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Abstract. The region of singular values of the commutator XY − Y X for 2 × 2 rank one complex matrices X and Y

is determined. This answers in affirmative a conjecture raised in [D. Wenzel. A strange phenomenon for the singular values

of commutators with rank one matrices. Electron. J. Linear Algebra, 30:649–669, 2015.] when 2 × 2 matrices are concerned.

The approach and proofs also lead to a complete relation between the singular values, eigenvalues and diagonal elements of the

commutator under consideration.
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1. Introduction.

1.1. Background and main results. Let F denote the set of real numbers R or the set of complex

numbers C, and let i =
√
−1. We use column vectors for vectors in Fn, and use row n-tuples for points in

Fn. The Euclidean inner product and norm on Fn are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let Mn(F)

denote the set of n×n matrices with entries in F. We use also ‖ · ‖ to denote the Frobenius norm on Mn(F).

For X ∈Mn(F), let s1(X) ≥ · · · ≥ sn(X) denote the singular values of X arranged in non-increasing order,

and let s(X) = (s1(X), . . . , sn(X))T . Let ‖X‖1 = s1(X) + · · · + sn(X) denote the trace norm (also known

as Schatten 1-norm and Ky-Fan n-norm) of X. Be aware that two norms are used in this paper. By a norm

one matrix X it is always meant ‖X‖ = 1 unless otherwise stated. For X,Y ∈ Mn(F), the commutator of

X and Y is defined and denoted by

[X,Y ] = XY − Y X.

We assume n > 1 throughout the paper to avoid trivial situations.

Let

Σn(F) = {X : X ∈Mn(F), s(X) = (1, 0, . . . , 0)T },

which is the set of rank one norm one matrices in Mn(F). When X,Y ∈ Σn(F), the rank of the commutator

[X,Y ] is at most two. Let

(1.1) SFn = {(s1([X,Y ]), s2([X,Y ])) : X,Y ∈ Σn(F)} ⊂ R2.
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It is proved in [7] that the set SRn is the region R (see Figure 2.1) bounded by the segment joining (0, 0) and

(1, 1), the segment joining (0, 0) and (1, 0), the segment joining (1, 0) and
(√

2+1
2 ,

√
2−1
2

)
, and the curve

(1.2)
4
√

cosφ sinφ

1 + 2 cosφ sinφ
(cosφ, sinφ), φ ∈

[
tan−1

(√
2−1√
2+1

)
,
π

4

]
.

For an alternative characterization of SRn , see Theorem 1.5 below. It is also conjectured in [7, Conjecture

3.6] that SCn = R. Numerical experiments highly suggest that this is true. Sadly, the approach used in [7]

relies heavily on real numbers (in the form of angles) and cannot directly be adopted to the complex case.

When X,Y ∈ Σn(F), we may assume X = ab∗ and Y = cd∗ where a,b, c,d ∈ Fn are unit vectors. It

is shown in [7, Theorem 4.1] that s1([X,Y ]) and s2([X,Y ]) depend solely on

A = 〈a, c〉, B = 〈b,d〉, C = 〈c,b〉, D = 〈d,a〉.

Based on these inner products, the result is proved. The main purpose of this paper is to prove in affirmative

that the conjecture is true for 2× 2 matrices. During our investigation, we found that there is a point in the

proof in [7] that is not clear when 2× 2 matrices are concerned. Let us first point out the difference between

the cases n = 2 and n ≥ 3.

It is trivial that SF2 ⊆ SF3 ⊆ SF4 ⊆ · · · . When n > 4 and X,Y ∈ Σn(F), there exists a unitary (orthogonal

if F = R) matrix U ∈Mn(F) such that U∗XU , U∗Y U ∈M4(F)⊕0n−4. Consequently we know that SFk = SF4
for all k > 4. Using the following proposition, we can extend the result to 3 × 3 matrices to have SFk = SF3
for all k > 3.

Proposition 1.1. Suppose a,b, c,d ∈ F4 are unit vectors. Then there are unit vectors v1,v2,v3,v4 ∈
F3 such that

〈v1,v3〉 = 〈a, c〉, 〈v2,v4〉 = 〈b,d〉, 〈v3,v2〉 = 〈c,b〉, 〈v4,v1〉 = 〈d,a〉.

Proof. By choosing a suitable unitary (orthogonal if F = R) matrix U ∈ M4(F) and considering Ux for

x ∈ {a,b, c,d}, we may assume

a = (a1, 0, 0, 0)T , b = (b1, b2, 0, 0)T , c = (c1, c2, c3, 0)T , d = (d1, d2, d3, d4)T .

The vectors

v1 = (a1, 0, 0)T , v2 = (b1, b2, 0)T , v3 = (c1, c2, c3)T , v4 = (d1, d2,
√
|d3|2 + |d4|2)T .

serve our purpose.

The situation is different when n = 2. Suppose we choose

a = (1, 0, 0, 0)T , b = (0, 1, 0, 0)T , c = (0, 0, 1, 0)T , d = (1/
√

2, 0, 0, 1/
√

2)T .

Then

A = 〈a, c〉 = 0, B = 〈b,d〉 = 0, C = 〈c,b〉 = 0, D = 〈d,a〉 = 1/
√

2.

However, for unit vectors a,b, c,d ∈ F2,

A = 〈a, c〉 = 0, B = 〈b,d〉 = 0, C = 〈c,b〉 = 0
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imply D = 〈d,a〉 = 0. Thus, we know that not all inner products (A,B,C,D) that can be achieved by

vectors in F4 can be achieved by vectors in F2. It is then not clear that SR2 is not a proper subset of SR4
(= R), although numerical experiments strongly suggest SR2 = R and the boundary of R can be achieved

by 2× 2 real matrices (see the proof of [7, Proposition 3.3]).

We will first show in Section 3 that the smaller freedom in order 2 does not change the result.

Theorem 1.2. SR2 = R.

This is not merely to give an alternative proof for 2×2 real matrices. The proof here also reveals that all

the possible combinations of the singular values can be achieved by commutators having real eigenvalues and

hence are orthogonally upper triangularizable. This fact is used in Section 4 for proving our main theorem.

