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A NOTE ON PARALLEL DISTINGUISHABILITY OF

TWO QUANTUM OPERATIONS∗
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Abstract. In this work, the authors consider a homogeneous system of linear equations of the form A⊗Nα x = 0 arising

from the distinguishability of two quantum operations by N uses in parallel, where the coefficient matrix Aα depends on a real

parameter α. It was conjectured by Duan et al. that the system has a non-trivial nonnegative solution if and only if α lies in

a certain interval RN depending on N . The authors affirm the necessity part of the conjecture and establish the sufficiency of

the conjecture for N ≤ 10 by presenting explicit non-trivial nonnegative solutions for the linear system.
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1. Introduction. Let Mm,n (respectively, Mn) be the set of m × n (respectively, n × n) complex

matrices. Denote by Hn the set of n × n Hermitian matrices and by Dn the set of n × n density matrices,

which are positive semidefinite matrices with trace one.

In the mathematical framework of quantum mechanics, density matrices are used to describe the state

of a quantum system. Quantum operations [5, 6] are trace-preserving, completely-positive linear maps from

Mn to Mm. It is known [2, 4] that for a quantum operation E : Mn −→ Mm, there exists a set of matrices

{E1, . . . , En0} ⊂Mm,n, called a set of Choi-Kraus operators of E , such that

n0∑
j=1

E∗jEj = In and E(X) =

n0∑
j=1

EjXE
∗
j for any X ∈Mn.

For example, the identity map on M`, denoted by I`, has {I`} as Choi-Kraus operator.

Two quantum operations E : Mn −→ Mm and F : Mn −→ Mm, with Choi-Kraus operators given by

{Ej}n0
j=1 and {Fk}n1

k=1 are distinguishable by N uses in parallel if for some integers `, r, there exists a nonzero

vector x ∈ C`r·nN such that

Y1 = (I⊗r` ⊗ E
⊗N )(xx∗) =

∑
j1,...,jN∈{1,...,n0}

(I⊗r` ⊗ Ej1 ⊗ · · · ⊗ EjN )xx∗(I⊗r` ⊗ E
∗
j1 ⊗ · · · ⊗ E

∗
jN )
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and

Y2 = (I⊗r` ⊗F
⊗N )(xx∗) =

∑
k1,...,kN∈{1,...,n1}

(I⊗r` ⊗ Fk1 ⊗ · · · ⊗ FkN )xx∗(I⊗r` ⊗ F
∗
k1 ⊗ · · · ⊗ F

∗
kN )

are orthogonal, that is, Tr(Y ∗1 Y2) = 0. One may see [3] and its references for the background of the concept.

In particular, the following results were obtained in [3, Theorems 1 and 2].

Proposition 1.1. Let E and F be two quantum operations with Choi-Kraus operators {Ej}n0
j=1 and

{Fk}n1

k=1, respectively. Then E and F can be perfectly distinguished by N uses in parallel if and only if there

exists a density matrix ρ ∈ (S⊗NE,F )⊥, where

SE,F = Span {E∗jFk | 1 ≤ j ≤ n0, 1 ≤ k ≤ n1} and S⊗NE,F = Span {R⊗N : R ∈ SE,F}.

Proposition 1.2. Any non-empty subset T ⊆ Mn can be realized as a spanning set of SE,F of some

pair of quantum operations E ,F .

Here we give a short proof of Proposition 1.2:

Proof. Suppose SpanT has a basis {A1, . . . , Am} ⊆ Mn. Consider the block diagonal matrix A =

A1 ⊕ · · · ⊕ Am. If A has rank k̃, then A = [B1 · · ·Bm]∗[C1 · · ·Cm], where B1, . . . , Bm, C1, . . . , Cm are

k × n matrices with k = max{k̃, n}. Let M > 0 be such that In − 1
M

∑m
j=1B

∗
jBj = B∗m+1Bm+1 and

In − 1
M

∑m
j=1 C

∗
jCj = C∗m+1Cm+1 for some k × n matrices Bm+1, Cm+1. Let E1, . . . , Em+1, F1, . . . , Fm+1 ∈

M3k,n be such that

E∗j =
1√
M

[B∗j |0n,2k], F ∗j =
1√
M

[C∗j |0n,2k], j = 1, . . . ,m,

E∗m+1 = [0n,k|B∗m+1|0n,k], F ∗m+1 = [0n,2k|C∗m+1].

