∞ =

[
0 1

0 0

]
.
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Isospectral to P (λ) is the polynomial

P̃ (λ) = Ã3λ
3 + Ã2λ

2 + Ã1λ+ Ã0 =

[
0 1

0 0

]
λ3 +

[
−1 0

0 0

]
λ2 +

[
0 1

−1 0

]
λ+

[
1 0

0 0

]
.

For this example, we will generate a real parameterized structure-preserving transformation of P (λ) and

P̃ (λ) using the Fiedler pencil

CFσ (λ) = M3λ−M1M0M2 =

A3 0 0

0 I 0

0 0 I

λ−
−A2 I 0

−A1 0 −A0

I 0 0

 ,
and so the associated companion forms of P (λ) and P̃ (λ) are, respectively,

(3.45) Aλ−B =



1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


λ−



−1 0 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 0 0

−1 −1 0 0 −1 0

1 0 0 0 0 0

0 1 0 0 0 0


and

(3.46) Ãλ− B̃ =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


λ−



1 0 1 0 0 0

0 0 0 1 0 0

0 −1 0 0 −1 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0


.

In our previous example in Section 2.4, we provided a detailed illustration of the method in Theorem 2.1

and Lemma 2.2 for obtaining a structure-preserving transformation’s component matrices. For brevity in

this example, we simply state our findings for the strong linearizations (3.45) and (3.46), and we encourage

the reader to confirm our results using (2.10):

Q =



0 −1 1 1 1 0

0 −1 1 1 1 −1

0 0 0 1 1 −1

0 0 0 1 0 0

0 1 0 −1 −1 1

−1 −1 1 0 1 0


, R =



0 0 1 0 −1 1

0 −1 0 1 1 0

0 0 0 1 0 1

0 0 0 1 0 0

0 1 0 −1 0 −1

−1 −1 1 0 0 1


,

Q̃ =



0 1 −1 0 1 0

0 0 0 0 0 1

0 0 0 −1 0 −2

0 0 0 0 1 0

0 −1 0 0 1 0

1 0 0 1 0 1


, and R̃ =



0 0 0 0 1 0

0 1 −1 0 0 1

0 0 0 −1 0 0

0 0 0 0 0 1

0 −1 0 0 0 1

1 0 0 1 0 0


.
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Now, by (2.20) and (2.21), the dimension of Φ is 6, which is consistent with the 6 free parameters that

comprise the commutant S = SF ⊕ S∞:

SF =

[
a b

0 a

]
⊕
[
c −d
d c

]
=


a b 0 0

0 a 0 0

0 0 c −d
0 0 d c

 and S∞ =

[
e f

0 e

]
,

where we used a combination of (2.32)–(2.35) and (3.40)–(3.44). So long as these parameters are real and

chosen to make S invertible, the matrices

U = Q̃SQ−1 =



e+ f −c− e− f a+ e d− e a− c 0

e −e 0 0 0 0

−2e −d+ 2e 0 −c −d 0

e+ f −e− f e −e 0 0

e+ f −e− f −a+ e −e −a 0

a+ e d− e b −a+ c b+ d −a


and

V = R̃SR−1 =



0 e e+ f −e− f e 0

−c −c a+ e d− e a− c 0

−d −d 0 −c −d 0

0 0 e −e 0 0

0 0 −a+ e −e −a 0

a+ d a+ d b −a+ c b+ d −a


of Theorem 2.5 define all real structure-preserving transformations that relate the isospectral polynomials

P (λ) and P̃ (λ) through their companion forms (3.45) and (3.46), respectively.

4. Diagonalizable quadratic matrix polynomials. We now discuss the special case of isospectral

matrix polynomials P (λ) and P̃ (λ) that have degree two and where P̃ (λ) is diagonal; we say P (λ) is

diagonalizable in this case. With regard to applications, the issue of diagonalizability arises in the analysis of

small-amplitude oscillatory behavior (e.g., see [14]). A typical approach involves transforming the governing

system of linear second-order differential equations into a set of mutually independent equations for further

analysis. These systems of equations are intimately related to isospectral quadratic polynomials, so the

transformation involved is one that converts a quadratic polynomial into diagonal form while preserving its

finite and infinite Jordan structures. In fact, we considered this very topic in an earlier work [9] for real

quadratic polynomials, which we later discuss in Section 4.2.