Theorem 1.3. SC2 = R.

Our approach and proofs also give immediately interesting results relating the singular values, eigenvalues

and diagonal elements of the commutators under consideration. Before going to the lengthy proofs of

Theorems 1.2 and 1.3, we include below a discussion on the results.

1.2. Singular values, eigenvalues and diagonal elements. Suppose X,Y ∈ Σ2(F) and [X,Y ] =[
λ δ
0 −λ

]
has singular values s1 and s2, and eigenvalues ±λ. It follows readily from the Böttcher-Wenzel

inequality (e.g. [2, 6]) that |λ| ≤ 1 because

2|λ|2 ≤ ‖[X,Y ]‖2 ≤ 2‖X‖2‖Y ‖2 = 2.

A simple proof of the inequality for 2 × 2 real matrix can be found in [1]. The proof there can easily be

modified for 2× 2 complex matrices. Our formulation leads us to consider the possible values of |δ| with |λ|
being fixed. The key result is that, for both the cases F = R and F = C, |δ| can assume every value between

0 and a common maximum value δ|λ| where δ2|λ| is given by

(1.3) δ2|λ| =

{
1 if 0 ≤ |λ| ≤ 1/2,

4|λ| − 4|λ|2 if 1/2 < |λ| ≤ 1.

The graph of δ2|λ| is given below.
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Figure 1.1. The graph of δ2|λ|.

It is obvious that δ2|λ|, and hence, δ|λ| is non-increasing. This plain-looking fact will play a critical role in

our later proof in Section 4.

When X,Y ∈ Σ2(C), [X,Y ] is unitarily triangularizable. Our key result asserts that when the complex

commutator in triangular form has real eigenvalues and real δ, it can also be achieved by X,Y ∈ Σ2(R). On
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the other hand, it is easy to deduce that

(1.4) |δ| = s1 − s2.

Consequently, together with the obvious condition |λ|2 = s1s2, we can easily deduce the following two

theorems. The first one gives the relation between the eigenvalues and singular values of the commutators,

and the second one gives a simple characterization on the singular values of the commutators.

Theorem 1.4. There exist X,Y ∈ Σ2(C) such that [X,Y ] has eigenvalues ±λ and singular values

s1 ≥ s2 if and only if |λ| ≤ 1, |λ|2 = s1s2 and{
s1 − s2 ≤ 1 if 0 ≤ |λ| ≤ 1/2,

s1 + s2 ≤ 2
√
|λ| if 1/2 < |λ| ≤ 1.

Moreover, X and Y can be taken to be real if λ is real.

Theorem 1.5. There exist X,Y ∈ Σ2(C) such that [X,Y ] has singular values s1 ≥ s2 if and only if

s1s2 ≤ 1 and {
s1 − s2 ≤ 1 if 0 ≤ √s1s2 ≤ 1/2,

s1 + s2 ≤ 2(s1s2)1/4 if 1/2 <
√
s1s2 ≤ 1.

Moreover, the singular values can always be attained by real matrices.

For A ∈Mn(C), the numerical range and numerical radius of A are defined respectively by

W (A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1} and w(A) = max{|z| : z ∈W (A)}.

The study of the numerical range and numerical radius has a long history and is extensive. One may refer to

[5, Chapter 1] for more information. For [X,Y ] =
[
λ δ
0 −λ

]
, the Elliptical Range Theorem (e.g., [5, Theorem

1.3.6]) tells us that W ([X,Y ]) is an elliptical disk with foci ±λ and minor axis |δ|. Thus, from the above

discussion, we have the following theorem.

Theorem 1.6. There exist X,Y ∈ Σ2(C) such that W ([X,Y ]) is an ellipse with foci ±λ (λ ∈ C) and

minor axis δ ≥ 0 if and only if

0 ≤ δ ≤
{

1 if 0 ≤ |λ| ≤ 1/2,

2
√
|λ| − |λ|2 if 1/2 < |λ| ≤ 1.

Moreover, X and Y can be taken to be real if λ is real.

From Theorem 1.6, we have

Corollary 1.7. There exist X,Y ∈ Σ2(C) such that [X,Y ] has eigenvalues ±λ and w([X,Y ]) = r if

and only if 0 ≤ |λ| ≤ 1 and

|λ| ≤ r ≤
{ √

|λ|2 + 1/4 if 0 ≤ |λ| ≤ 1/2,√
|λ| if 1/2 < |λ| ≤ 1.

Moreover, X and Y can be taken to be real if λ is real.

The set W (A) can be regarded as the collection of all values for the first diagonal entry of U∗AU when U

varies over all unitary matrices. From Corollary 1.7, and replacing |λ| there by
√
s1s2, we have the following

relation between the singular values and diagonal elements.
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Corollary 1.8. There exist X,Y ∈ Σ2(C) such that [X,Y ] has singular values s1 ≥ s2 and a diagonal

element d if and only if s1s2 ≤ 1 and

|d| ≤
{ √

s1s2 + 1/4 if 0 ≤ √s1s2 ≤ 1/2,

(s1s2)1/4 if 1/2 <
√
s1s2 ≤ 1.

Moreover, X and Y can be taken to be real if d is real.

The elliptical disk with foci ±λ and minor axis |δ| is
{
z : |z − λ|+ |z + λ| ≤ 2

√
|λ|2 + |δ|2/4

}
. From

Theorem 1.4 and using (1.4), we can now have our ultimate result relating the singular values, eigenvalues

and diagonal elements of the commutators under consideration.

Theorem 1.9. There exist X,Y ∈ Σ2(C) such that [X,Y ] has singular values s1 ≥ s2, eigenvalues ±λ
and diagonal elements ±d if and only if, in addition to the necessary conditions in Theorem 1.4,

|d+ λ|+ |d− λ| ≤ s1 + s2.

Moreover, X and Y can be taken to be real if λ and d are real.