Then
∑m+1
j=1 E∗jEj =

∑m+1
j=1 F ∗j Fj = In, and

[E1 · · ·Em+1]∗[F1 · · ·Fm+1] =
1

M
(A1 ⊕ · · · ⊕Am ⊕ 0n).

If the quantum channels from Mn to M3k have the sets of Choi-Kraus operators {E1, . . . , Em+1} and

{F1, . . . , Fm+1}, then Span {E∗i Fj : 1 ≤ i, j ≤ m+ 1} = Span {A1, . . . , Am}.

In [3], the authors considered the quantum channels E and F with SE,F equal to the span of the set

Tα =


1 0 0

0 eiα 0

0 0 0

 ,
0 0 0

0 1 0

0 0 eiα

 , α ∈ [0, 2π).

It is easy to see that the following conditions for a density operator ρ = (ρij) ∈M3N are equivalent.

(a) The density operator ρ ∈ (Span (Tα)⊗N )⊥.

(b) The diagonal density operator ρ̂ = diag (ρ11, . . . , ρ3N ,3N ) ∈ (Span (Tα)⊗N )⊥.

(c) The vector x = (ρ11, . . . , ρ3N ,3N )t ∈ C3N satisfies the homogeneous equation

(1.1) A⊗Nα x = 0 with Aα =

[
1 eiα 0

0 1 eiα

]
.
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By the above fact, one can focus on finding a non-trivial nonnegative vector x ∈ C3N satisfying (1.1).

Furthermore, the following remarks and conjecture were made in [3].

Remark 1.3. If α ∈ [0, π2 ), the space Span(Tα) contains a positive operator. In this case (Span(Tα)⊗N )⊥

does not contain a density matrix for any positive integer N . This makes the corresponding pair of quantum

operations E ,F , satisfying SE,F = Span(T ), indistinguishable. By taking the complex conjugate of equation

(1.1), we see that there is a non-trivial nonnegative solution to ANα x = 0 if and only if there is a non-trivial

nonnegative solution to AN−αx = AN2π−αx = 0. Hence, we only need to focus on the case when α ∈
[
π
2 , π

]
.

Conjecture 1.4. Let α ∈
[
π
2 , π

]
. The equation (1.1) has a non-trivial nonnegative solution if and only

if α ∈ [π2 + π
2N , π].

In [3], the authors gave explicit solutions of the equation (1.1) for N ≤ 4. Furthermore, in Section IV

of the paper, it was shown that one may reduce the complexity of the equation (1.1) by finding solution

with some symmetries imposed on its entries, and reduce the equation to another equation Cα,Ny = 0,

where Cα,N is an (N + 1) × (N + 1)(N + 2)

2
matrix with full column rank. In Section 2, we will set up

the system Cα,Ny = 0 and obtain another symmetry for the solution. In Section 3, we prove the necessity

part of Conjecture 1.4, that is, if α ∈ [π2 , π] and equation (1.1) has a non-trivial nonnegative solution, then

α ∈ [π2 + π
2N , π]. In Section 4, we present explicit non-trivial nonnegative solutions (1.1) for α ∈ [π2 + π

2N , π]

and N ≤ 10. In Section 5, we provide some additional remarks that may help in studying the sufficiency

part of the conjecture.

2. A reduction of the linear system. First, we label the entries of a vector x ∈ C3N using ternary

numbers. That is, we use the ternary number (j0, . . . , jN−1) ∈ {0, 1, 2}N , for the j-th entry of x when

j = 1 +

N−1∑
p=0

jp3
N−1−p.

For example, we will label the entries of x ∈ C32 with 00, 01, 02, 10, 11, 12, 20, 21, 22. In the same manner,

we label the columns of A⊗Nα using ternary numbers. Meanwhile, we label the rows of A⊗Nα using binary

numbers.