4.1. Complex matrix polynomials. When the leading coefficient of a complex quadratic polynomial

P (λ) is singular, Zúñiga Anaya demonstrated in [16] that a diagonal quadratic polynomial P̃ (λ) isospectral to

P (λ) exists if and only if the following conditions hold (see Theorem 2 in [16] and Zúñiga Anaya’s discussion

of its proof):

(i) the Jordan blocks of all eigenvalues (finite and infinite) must be no larger than 2× 2; and

(ii) excluding the 2 × 2 Jordan blocks, all remaining eigenvalues, which necessarily have unit partial

multiplicities, must form pairs of differing eigenvalues.
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These restrictions on the shared finite and infinite Jordan structures of P (λ) and P̃ (λ) mean that the

eigenvalues form pairs in such a way that the diagonal of P̃ (λ) is populated by three types of terms [16]:

(i) A quadratic term formed by a pairing of two finite eigenvalues: (λ−λj)(λ−λk) = λ2−(λj + λk)λ+

λjλk, where λj is the eigenvalue in the jth row and column of the finite Jordan form JF , and

similarly for λk. This pair of finite eigenvalues (λj , λk) can consist of different eigenvalues with unit

partial multiplicities (λj 6= λk) or identical eigenvalues associated with a 2 × 2 Jordan block (i.e.,

λj = λk = λj+1).

(ii) A linear term, λ − λj , resulting from pairing a finite eigenvalue λj with an eigenvalue at infinity

that corresponds to the zero eigenvalue in the kth row and column of the infinite Jordan form J∞:

(λj ,∞k). Both of these eigenvalues have unit partial multiplicity.

(iii) A constant entry of 1 that arises from pairing a defective infinite eigenvalue with itself: (∞j ,∞j+1).

These infinite eigenvalues are associated with the 2×2 zero-eigenvalue Jordan block occupying rows

and columns j and j + 1 of J∞.

In general, the pairing of eigenvalues for a diagonalizable polynomial P (λ) is not unique. Moreover, the

order in which the quadratic, linear, and constant terms appear on the diagonal of P̃ (λ) is arbitrary. While

P̃ (λ) might not be unique, all possible forms are members of an equivalence class because P (λ) and P̃ (λ)

are isospectral.

4.1.1. The first companion form. Recall from Section 2.2.1 that when our strong linearization of

choice is the first companion form (2.6), the matrices Q and R that comprise the corresponding structure-

preserving transformation can be formed from the coefficients and spectral data of a polynomial P (λ) and

its reversal Prev(λ); the same is true of the matrices Q̃ and R̃ for a polynomial P̃ (λ) isospectral to P (λ).

Featured in Q̃ and R̃ are the matrices ṼF and Ṽ∞ that contain, respectively, the Jordan chains associated

with the finite eigenvalues of P̃ (λ) and the zero eigenvalue of the reverse polynomial P̃rev(λ) (see Section

2.2.1). Let ei (i = 1, 2, . . . , n) be an n-dimensional vector of zeros except for a 1 in the ith row. When

P̃ (λ) is quadratic and diagonal, all of its eigenvalues form Jordan blocks no larger than 2 × 2, and so it

is straightforward to show that we can always take ei as eigenvectors and 0 as generalized eigenvectors.

Consequently, ṼF and Ṽ∞ have very simple forms in this case, and we build these matrices as follows.

Suppose ρ̃i(λ) is the scalar polynomial in the ith row and column of P̃ (λ):

(i) If ρ̃i(λ) = (λ− λj)(λ− λk), then place ei in the jth and kth columns of ṼF when λj 6= λk, or place

ei in the jth column and 0 in column k = j + 1 when λj = λk.

(ii) If ρ̃i(λ) = λ− λj , then place ei in the jth column of ṼF and in the kth column of Ṽ∞.

(iii) If ρ̃i(λ) = 1, then make the ith row of ṼF a row of zeros, and place ei in the jth column of Ṽ∞ and

0 in column j + 1.

4.2. Real matrix polynomials. If a real quadratic polynomial P (λ) is diagonalizable, then the spec-

trum of P (λ) is subject to an additional constraint: the conjugate pairs of nonreal eigenvalues must be

semisimple [12, Theorem 7]. Consequently, nonreal eigenvalues are associated only with quadratic terms in

a real diagonal polynomial P̃ (λ) isospectral to P (λ), and the only 2 × 2 Jordan blocks allowed are those

formed by real eigenvalues and the eigenvalue at infinity [9, Corollary 3.3].

4.2.1. The first companion form. Suppose we choose to construct a real parameterized structure-

preserving transformation that diagonalizes a real quadratic P (λ) through its first companion form; this

transformation utilizes the Jordan chains associated with P (λ), P̃ (λ), and their reversals. The Jordan
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chains for the finite eigenvalues of P (λ) are still computed according to (2.12), but we form the matrix VF
using only real vectors. The eigenvectors and generalized eigenvectors for a real finite eigenvalue can always

be taken to be real when P (λ) is real. Because the nonreal finite eigenvalues occur in conjugate pairs, so do

their corresponding eigenvectors and generalized eigenvectors. If vi ∈ Cn is an eigenvector (or generalized

eigenvector) associated with a nonreal eigenvalue λi, then we replace vi and its conjugate vi with the real

and imaginary parts of vi, respectively. The infinite Jordan form J∞ is always real, so the associated Jordan

chains in V∞ can also be chosen to be real vectors. The process described in Section 4.1.1 for building the

matrices ṼF and Ṽ∞ remains valid.