Finally, we mention here another consequence of our study. There is a close relation between the region

SCn and the determination of the best (smallest) constant Cp,1,1 such that

‖XY − Y X‖p ≤ Cp,1,1‖X‖1‖Y ‖1, X, Y are n× n complex matrices,

where ‖ · ‖p denotes the Schatten p-norm, 1 ≤ p ≤ ∞. When 2 < p <∞, this is an unsolved situation of the

general problem (see [8, 3]) of finding the best constant Cp,q,r such that

‖XY − Y X‖p ≤ Cp,q,r‖X‖q‖Y ‖r, X, Y are n× n complex matrices.

For more information on commutator norm inequalities, see the surveys [2, 6]. In fact, we have Cp,1,1 =

max{‖x‖p : x ∈ SCn} in which we also use ‖ · ‖p to denote the vector p-norm. In [4], the constant CR
p,1,1 =

max{‖x‖p : x ∈ SRn} for real matrices is found via the determination of CR
∞,q,1 for real matrices. Theorem

1.3 tells us that SC2 = SR2 and consequently we can conclude that all the results obtained in [4] for real

matrices are also true for 2× 2 complex matrices.

2. Transforming the problem geometrically. Our approach is to consider, instead of the singular

values s1([X,Y ]) and s2([X,Y ]) of the commutator [X,Y ], the characteristic polynomial of [X,Y ]∗[X,Y ],

i.e., the monic quadratic polynomial having s21([X,Y ]) and s22([X,Y ]) as roots. To this, we first consider

{x2 − (s21 + s22)x+ s21s
2
2 : (s1, s2) ∈ R},

the set of monic quadratic polynomials having s21 and s22 as roots when (s1, s2) varies over R. To describe

the set, it is equivalent to consider the set of the varying coefficients given by

Q = {(s21 + s22, s
2
1s

2
2) : (s1, s2) ∈ R} ⊂ R2

and we have the following characterization.

Proposition 2.1. The set Q (see Figure 2.2) is the region bounded by the segment joining (0, 0) and

(1, 0), the curve x = 2
√
y for 0 ≤ y ≤ 1, the curve x = 1 + 2y1/2 for 0 ≤ y ≤ 1/16, and the curve

x = 4y1/4 − 2y1/2 for 1/16 ≤ y ≤ 1.
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Proof. Let F : R → R2 be defined by F (s1, s2) = (s21 + s22, s
2
1s

2
2) which clearly is injective. Then

Q = F (R). For 0 ≤ β ≤ 1, let Cβ = {(s1, s2) : (s1, s2) ∈ R, s21s22 = β}. When β = 0, C0 is the line segment

joining (0, 0) and (1, 0); when 0 < β ≤ 1, Cβ is the intersection of R and the hyperbola s1s2 =
√
β, see

Figure 2.1. 1

Figure 2.1. The region R (green) and the

curve s1s2 =
√
β (blue).

Figure 2.2. The region Q (green) and the seg-

ment F (Cβ) (blue).

Then ⋃
0≤β≤1

Cβ = R, and hence, Q = F (R) =
⋃

0≤β≤1

F (Cβ).

For each β, as Cβ is closed and connected, F (Cβ) is a horizontal segment in Q with height β above the

x-axis, see Figure 2.2. When β increases from 0 to 1, the curve Cβ and the segment F (Cβ) sweep over the

regions R and Q, respectively. By clicking Figure 2.1 or 2.2, one can see the demonstration of the movement

of the corresponding Cβ and F (Cβ) when β increases.

Let F (Cβ) = {(x, β) : x ∈ Lβ} where Lβ = {s21 + s22 : (s1, s2) ∈ Cβ} is a closed interval. The result

follows if we can show that

(2.1) Lβ =

{ [
2
√
β, 1 + 2

√
β
]

if 0 ≤ β ≤ 1/16,[
2
√
β, 4β1/4 − 2

√
β
]

if 1/16 < β ≤ 1.

It remains to determine the two endpoints of Lβ , i.e., to find the maximum and minimum of Lβ .

When β = 0, L0 = [0, 1] obviously. We now suppose β > 0. When β is fixed and s21s
2
2 = β, as s1 ≥ s2,

we see that the bigger is s1, the bigger is s21 +s22. Hence, the minimum of s21 +s22 occurs when s1 = s2 = β1/4,

and thus, the minimum of Lβ is 2
√
β. Similarly, the maximum of s21 + s22 occurs at a point (s∗1, s

∗
2) which is

on the right-hand boundary of the region R, i.e., on the segment joining (1, 0) and
(√

2+1
2 ,

√
2−1
2

)
, or on the

curve (1.2).

When 0 < β ≤ 1/16, the point (s∗1, s
∗
2) is on the line segment joining (1, 0) and

(√
2+1
2 ,

√
2−1
2

)
, i.e.,

s∗1 − s∗2 = 1, s∗1 ∈ (1, (
√

2 + 1)/2]. Hence, we know that (s∗1)2 + (s∗2)2 = (s∗1 − s∗2)2 + 2s∗1s
∗
2 = 1 + 2

√
β.

When 1/16 ≤ β ≤ 1, the point (s∗1, s
∗
2) is on the curve (1.2), say with φ = φ∗. Let α = (s∗1)2 + (s∗2)2 be

1A sketch of the region R is given in [4].



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 1-20, January 2020.
http://repository.uwyo.edu/ela

7 Singular Values of Commutator

the required maximum, and write z = cosφ∗ sinφ∗. Easily,

(2.2)
√
α =

√
(s∗1)2 + (s∗2)2 =

4
√

cosφ∗ sinφ∗

1 + 2 cosφ∗ sinφ∗
=

4
√
z

1 + 2z

and

(2.3)
√
β = s∗1s

∗
2 =

16 cosφ∗ sinφ∗

(1 + 2 cosφ∗ sinφ∗)2
cosφ∗ sinφ∗ = αz.

Multiplying (2.2) by
√
α, we get 2αz − 4

√
αz + α = 0 and hence, by (2.3), α = 4β1/4 − 2

√
β as required.