In [3, Section IV], it was shown that one may reduce the complexity of the equation (1.1) by finding

solution x = [xJ ]J∈{0,1,2}N ∈ C3N with entries labeled by J ∈ {0, 1, 2}N such that xJ = xĴ whenever J = P Ĵ

for a permutation matrix P ∈ MN , i.e., the ternary sequences J and Ĵ have the same numbers of 0, 1, 2

terms. We summarize the result in the following.

Proposition 2.1. If there is a non-trivial nonnegative solution x satisfying equation (1.1), then there

is a non-trivial nonnegative solution x̂ = [x̂J ]J∈{0,1,2}N such that

x̂j0,...,jN−1
= x̂k0,...,kN−1

whenever there exists a permutation σ ∈ SN such that

(jσ(0), . . . , jσ(N−1)) = (k0, . . . , kN−1).

For a triple (N0, N1, N2) of nonnegative integers with N0 +N1 +N2 = N , define the set

(2.2) [N0, N1, N2] = {(j0, j1, . . . , jN−1) ∈ {0, 1, 2}N : N` = #{p : jp = `} for all ` ∈ {0, 1, 2}},
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of all ternary labels of length N that contains N0 digits equal to 0, N1 digits equal to 1 and N2 digits equal

to 2. For example, when N = 2,

[1, 1, 0] = {01, 10}, [0, 1, 1] = {12, 21}, [2, 0, 0] = {00}.

Proposition 2.1 states that if there is a non-trivial nonnegative solution to ANα x = 0, then there is a non-

trivial nonnegative solution x̂ = [aJ ]J∈{0,1,2}N such that aJ = aK whenever J,K ∈ [N0, N1, N2]. Using

this symmetry, x̂ has at most pN distinct entries, where pN is the number of nonnegative integer triples

(N0, N1, N2) satisfying N0 +N1 +N2 = N . The total number of such triples equals the sum of solutions of

N0 +N1 = k for k = 0, . . . , N , and hence,

(2.3) pN = 1 + · · ·+ (N + 1) =
(N + 1)(N + 2)

2
.

For example, when N = 2, we see from equation (2.3), that x̂ has at most p2 = 6 distinct entries. In fact,

we may assume that the solution has the form:

x̂T =
[
x00 x01 x02 x10 x11 x12 x20 x21 x22

]
=
[
a b c b d e c e f

]
.

In the following, it is convenient to replace Aα by the matrix

(2.4) Aα =

[
1 0 −e2iα
0 1 eiα

]
=

[
1 −eiα
0 1

] [
1 eiα 0

0 1 eiα

]
=

[
1 0 −z2
0 1 z

]
with z = eiα.

Now, let us define a 3N × pN matrix QN by labeling its rows by ternary numbers in the usual order and

labeling its first N +1 columns by [N, 0, 0], [N−1, 0, 1], . . . , [1, 0, N−1], [0, 0, N ], then its next N columns by

[N −1, 1, 0], [N −2, 1, 1], . . . , [0, 1, N −1] and so on; then setting the (i, j)-th entry of QN equal to 1 precisely

when the ternary label of the i-th row is an element of the j-th column label as defined in equation (2.2).

We can then define the following 2N × pN matrix

(2.5) Bα,N = A⊗Nα QN .

Notice that for a non-trivial nonnegative solution x̂ satisfying the symmetry described in Proposition 2.1,

we have

A⊗Nα x̂ = A⊗Nα QNy = Bα,Ny

for some nonzero nonnegative vector y ∈ CpN . Observe Bα,N for N = 2, 3 given below,

Bα,2 =


[200] [101] [002] [110] [011] [020]

[00] 1 −2z2 z4 0 0 0

[01] 0 z −z3 1 −z2 0

[10] 0 z −z3 1 −z2 0

[11] 0 0 z2 0 2z 1

,

Bα,3 =



[300] [201] [102] [003] [210] [111] [012] [120] [021] [030]

[000] 1 −3z2 3z4 −z6 0 0 0 0 0 0

[001] 0 z −2z3 z5 1 −2z2 z4 0 0 0

[010] 0 z −2z3 z5 1 −2z2 z4 0 0 0

[011] 0 0 z2 −z4 0 2z −2z3 1 −z2 0

[100] 0 z −2z3 z5 1 −2z2 z4 0 0 0

[101] 0 0 z2 −z4 0 2z −2z3 1 −z2 0

[110] 0 0 z2 −z4 0 2z −2z3 1 −z2 0

[111] 0 0 0 z3 0 0 3z2 0 3z 1


.
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Proposition 2.2. Let Bα,N be defined as in equation (2.5). Then:

(a) rank(Bα,N ) = N + 1.