4.3. An example. Consider the quadratic matrix polynomial

P (λ) = A2λ
2 +A1λ+A0 =

[
0 0

0 1/2

]
λ2 +

[
1 0

1 1

]
λ+

[
1 −1

1 0

]
.

The finite eigenvalues of P (λ) are −1 and −1 ± i, all of which are simple (gi = 1 (i = 1, 2, 3) and pi1 = 1),

and thus, the eigenvalue at infinity occurs only once (g∞ = 1 and p∞1 = 1). Choosing to represent the

Jordan matrix of the finite eigenvalues in real form, from (2.31), (3.38), and (3.39), we have

JF = −1⊕
[
−1 1

−1 −1

]
=

−1 0 0

0 −1 1

0 −1 −1

 and J∞ = 0

as real finite and infinite Jordan forms of P (λ), respectively. We can diagonalize P (λ) because its eigenvalues

form the admissible pairs (−1 + i,−1 − i) and (−1,∞), in which case a diagonal polynomial isospectral to

P (λ) is

P̃ (λ) =

[
λ2 + 2λ+ 2 0

0 λ+ 1

]
=

[
1 0

0 0

]
λ2 +

[
2 0

0 1

]
λ+

[
2 0

0 1

]
= Ã2λ

2 + Ã1λ+ Ã0.

This polynomial is actually unique up to scaling and permutation of its diagonal entries because (−1+i,−1−i)

and (−1,∞) are the only allowable eigenvalue pairs. In this example, we will construct a real parameterized

structure-preserving transformation of P (λ) and P̃ (λ) through their first companion forms:

(4.47) Aλ−B =

[
A2 0

0 I

]
λ−

[
−A1 −A0

I 0

]
=


0 0 0 0

0 1/2 0 0

0 0 1 0

0 0 0 1

λ−

−1 0 −1 1

−1 −1 −1 0

1 0 0 0

0 1 0 0


and

(4.48) Ãλ− B̃ =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

λ−

−2 0 −2 0

0 −1 0 −1

1 0 0 0

0 1 0 0

 ,
respectively, from (2.6). Consequently, we will need the Jordan chains associated with JF and J∞ for both

P (λ) and P̃ (λ). For P (λ), we follow Section 2.2.1 and find from (2.12) that [1, 0]T and [1,±i]T are eigenvectors

that correspond to the finite eigenvalues −1 and −1 ± i, respectively, while [1, 0]T is an eigenvector for the
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infinite eigenvalue according to (2.13). Therefore, in real form,

VF =

[
1 1 0

0 0 1

]
and V∞ =

[
1

0

]
.

For P̃ (λ), we have from Section 4.1.1 that

ṼF =

[
0 1 1

1 0 0

]
and Ṽ∞ =

[
0

1

]
.

As a result, by (2.14), the transformation matrices

Q =


0 0 0 −1

0 −1/2 −1/2 −1

1 1 0 1

0 0 1 0

 , R =


−1 −1 1 1

0 −1 −1 0

1 1 0 0

0 0 1 0

 ,

Q̃ =


0 −2 0 0

0 0 0 −1

0 1 1 0

1 0 0 1

 , and R̃ =


0 −2 0 0

−1 0 0 1

0 1 1 0

1 0 0 0

 .
Now, evaluating (2.20) and (2.21) reveals that the dimension of Φ is 4, which we observe from the 4 free

parameters present in the commutant S = SF ⊕S∞ that we obtain from a combination of (2.32)–(2.35) and

(3.40)–(3.44):

SF = a⊕
[
b −c
c b

]
=

a 0 0

0 b −c
0 c b

 and S∞ = d.

Thus, if we limit these 4 parameters to real values that make S nonsingular, then we have from Theorem

2.5 that all real structure-preserving transformations (U, V ) connecting P (λ) and its diagonal form P̃ (λ)

through their respective first companion forms (4.47) and (4.48) are generated from

U = Q̃SQ−1 =


−4b 4b 0 2b+ 2c

d 0 0 0

2b+ 2c −2b− 2c 0 −2c

−a− d 2a a a


and

V = R̃SR−1 =


0 2b 0 2b+ 2c

d −a −a+ d −a− d
0 −b− c 0 −2c

0 a a a

 .

5. Closing remarks. We have shown that the strict equivalence transformation relating the companion

forms of two regular and isospectral matrix polynomials can be parameterized by a matrix that commutes
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with the companion forms’ shared Weierstrass canonical form; this commutant must be a block-diagonal

matrix SF ⊕ S∞ whose blocks SF and S∞ separately commute with the polynomials’ common finite and

infinite Jordan forms, respectively. Our result is a direct generalization of prior work by Lancaster and

Zaballa [11] for the case when the polynomials’ leading coefficients are invertible, and it holds for any choice

of companion form. We demonstrated this generality through several examples that each utilized a different

Fiedler pencil, one being the familiar first companion form. Moreover, we illustrated how to accommodate

diagonalizable quadratic polynomials that arise in various applications.
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