3. The real case. In this section, we give a proof of Theorem 1.2.

Proof of Theorem 1.2. For X,Y ∈ Σ2(R), ‖[X,Y ]‖2 = s21([X,Y ]) + s22([X,Y ]) and (det[X,Y ])2 =

s21([X,Y ])s22([X,Y ]). The set of characteristic polynomials of [X,Y ]∗[X,Y ] is

{x2 − ‖[X,Y ]‖2x+ (det[X,Y ])2 : X,Y ∈ Σ2(R)}

and, as before, we consider the set of varying coefficients

T (R) = {
(
‖[X,Y ]‖2, (det[X,Y ])2

)
: X,Y ∈ Σ2(R)} ⊂ R2.

It is then clear that SR2 = R if and only if T (R) = Q (defined in Section 2), and we now show that the latter

is true. We note that for X,Y ∈ Σ2(R), one has 0 ≤ |det[X,Y ]| ≤ 1. To prove the result, it suffices to show

that for each 0 ≤ β ≤ 1,

(3.1)
{
‖[X,Y ]‖2 : X,Y ∈ Σ2(R), (det[X,Y ])2 = β

}
is as in the right-hand side of (2.1).

The proof is divided into two parts, depending on whether the eigenvalues of [X,Y ] are real or not.

3.1. Eigenvalues of [X,Y] are real. Suppose the eigenvalues of [X,Y ] are real (and opposite), i.e.,

det[X,Y ] = −
√
β ≤ 0. Under suitable simultaneous orthogonal similarity on X and Y , we may assume

(3.2) [X,Y ] =

[
λ δ

0 −λ

]
,

where λ ≥ 0 and δ ≥ 0. Of course λ2 = −det[X,Y ] =
√
β, and

‖[X,Y ]‖2 = 2λ2 + δ2 = 2
√
β + δ2.

Thus, to prove (3.1), we need to find the range of δ2. For each 0 ≤ λ ≤ 1, suppose the maximum value of δ

is δλ ≥ 0. We have to show that δ2λ is as given in (1.3) (note that as λ ≥ 0 here, we drop the absolute value

sign in δ|λ|) and that δ can attain every value between 0 and δλ. The proof is divided into several steps.

Step 1. We give an alternative form of (3.2). As X and Y are of rank one, suppose

(3.3) X =

[
cos a

sin a

] [
cos b sin b

]
=

[
cos a cos b cos a sin b

sin a cos b sin a sin b

]
and

Y =

[
cosh

sinh

] [
cos k sin k

]
=

[
cosh cos k cosh sin k

sinh cos k sinh sin k

]
,
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where a, b, h, k ∈ R. From (3.2), we have

cos a sin b sinh cos k − cosh sin k sin a cos b = λ,

cos a cos b cosh sin k + cos a sin b sinh sin k − cosh cos k cos a sin b− cosh sin k sin a sin b = δ,

sin a cos b cosh cos k + sin a sin b sinh cos k − sinh cos k cos a cos b− sinh sin k sin a cos b = 0.

The first equation can be rewritten as

sin(a+ b) sin(h− k)− sin(a− b) sin(h+ k) = 2λ,

while the second and third equations can be replaced by their sum and difference given by

sin(a− b) cos(h+ k)− sin(h− k) cos(a+ b) = δ,

− sin(a+ b) cos(h+ k) + sin(h+ k) cos(a+ b) = δ.

Note that a+ b and a− b can achieve any values independently, and so do h+ k and h− k. Thus, writing

(3.4) a+ b = A, a− b = B, h+ k = H, h− k = K,

the above three equations become, with independent variables A, B, H and K,

sinA sinK − sinB sinH = 2λ,(3.5)

sinB cosH − sinK cosA = δ,(3.6)

− sinA cosH + sinH cosA = δ,(3.7)

respectively.

We first show that δ can be 0. Take A = H = π/2, and B and K satisfy sinB = −λ and sinK = λ.

Then (3.5)–(3.7) are satisfied with δ = 0.

Step 2. We further transform the problem. We now assume δ > 0. Equation (3.7) gives

(3.8) δ = sin(H −A).

Equations (3.5) and (3.6) give [
− sinH sinA

cosH − cosA

] [
sinB

sinK

]
=

[
2λ

δ

]
,

and hence, with (3.8) and using Cramer’s rule, we obtain

sinB =
−2λ cosA− δ sinA

sinH cosA− sinA cosH
= −2λ

δ
cosA− sinA

and

sinK =
−2λ cosH − δ sinH

sinH cosA− sinA cosH
= −2λ

δ
cosH − sinH.

Thus, equivalently, we need to find the range of δ subject to (3.8),

(3.9)

∣∣∣∣2λδ cosA+ sinA

∣∣∣∣ ≤ 1 and

∣∣∣∣2λδ cosH + sinH

∣∣∣∣ ≤ 1.
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Step 3. Suppose 0 ≤ 2λ ≤ 1 (i.e., 0 ≤ β ≤ 1/16). For any 0 < δ ≤ 1, choose H = π/2 and A such that

cosA = δ and sinA = −
√

1− δ2. Then sin(H − A) = cosA = δ and both inequalities in (3.9) are satisfied.

Hence, δ can assume any value in [0, 1] as required.

Step 4. We suppose 1 ≤ 2λ ≤ 2 (i.e., 1/16 ≤ β ≤ 1) and find the maximum value of δ. Geometrically,

(3.9) means that the inner products of the vector (2λ/δ, 1)T with the two unit vectors (cosA, sinA)T and

(cosH, sinH)T have absolute values not bigger than one.

Suppose the maximum value of δ is δλ = sin(H0−A0) > 0 where 0 < H0−A0 < π. If sin(H0−A0) = 1,{
(cosA0, sinA0)T , (cosH0, sinH0)T

}
is an orthonormal basis of R2. Then, (3.9) implies ‖(2λ/δλ, 1)T ‖ ≤

√
2.