(b) The first N + 1 columns of Bα,N are linearly independent.

(c) If the digits of the binary labels of rows J and K have the same number of zeros (equivalently, the

same number of ones), then the J-th and K-th rows of Bα,N are identical.

(d) Let J = 00 · · · 11 . . . 1︸ ︷︷ ︸
j

. Then

(2.6) (Bα,N )J;[N0,N1,N2] =

(
N − j
N0

)
· (−z2)N−j−N0 ·

(
j

N1

)
zj−N1 ,

where we agree that
(
n
k

)
= 0 whenever k > n.

Proof. Let Aα be defined as in equation (2.4). Denote its entries by aj,` where j ∈ {0, 1} and ` ∈ {0, 1, 2}.
One can check that if J = (j1, . . . , jN ) ∈ {0, 1}N and L = (`1, . . . , `N ) ∈ {0, 1, 2}N , then the (J, L)-th entry

of A⊗Nα is
∏N
s=1 ajs,`s .

We first prove (c). Since J and K have the same number of zeros, there exists σ ∈ SN such that

J = σ(K).

Let N0, N1, N2 be nonnegative integers with N0 +N1 +N2 = N , τ ∈ SN , write

τ([N0, N1, N2]) := {τ(L)|L ∈ [N0, N1, N2]}.

It is easy to verify that τ([N0, N1, N2]) = [N0, N1, N2] for any τ . Then

(Bα,N )J;[N0,N1,N2] =
∑

L=`1`2···`N∈[N0,N1,N2]

(A⊗Nα )J,L

=
∑

L=`1`2···`N∈[N0,N1,N2]

N∏
s=1

(Aα)js,`s

=
∑

σ(L)∈[N0,N1,N2]

N∏
s=1

(Aα)jσ(s),`σ(s)

=
∑

L∈[N0,N1,N2]

N∏
s=1

(Aα)ks,`s

= (Bα,N )K;[N0,N1,N2],

where J = j1j2 · · · jN and K = k1k2 · · · kN . Thus, the J-th and K-th rows of Bα,N are identical.

Note that

(Bα,N )J;[N0,N1,N2] =
∑

L=`1`2···`N∈[N0,N1,N2]

N−j∏
s=1

a0,`s

N∏
t=N−j+1

a1,`t .(2.7)

Let L ∈ [N0, N1, N2] corresponding to a nonzero term in the formula (2.7). Since a10 = 0, then {s|`s = 0} ⊆
[N − j]. Since #{s|`s = 0} = N0, there are

(
N−j
N0

)
different choices for the positions of 0s in L. Now suppose

that the positions of 0s have been chosen, then for s ∈ [N − j]\{s|`s = 0}, `s can’t be 1 since a01 = 0. Thus,

there are N − j −N0 terms of −z2 in the first product.
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For the second product, `N−j+1 · · · `N must contain all the N1 1s in L since a01 = 0, and there are
(
j
N1

)
different choices. After the positions of 1s been chosen, all the `t left must be 2, and thus, the corresponding

terms in the product are z, yielding that the formula (2.6) holds.

By formula (2.6), the submatrix of Bα,N obtained by taking only the rows labeled by

00 · · · 00, 00 · · · 01, . . . , 11 · · · 11,

and columns labeled by

[N, 0, 0], [N − 1, 0, 1], . . . , [1, 0, N − 1], [0, 0, N ],

is an upper triangular matrix with nonzero diagonals. Thus, (a) and (b) hold.