This gives a contradiction as 2λ/δλ > 1. So sin(H0−A0) < 1. We claim that for δ = δλ, both inequalities in

(3.9) must hold in equality. If both of them are strict inequalities, we can purturb H0 and A0 a bit to have

a bigger value of δ without violating (3.9), and this gives a contradiction. If exactly one of them is equality,

we may consider replacing H0 and A0 by H0 + ε and A0 + ε for small suitable ε, resulting in both of them

are strict inequalities and with δ = sin((H0 + ε)− (A0 + ε)) = δλ. Thus, as in the previous case, we have a

contradiction.

Now suppose both inequalities in (3.9) hold in equality. Geometrically, it is clear that there are 4

unit vectors x ∈ R2 such that |〈x, (2λ/δλ, 1)T 〉| = 1, namely, u = (0, 1)T , v and their negatives, where

v = (cos θ, sin θ)T , −π/2 < θ < 0, is the reflection of u across the vector (2λ/δλ, 1)T . See Figure 3.1 below.

 

𝜃 

1 

1 
2𝜆

𝛿𝜆
 

u 

v 

Figure 3.1. The vectors u and v.

In other words, when restricting−π < H0, A0 ≤ π, we haveH0, A0 ∈ {±π/2, θ, θ+π}. Since sin(H0−A0) > 0,

the possible choices for (H0, A0) are (π/2, θ), (θ,−π/2), (−π/2, θ + π) and (θ + π, π/2).

We may take (H0, A0) = (π/2, θ). The other choices of (H0, A0) will always lead to this case. For

example, if (H0, A0) = (θ,−π/2), (3.9) becomes∣∣∣∣ 2λ

sin(θ − (−π/2))
cos
(
−π

2

)
+ sin

(
−π

2

)∣∣∣∣ = 1 and

∣∣∣∣ 2λ

sin(θ − (−π/2))
cos θ + sin θ

∣∣∣∣ = 1,

which is equivalent to∣∣∣∣ 2λ

sin(π/2− θ)
cos
(π

2

)
+ sin

(π
2

)∣∣∣∣ = 1 and

∣∣∣∣ 2λ

sin(π/2− θ)
cos θ + sin θ

∣∣∣∣ = 1,
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and these two new conditions exactly mean taking (H0, A0) = (π/2, θ).

So, fix now (H0, A0) = (π/2, θ). It is easy to check that the triangle with vertices (0, 0), (0, 1) and

(2λ/δλ, 1) and the triangle with vertices (0, 0), (cos θ, sin θ) and (2λ/δλ, 1) are congruent (see Figure 3.1).

Consequently, in the triangle with vertices (0, 0), (0, 1) and (2λ/δλ, 1), the angle at (0, 0) is π/2−θ
2 (remember

θ < 0). Hence, √
1 +

(
2λ

δλ

)2

cos

(
π/2− θ

2

)
= 1,

which gives, with δλ = sin(π/2− θ),(
1 +

λ2

sin2((π/2− θ)/2) cos2((π/2− θ)/2)

)
cos2

(
π/2− θ

2

)
= 1.

Thus,

λ = sin2

(
π/2− θ

2

)
,

and hence,

δ2λ = sin2(π/2− θ) = 4 sin2

(
π/2− θ

2

)
cos2

(
π/2− θ

2

)
= 4λ(1− λ).

Step 5. Finally, we show that any value between 0 and δλ can be achieved by δ. For any 0 < δ < δλ,

take H = π/2 and A such that

(cosA, sinA) =
(
δ,−

√
1− δ2

)
.(3.10)

Then δ = cosA = sin(H −A) and the second part of (3.9) is satisfied. It remains to show that the first part

of (3.9) is also satisfied. With (3.10), it suffices to show
∣∣2λ−√1− δ2

∣∣ ≤ 1 for all δ where 0 < δ < δλ. Note

that ∣∣2λ−√1− δ2
∣∣ ≤ 1 ⇔ 4λ2 − δ2 ≤ 4λ

√
1− δ2.

If 4λ2 − δ2 ≤ 0, we are done. Now suppose 4λ2 − δ2 > 0. Then

4λ2 − δ2 ≤ 4λ
√

1− δ2 ⇔ 16λ4 + 8λ2δ2 + δ4 − 16λ2 ≤ 0.

Since 0 < δ < δλ, it suffices to show that 16λ4 + 8λ2δ2λ + δ4λ − 16λ2 ≤ 0. With δ2λ = 4λ − 4λ2, the result

follows from 16λ4 + 8λ2δ2λ + δ4λ − 16λ2 = 0.

3.2. Eigenvalues of [X,Y] are purely imaginary. We now suppose the two eigenvalues of [X,Y ]

are purely imaginary, i.e., det[X,Y ] =
√
β > 0. We claim that

(3.11)
√
β ≤ 1/4.

We don’t have the upper triangular form as in (3.2). Under suitable simultaneous orthogonal similarity on

X and Y we may assume

X =

[
p q

0 0

]
where p2 + q2 = 1, Y =

[
y11 y12
y21 y22

]
.

Then

[X,Y ] =

[
qy21 py12 + q(y22 − y11)

−py21 −qy21

]
.
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Taking the determinant on both sides,

(3.12)
√
β = −q2y221 + py21[py12 + q(y22 − y11)].

As y11y22 = y21y12 (i.e., detY = 0), we get

(qy21)2 − p(y22 − y11)(qy21) + (
√
β − p2y11y22) = 0.

Regarding this as a quadratic equation in qy21 with real coefficients, it has (one and hence) two real roots.

Its discriminant must be non-negative, i.e.,

0 ≤ [p(y22 − y11)]2 − 4(
√
β − p2y11y22) = [p(y22 + y11)]2 − 4

√
β.

Thus,
√
β ≤ p2(y22 + y11)2/4 ≤ 1/4 as claimed.

To complete the proof, as 0 < β ≤ 1/16, it suffices to show that ‖[X,Y ]‖2 ≤ 1 + 2
√
β. Note that, using

(3.12),

‖[X,Y ]‖2 ≤ 1 + 2
√
β

⇔ 2q2y221 + 2
√
β + p2y221 + [py12 + q(y22 − y11)]2 ≤ 1 + 2

√
β + 2

√
β

⇔ 2{py21[py12 + q(y22 − y11)]}+ p2y221 + [py12 + q(y22 − y11)]2 ≤ 1 + 4
√
β

⇔ {py21 + [py12 + q(y22 − y11)]}2 ≤ 1 + 4
√
β.

That is, subject to (3.12), we have to show that

[p(y21 + y12) + q(y22 − y11)]
2 ≤ 1 + 4

√
β.

From y211 + y222 + y212 + y221 = 1 and y11y22 − y12y21 = 0, we get (y21 + y12)2 + (y22 − y11)2 = 1. The result is

now clear as both (y21 + y12, y22 − y11)T and (p, q)T are unit vectors.

4. The complex case.

4.1. Complex vs. real. There are fundamental differences between the real and complex problems

and we tried in vain to modify the proof of Theorem 1.2 to prove the complex case. As an illustration,

suppose

X =

[
a1
a2

] [
b̄1 b̄2

]
=

[
a1b̄1 a1b̄2
a2b̄1 a2b̄2

]
where (a1, a2)T and (b1, b2)T are unit vectors in C2. When the two vectors are real, in the proof of Theorem

1.2, we have

a1b̄1 − a2b̄2 = cos a cos b− sin a sin b = cos(a+ b) = cosA

and

a2b̄1 + a1b̄2 = sin a cos b+ cos a sin b = sin(a+ b) = sinA.

In the real case, | cosA| ≤ 1, | sinA| ≤ 1 and ‖(cosA, sinA)T ‖ = 1. In the complex case, though we have

|a1b̄1 − a2b̄2| ≤ 1 and |a2b̄1 + a1b̄2| ≤ 1,

the norm of (a1b̄1− a2b̄2, a2b̄1 + a1b̄2)T ranges from 0 to 2. For example, the matrices 1
2

[
1 i
−i 1

]
and 1

2

[
1 i
i −1

]
give the norms of the corresponding vectors 0 and 2, respectively. Consequently, there are several places in

the proof of Theorem 1.2 where the geometric argument cannot be adopted directly to prove the complex

problem.
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4.2. Some lemmas. When [X,Y ] is not in triangular form, we may use ‖[X,Y ]‖2 − 2|det[X,Y ]| to

represent δ2 in our formulation. The following proposition tells us that if we can reduce one of the matrices

X and Y to have zero trace then we are done.

Proposition 4.1. For 0 ≤ |λ| ≤ 1 and δ2|λ| as given in (1.3),

max{‖[X,Y ]‖2 − 2|det[X,Y ]| : X,Y ∈ Σ2(C), |det[X,Y ]| = |λ|2, trX = 0} ≤ δ2|λ|.

Proof. Under suitable unitary similarity, we may assume X =

[
0 1

0 0

]
. With Y = (yij),

XY − Y X =

[
y21 y22 − y11
0 −y21

]
and so |y21| =

√
|det[X,Y ]| = |λ|. Hence,

‖[X,Y ]‖2 = 2|λ|2 + |y22 − y11|2 ≤ 2|λ|2 + (|y22|+ |y11|)2(4.1)

≤ 2|λ|2 + (s1(Y ) + s2(Y ))2(4.2)

= 2|λ|2 + 1.

Inequality (4.2) follows from the relation between the singular values and diagonal elements of a matrix,

e.g. see [5, (3.1.10a)]. Consequently, for 0 ≤ |λ| ≤ 1/2, we get as desired the maximum to be bounded by

δ2|λ| = 1.

When 1/2 < |λ| ≤ 1, we can have a smaller upper bound for (|y22|+ |y11|)2 instead of 1. The conditions

|y11|2 + |y22|2 + |λ|2 + |y12|2 = 1 (i.e., ‖Y ‖2 = 1) and |y11||y22| = |λ||y12| (i.e., detY = 0) give

(|y11|+ |y22|)2 + (|λ| − |y12|)2 = 1.

Replacing |y12| by |y11||y22|/|λ|, and using |y11||y22| ≤
(
|y11|+|y22|

2

)2
≤ 1/4 < |λ|2, we get

(|y11|+ |y22|)2 +

(
|λ|2 −

(
|y11|+|y22|

2

)2)2

|λ|2
≤ 1

which, by direct calculation, gives |λ|+
(
|y11|+|y22|

2

)2
|λ|


2

≤ 1.

Consequently, after taking square root on both sides, we easily get

(|y11|+ |y22|)2 ≤ 4|λ| − 4|λ|2.

Thus, from (4.1), the result follows.

In the following lemma, we modify the proof of Theorem 1.2 to handle a particular case of the complex

problem.
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Lemma 4.2. Suppose X ∈ Σ2(R) and

Y =

[
c+ di y12
y21 −c+ di

]
∈ Σ2(C), c, d, y12, y21 ∈ R, d 6= 0,

such that XY − Y X =

[
λ δ

0 −λ

]
. Then, with δ|λ| as given in (1.3),

(i) |δ| ≤ δ|λ| ; or

(ii) there exist X̃, Ỹ ∈ Σ2(C) such that X̃Ỹ − Ỹ X̃ =

[
λ δ̃

0 −λ

]
with |δ̃| > |δ|.

Proof. We remark that ‖Y ‖ = 1 and detY = 0 read 2(c2+d2)+y212+y221 = 1 and −(c2+d2)−y12y21 = 0,

respectively. So,

[ √
c2 + d2 y12
y21 −

√
c2 + d2

]
∈ Σ2(R). Let

[ √
c2 + d2 y12
y21 −

√
c2 + d2

]
=

[
cosh

sinh

] [
cos k sin k

]
=

[
cosh cos k cosh sin k

sinh cos k sinh sin k

]
.