Now, define the (N + 1)× pN matrix Cα,N as the submatrix of Bα,N obtained by taking only the rows

labeled by 00 · · · 00, 00 · · · 01, . . . , 11 · · · 11. This makes Cα,N a full row rank matrix such that Bα,Ny = 0 if

and only if Cα,Ny = 0. We illustrate Cα,2 and Cα,3 below,

Cα,2 =


[200] [101] [002] [110] [011] [020]

[00] 1 −2z2 z4 0 0 0

[01] 0 z −z3 1 −z2 0

[11] 0 0 z2 0 2z 1

,

Cα,3 =


[300] [201] [102] [003] [210] [111] [012] [120] [021] [030]

[000] 1 −3z2 3z4 −z6 0 0 0 0 0 0

[001] 0 z −2z3 z5 1 −2z2 z4 0 0 0

[011] 0 0 z2 −z4 0 2z −2z3 1 −z2 0

[111] 0 0 0 z3 0 0 3z2 0 3z 1

.
Notice that we can write Cα,N as

Cα,N =

[
ΓN

01,N
DN,1ΓN−1

02,N−1
DN,2ΓN−2

· · · 0N,1
DN,NΓ0

]
,

where for n = N, . . . , 0, and k ≤ n, Dn,k is the diagonal matrix diag
((
k
k

)
,
(
k+1
k

)
, . . . ,

(
n
k

))
∈Mn−k+1, and

Γn =



1

z
. . .

. . .

zn





1
(
n
1

)
(−z2)

(
n
2

)
(−z2)2 · · ·

(
n
n

)
(−z2)n

0 1
(
n−1
1

)
(−z2) · · ·

(
n−1
n−1
)
(−z2)n−1

...
...

...
...

0 0 0 · · · 1


.

So, Γn is an (n+ 1)× (n+ 1) upper triangular matrix whose (j, k)-th entry is given by{
(−1)k−j

(
n+1−j
k−j

)
zj−1+2(k−j) if k ≥ j,

0 if j > k.
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3. Necessity of Conjecture 1.4. To prove the necessity of Conjecture 1.4, we demonstrate another

symmetry one may impose on the solution of x of the equation (1.1).

Proposition 3.1. Suppose x ∈ R3N satisfies equation (1.1), and x̂ is obtained from x by exchanging

the entries xj = x3N−j whenever 1 ≤ j ≤ (3N − 1)/2. Then A⊗N x̂ = 0.

Note that if the entries of x and x̂ are labeled by xj1···jN and x̂j1···jN using ternary sequences j1 · · · jN ∈
{0, 1, 2}N , then xj1···jN = x̂(2−j1)···(2−jN ).

Proof. Let Ãα =

[
1 eiα 0

0 e−iα 1

]
, J =

[
0 1

1 0

]
and K =

0 0 1

0 1 0

1 0 0

. Then for Aα defined in (1.1),

[
1 0

0 e−iα

]
Aα = Ãα = JÃαK.

Thus, x ∈ Null(A⊗Nα ) if and only if x ∈ Null(Ã⊗Nα ). Additionally, if x is real,

x ∈ Null(Ã⊗Nα ) ⇐⇒ Ã⊗Nα x = 0 ⇐⇒ Ã⊗Nα x = 0 ⇐⇒ K⊗Nx ∈ Null(Ã⊗Nα ).

So, x̂j1···jN = x̂2−j1···2−jN . Thus, we can assume that xi1i2···in = x(2−i1)(2−i2)···(2−iN ).

By the above proposition and the discussion in Section 2, we see that the system A⊗Nα x = 0 has a

non-trivial nonnegative solution if and only if the system Cα,Ny = 0 has a non-trivial nonnegative solution

y. We have the following.

Theorem 3.2. Let α ∈ [π2 , π]. If the equation Cα,Ny = 0 has a non-trivial nonnegative solution y, then

α ∈
[
π
2 + π

2N , π
]
.

Proof. We consider the reduced equation Cα,Ny = 0 with z = eiα as shown in Section 2. Let

y = (y[N00], y[(N−1)01], . . . , y[00N ], y[(N−1)10], . . . , y[01(N−1)], . . . , . . . , y[0N0])
t

= (y0,0, y0,1, . . . , y0,N , y1,0, . . . , y1,N−1, . . . , yN,0)t

be a nonnegative solution of Cα,Ny = 0. We will show that if α ∈ [π2 ,
π
2 + π

2N ), then y is a zero vector, which

is a contradiction.

Case 1. N is even. Since yj,k = yj,N−j−k, we may rewrite the first equation of the linear system as

(3.8)

N/2−1∑
k=0

(−1)k
(
N

k

)
(z2k + z2N−2k)y0,k + (−1)N/2

(
N

N/2

)
zNy0,N/2 = 0.

Divided by zN , (3.8) reduces to

(3.9)

N/2−1∑
k=0

(−1)k
(
N

k

)
2 cos((N − 2k)α)y0,k + (−1)N/2

(
N

N/2

)
y0,N/2 = 0.

Let θ = α− π
2 . Since we assume that α ∈ [π2 ,

π
2 + π

2N ), then θ ∈ [0, π
2N ) so that cos(mθ) are all positive

for 1 ≤ m ≤ N .
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Now replace α in (3.9) with θ, we have

(−1)N/2

N/2−1∑
k=0

(
N

k

)
2 cos((N − 2k)θ)y0,k +

(
N

N/2

)
y0,N/2

 = 0.

Since all the coefficients of y0,k are nonnegative, y0,k = 0 for all k = 0, 1, . . . , N .

Case 2. N is odd. Since yj,k = yj,N−j−k, we may rewrite the first equation of the linear system as

(N−1)/2∑
k=0

(−1)k
(
N

k

)
(z2k − z2N−2k)y0,k = 0.

Dividing the equation by izN , and replacing α with θ = α− π
2 , we get

(−1)
N+1

2

(N−1)/2∑
k=0

(
N

k

)
2 cos((N − 2k)θ)y0,k

 = 0,

by the same reason as the even case, y0,k needs to be 0 for all k = 0, 1, . . . , N .

For y1,0, y1,1, . . . , y1,N−1, since it is already proved that when α ∈ [π2 ,
π
2 + π

2N ), y0,0 = y0,1 = · · · =

y0,N = 0, the second equation of Cα,Ny = 0 becomes the same as the first equation of Cα,N−1y = 0. By

induction on N , since [π2 ,
π
2 + π

2N ) ⊆ [π2 ,
π
2 + π

2(N−1) ), we have y1,0 = y1,1 = · · · = y1,N−1 = 0. Furthermore,

by induction on j, we have yj,0 = · · · = yj,N−j = 0 for j = 0, 1, . . . , N , which means y = 0, completing the

proof.

Corollary 3.3. Let α ∈ [π2 , π]. If the equation A⊗Nα x = 0 has a non-trivial nonnegative solution x,

then α ∈
[
π
2 + π

2N , π
]
.

4. Explicit solution of the system Cα,Ny = 0 when N ≤ 10. Note that if α ∈ [π2 + π
2N , π] ⊆

[π2 + π
2(N+1) , π] and x ∈ C3N satisfy A⊗Nα x = 0, then for any nonnegative vector y ∈ C3, we have A

⊗(N+1)
α (x⊗

y) = 0. Thus, for N ≤ 10, it is enough to find a non-trivial nonnegative solution to Cα,Ny = 0 when

α ∈
[
π
2 + π

2N ,
π
2 + π

2(N−1)

)
. In the next lemma, we determine the exact location of eikα in the Argand plane.

Let Q1, Q2, Q3, Q4 denote the four quadrants of the complex plane.

Lemma 4.1. For N ≥ 2, let

θ ∈
[
π

2N
,

π

2(N − 1)

)
and α = θ +

π

2
.

Then Nα ∈ QN+2 (mod 4), and for k < N we have kα ∈ Qk+1 (mod 4).

Proof. Note that [a, b] ⊆ Qr if and only if there exists ` such that r ≡ ` + 1 (mod 4) and `
2π ≤ a ≤

b ≤ `+1
2 π. Since α ∈

[
π
(
1
2 + 1

2N

)
, π
(

1
2 + 1

2(N−1)

))
, then Nα ∈

[
π
(
N+1
2

)
, π
(
N+1
2 + 1

2(N−1)

))
. Note that

1
2(N−1) ≤

1
2 , and hence, if ` = N + 1, then α ∈ Qr where r ≡ `+ 1 ≡ N + 2 (mod 4). On the other hand, if

0 ≤ k < N , then k
2(N−1) ≤

1
2 . Note that kα ∈

[
π
(
k
2 + k

2N

)
, π
(
k
2 + k

2(N−1)

))
. Thus, if ` = k then kα ∈ Qr

where r ≡ `+ 1 ≡ k + 1 (mod 4).