The matrix on the left has zero trace and so the condition

0 = cosh cos k + sinh sin k = cos(h− k)

grants h− k ∈ {π/2 + lπ : l is an integer}. Set t = c/
√
c2 + d2, so that we can rewrite Y as

(4.3) Y =

[
t cosh cos k cosh sin k

sinh cos k t sinh sin k

]
+ dI2i, −1 < t < 1.

Suppose X is as in (3.3). We divide the proof into several steps.

Step 1. Parallel to Step 1 in Section 3.1, by replacing the terms cosh cos k and sinh sin k there by

t cosh cos k and t sinh sin k, we obtain (parallel to (3.5)–(3.7))

sinK sinA− sinB sinH = 2λ,(4.4)

t sinB cosH − sinK cosA = δ,(4.5)

−t sinA cosH + sinH cosA = δ,(4.6)

where A, B, H and K (defined in (3.4)) are independent variables with K ∈ {π/2 + lπ : l is an integer}.
From (4.6), in which the left-hand side can be regarded as the inner product of (− sinA, cosA)T and

(t cosH, sinH)T , we know that |δ| ≤ 1. Thus, we have (i) if |λ| ≤ 1/2.

Step 2. Suppose |λ| > 1/2. Following the calculation in Step 2 in Section 3.1, we see that the solvability

of (4.4)–(4.6) is equivalent to the solvability of (4.6),

(4.7)

∣∣∣∣2λδ cosA+ sinA

∣∣∣∣ = | sinB| ≤ 1 and

∣∣∣∣2λδ t cosH + sinH

∣∣∣∣ = | sinK| = 1.

Note that as B and K are independent of the other variables, we may focus on t, δ A and H. If we want to

show that there are matrices satisfying the assertion in (ii), it suffices to show that there are t1, δ1, A1 and

H1 such that, with the terms | sinB| and | sinK| dropped, (4.6) and (4.7) are satisfied and |δ1| > |δ|. The

values of B and K can then be chosen suitably.

We use a perturbation argument, assuming that there are t, δ, A and H satisfying (4.6) and (4.7). Let

us outline our steps first.
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Step 2.1. Perturb t in (4.6) to t1 to have δ1 such that |δ1| > |δ|. With the values t1, δ1 and H, the

second part of (4.7) will probably be violated.

Step 2.2. Adjust H to H1 so that t1, δ1 and H1 satisfy the second part of (4.7). With the values t1,

δ1 and H1, (4.6) will probably be violated.

Step 2.3. Adjust A to A1 so that t1, δ1, H1 and A1 satisfy (4.6) .

During the steps, we also have to ensure that the first part of (4.7) is always satisfied. Before we carry out

our plan, we first note the following points.

Point 1. We now eliminate the situation that sinA cosH = 0, so that we can perturb t in (4.6) to have

a bigger value of |δ|. If sinA = 0, we have − sinB sinH = 2λ from (4.4) and this contradicts 2λ > 1. If

cosH = 0, then (4.5) and (4.6) are independent of t. Take t = 1 in (4.3) to have

Ŷ =

[
cosh cos k cosh sin k

sinh cos k sinh sin k

]
∈ Σ2(R).

Readily, the pair X, Ŷ ∈ Σ2(R) satisfies (4.4)–(4.6). Thus, |δ| ≤ δ|λ| and we are done.

Point 2. We refer to the first part of (4.7). If equality holds, then | sinB| = 1, and hence, trX = cosB =

0. By Proposition 4.1, we have (i) and we are done. We now assume∣∣∣∣2λδ cosA+ sinA

∣∣∣∣ < 1.

With this assumption, we know that the first part of (4.7) will not be violated if we perturb t, δ, H and A

small enough. This ensures the first part of (4.7) will be satisfied throughout the perturbations.

Point 3. We show that

(4.8) |δ| <
√
t2 cosH2 + sin2H.

The main purpose of showing this is to guarantee that after we perturb t, δ and H to t1, δ1 and H1,

respectively, we still have

(4.9) |δ1| <
√
t21 cosH2

1 + sin2H1.

Consequently, we can perturb A to A1 as required in Step 2.3. (Note: Geometrically, the left-hand side of

(4.6) is the inner product of the vectors (t cosH, sinH)T and (− sinA, cosA)T . To have A1 in Step 2.3, we

need |δ1| < ‖(t1 cosH1, sinH1)T ‖.)

We now prove (4.8). By the Cauchy-Schwarz inequality, we know from (4.6) that (4.8) is true when

“≤” is written. If equality holds, then the two vectors (− sinA, cosA)T and (t cosH, sinH)T are linearly

dependent and ‖(t cosH, sinH)T ‖ = |δ|. So, we can rewrite the second part of (4.7) as∣∣∣∣2λδ (− sinA) + cosA

∣∣∣∣ =
1

|δ|
.(4.10)

The two vectors (− sinA, cosA)T and (cosA, sinA)T form an orthonormal basis of R2. Using (4.10) and the

first part of (4.7) we get(
2λ

|δ|

)2

+ 1 =

∥∥∥∥∥
(

2λ

δ
, 1

)T∥∥∥∥∥
2

=

∣∣∣∣2λδ (− sinA) + cosA

∣∣∣∣2 +

∣∣∣∣2λδ cosA+ sinA

∣∣∣∣2 ≤ 1

|δ|2
+ 1,
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and this contradicts the assumption 2λ > 1. Hence, we have (4.8).

We are ready to carry out the Steps 2.1–2.3.

• For Step 2.1, by Point 1, we may assume sinA cosH 6= 0. By a small perturbation of t to t1 in (4.6),

we get

−t1 sinA cosH + sinH cosA = δ1, where |δ1| > |δ|.

• For Step 2.2, with t1 and δ1 obtained, we adjust H to H1 (with |H −H1| small) so that the second

part of (4.7) is satisfied with t1, δ1 and H1. This is possible because of the second part of (4.7),∥∥∥( 2λt1δ1
, 1
)T∥∥∥ > 1, and that t1 and δ1 are small perturbations of t and δ, respectively.

• For Step 2.3, with (4.9), we can adjust A suitably to A1 (again with |A1 −A| small) so that t1, δ1,

H1 and A1 satisfy (4.6).