We now present some explicit non-trivial nonnegative solutions to Cα,Ny = 0. One can use the preceding

lemma to verify that the given y is nonzero and nonnegative.
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1. For N = 1, we have α = π and a non-trivial nonnegative solution given by

yT =
[ [100] [001] [010]

1 1 1
]
.

2. For N = 2, we have α ∈
[
3π
4 , π

)
and a non-trivial nonnegative solution given by

yT =
[ [200] [101] [002] [110] [011] [020]

1 cos 2α 1 − cosα − cosα 1
]
.

3. For N = 3, we have α ∈
[
2π
3 ,

3π
4

)
and a non-trivial nonnegative solution given by

yT =
[ [300] [201] [102] [003] [210] [111] [012] [120] [021] [030]

3 sinα sin 3α sin 3α 3 sinα − sin 2α − sin 2α − sin 2α sinα sinα 0
]
.

4. For N = 4, we have α ∈
[
5π
8 ,

2π
3

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4

]
, where

a0 =
[ [400] [301] [202] [103] [004]

6 0 −2 cos 4α 0 6
]
,

a1 =
[ [310] [211] [112] [013]

−3 cosα cos 3α cos 3α −3 cosα
]
,

[
a2 a3 a4

]
=

[ [220] [121] [022] [130] [031] [040]

2 0 2 −3 cosα −3 cosα 6
]
.

5. For N = 5, we have α ∈
[
3π
5 ,

5π
8

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4 a5

]
, where

a0 =
[ [500] [401] [302] [203] [104] [005]

20 sinα 0 −2 sin 5α −2 sin 5α 0 20 sinα
]
,

a1 =
[ [410] [311] [212] [113] [014]

−4 sin 2α sin 4α 2 sin 4α sin 4α −4 sin 2α
]
,

a2 =
[ [320] [221] [122] [023]

3 sinα − sin 3α − sin 3α 3 sinα
]
,

[
a3 a4 a5

]
=

[ [230] [131] [032] [140] [041] [ 050]

− sin 2α 0 − sin 2α 2 sinα 2 sinα 0
]
.

6. For N = 6, we have α ∈
[
7π
12 ,

3π
5

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4 a5 a6

]
, where

a0 =
[

20 0 0 2 cos 6α 0 0 20
]
,

a1 =
[
−10 cosα 0 − cos 5α − cos 5α 0 −10 cosα

]
,[

a2 a3
]

=
[

3 0 cos 4α 0 3 cos 3α 0 0 cos 3α
]
,[

a4 a5 a6
]

=
[
−2 cos 2α 0 −2 cos 2α 0 0 5

]
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 198-209, April 2020.

207 A Note on Parallel Distinguishability of Two Quantum Operations

7. For N = 7, we have α ∈
[
4π
7 ,

7π
12

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4 a5 a6 a7

]
, where

a0 =
[

140 sinα 0 0 4 sin 7α 4 sin 7α 0 0 140 sinα
]
,

a1 =
[
−30 sin 2α 0 −2 sin 6α −4 sin 6α −2 sin 6α 0 −30 sin 2α

]
,

a2 =
[

20 sinα 0 2 sin 5α 2 sin 5α 0 20 sinα
]
,

a3 =
[

2 sin 4α− 4 sin 2α sin 4α 0 sin 4α 2 sin 4α− 4 sin 2α
]
,

a4 =
[
−4 sin 3α+ 6 sinα −2 sin 3α −2 sin 3α −4 sin 3α+ 6 sinα

]
,[

a5 a6 a7
]

=
[

0 0 0 10 sinα 10 sinα 0
]
.

8. For N = 8, we have α ∈
[
9π
16 ,

4π
7

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4 a5 a6 a7 a8

]
, where

a0 =
[

140 0 0 0 −4 cos 8α 0 0 0 140
]
,

a1 =
[
−70 cosα 0 0 2 cos 7α 2 cos 7α 0 0 −70 cosα

]
,

a2 =
[

20 0 0 −2 cos 6α 0 0 20
]
,

a3 =
[

5 cos 3α − cos 5α 0 0 − cos 5α 5 cos 3α
]
,

a4 =
[
−8 cos 2α 2 cos 4α 0 2 cos 4α −8 cos 2α

]
,[

a5 a6 a7 a8
]

=
[

0 0 0 0 10 0 10 −35 cosα −35 cosα 140
]
.

9. For N = 9, we have α ∈
[
5π
9 ,

9π
16

)
and a non-trivial nonnegative solution given by

yT =
[
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

]
, where

a0 =
[

504 sinα 0 0 0 −4 sin 9α −4 sin 9α 0 0 0 504 sinα
]
,

a1 =
[

−112 sin 2α 0 0 2 sin 8α 4 sin 8α 2 sin 8α 0 0 −112 sin 2α
]
,

a2 =
[

70 sinα 0 0 −2 sin 7α −2 sin 7α 0 0 70 sinα
]
,

a3 =
[

6 sin 4α− 15 sin 2α − sin 6α − sin 6α 0 − sin 6α − sin 6α 6 sin 4α− 15 sin 2α
]
,

a4 =
[

−10 sin 3α+ 20 sinα 2 sin 5α 2 sin 5α 2 sin 5α 2 sin 5α −10 sin 3α+20 sinα
]
,

a5 =
[

4 sin 4α 0 0 0 4 sin 4α
]
,

a6 =
[

15 sinα− 12 sin 3α −5 sin 3α −5 sin 3α 15 sinα− 12 sin 3α
]
,[

a7 a8 a9

]
=

[
0 0 0 56 sinα 56 sinα 0

]
.
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10. For N = 10, we have α ∈
[
11π
20 ,

5π
9

)
and a non-trivial nonnegative solution is given by

yT =
[
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

]
, where

a0 =
[

504 0 0 0 0 4 cos 10α 0 0 0 0 504
]
,

a1 =
[
−252 cosα 0 0 0 −2 cos 9α −2 cos 9α 0 0 0 −252 cosα

]
,

a2 =
[

70 0 0 0 2 cos 8α 0 0 0 70
]
,

a3 =
[

21 cos 3α 0 cos 7α 0 0 cos 7α 0 21 cos 3α
]
,

a4 =
[
−30 cos 2α 0 −2 cos 6α 0 −2 cos 6α 0 −30 cos 2α

]
,

a5 =
[
−4 cos 5α 0 0 0 0 −4 cos 5α

]
,

a6 =
[

12 cos 4α+ 15 0 5 cos 4α 0 12 cos 4α+ 15
]
,[

a7 a8 a9 a10
]

=
[

0 0 0 0 −56 cos 2α 0− 56 cos 2α 0 0 504
]
.

5. Final remark. It would be nice to affirm the sufficiency of the Conjecture 1.4 for N > 10. Ideally,

one can describe a non-trivial nonnegative solution of the linear system for every positive integer N . One

may also consider finding an existence proof. In this connection, we have the following proposition. We will

continue to use the notation Cα,N and consider the reduced system Cα,Ny = 0.

Proposition 5.1. Suppose α ∈
[
π
2 + π

2N , π
]
. The following conditions are equivalent.

(a) The system Cα,Ny = 0 has no non-trivial nonnegative solution.

(b) There is a complex vector u = (ξ0, . . . , ξN ) with all entries having positive real parts such that all

the entries of uCα,N has positive real parts.

Proof. We convert the system Cα,Ny = 0 to a real linear system

(5.10) C̃α,Ny = 0, where C̃α,N =

[
<(Cα,N )

=(Cα,N )

]
.

By Farkas lemma, for example see [1, Section 5.8], the system (5.10) has no non-trivial nonnegative solution

if and only if there is a real vector v = (a0, . . . , aN , b0, . . . , bN ) such that vC̃α,N is a positive vector, i.e., all

entries are positive. Note that a0, a1, . . . , aN appear in vC̃α,N as the jth entries for j = 1, 1 + (N + 1), 1 +

(N + 1) +N, 1 + (N + 1) +N + (N − 1), . . . , (N + 1)(N + 2)/2. So, a0, . . . , aN > 0 if the said vector v exists.

Set ξj = aj − ibj for j = 0, . . . , N . Then the system (5.10) has no non-trivial nonnegative solution if and

only if condition (b) holds.
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