Summing up, with reference to Point 2, we have found t1, δ1, H1 and A1 such that (4.6) and (4.7) are

satisfied and |δ1| > |δ|. Assertion (ii) follows.

4.3. The main proof. We now give the proof of Theorem 1.3.

Proof of Theorem 1.3. Similar to T (R) in the proof of Theorem 1.2, let

T (C) = {(‖[X,Y ]‖2, |det[X,Y ]|2) : X,Y ∈ Σ2(C)} ⊂ R2.

To prove the theorem, it suffices to show that T (C) = Q. As Q = T (R) ⊆ T (C), it suffices to consider the

right boundary of T (C) and show that

max
{
‖[X,Y ]‖2 : X,Y ∈ Σ2(C), |det[X,Y ]|2 = β

}
= max

{
‖[X,Y ]‖2 : X,Y ∈ Σ2(R), |det[X,Y ]|2 = β

}
.

The left boundary (which corresponds to diagonal [X,Y ]) and the bottom boundary of T (R) and T (C) are

obviously the same.

4.3.1. A transformation of the problem. Suppose

X = X̃ +
trX

2
I2

in which tr X̃ = 0, and similarily for Ỹ . Then XY − Y X = X̃Ỹ − Ỹ X̃ which allows us to work with zero

trace matrices. As X is of rank one, its non-trivial eigenvalue is trX. On the other hand, suppose the

eigenvalues of X̃ (which has zero trace) are ±µ. Then X̃ + trX
2 I2 is of rank one if and only if 1

2 trX = ±µ.

When F = R, the latter is possible only if X̃ has real eigenvalues, equivalently, det X̃ ≤ 0. Note that

‖X‖2 = ‖X̃‖2 + 2

∣∣∣∣12trX

∣∣∣∣2 = ‖X̃‖2 + 2|µ|2 = ‖X̃‖2 + 2|det X̃|.

Thus, instead of matrices from Σ2(F), we may assume, if F = R, the matrices are chosen from

Φ(R) = {H : H ∈M2(R), trH = 0, ‖H‖2 + 2|detH| = 1,detH ≤ 0}

that and, if F = C, the matrices are chosen from

Φ(C) = {H : H ∈M2(C), trH = 0, ‖H‖2 + 2|detH| = 1}.
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We also note that

‖H‖2 + 2|detH| = s21(H) + s22(H) + 2s1(H)s2(H) =
(
s1(H) + s2(H)

)2
= ‖H‖21.

The condition ‖H‖2 + 2|detH| = 1 in the definitions of Φ(F) above is equivalent to ‖H‖1 = 1.

We now work with matrices in Φ(F). We see from the proof of Theorem 1.2 that the region T (R) (i.e., Q)

can be fully filled by commutators that are orthogonally upper triangularizable. Thus, under simultaneous

unitary (orthogonal if F = R) similarity, we may assume

H =

[
h11 h12
h21 −h11

]
, K =

[
k11 k12
k21 −k11

]
∈ Φ(F)

are chosen such that

(4.11)

[
λ δ

0 −λ

]
= HK −KH =

[
h12k21 − k12h21 2h11k12 − 2h12k11

2h21k11 − 2h11k21 h21k12 − k21h12

]
.

Though we may assume λ, δ ≥ 0 under diagonal unitary (orthogonal if F = R) similarity and multiplication

with a unit scalar, we do not do so here. Such actions will be used later.

Without assuming δ, λ ≥ 0, we need to amend our problem. Our original formulation has |det([X,Y ])|2 =

β with β being fixed and so |λ| is fixed, and we need to determine the maximum of |δ|. Thus, referring to

(4.11), the equivalent problem is to find, for 0 ≤ |λ| ≤ 1,

(4.12) δF|λ| = max{2|h11k12 − k11h12| : |h12k21 − k12h21| = |λ|, h11k21 − k11h21 = 0, H,K ∈ Φ(F)}.

The value of δR|λ| is exactly the δ|λ| as given in (1.3). Here, we need to prove δR|λ| = δC|λ|.

For F = R, C and 0 ≤ |λ| ≤ 1, we consider the following problem which has the constraint |h12k21 −
k12h21| = |λ| in (4.12) relaxed:

max F (H,K) = 2|h11k12 − k11h12|
subject to |h12k21 − k12h21| ≥ |λ|(4.13)

h11k21 − k11h21 = 0(4.14)

H,K ∈ Φ(F).(4.15)

Let us denote the maximum value of the above problem by ∆F
|λ|. Obviously we have

δR|λ| ≤

 ∆R
|λ|

δC|λ|

 ≤ ∆C
|λ|.

It is easy to see that ∆F
|λ| = max{δFt : |λ| ≤ t ≤ 1}. From (1.3), we know that δR|λ| is non-increasing in |λ|

(see Figure 1.1 for
(
δR|λ|
)2

), and so

δR|λ| = ∆R
|λ|.

Hence, if we can show ∆R
|λ| = ∆C

|λ|, we get δR|λ| = δC|λ| as required.
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4.3.2. Proof of ∆R
|λ| = ∆C

|λ|. We now regard F = C. Suppose the maximum is attained with matrices

H and K, i.e.,

0 < ∆C
|λ| = F (H,K) = 2|h11k12 − k11h12|.

We will show that, under different assumptions, either ∆C
|λ| ≤ δ

R
|λ| or else there is a contradiction.

Step 1. Firstly, we handle the situations that H or K has a zero entry. Note that if |h12| = 1, then

H ∈ Σ2(C) and has zero trace. By Proposition 4.1, we get ∆C
|λ| ≤ δR|λ| and we are done. The same is true

for K. We have the following three situations:

(I) h11 = 0. Then (4.14) implies k11h21 = 0. If k11 = 0 then ∆C
|λ| = 0 and we have a contradiction. If

h21 = 0 then |h12| = 1 and we are done.

(II) h21 = 0. Then h11k21 = 0 by (4.14). If h11 = 0 we are back to (I). If k21 = 0 then λ = 0 by (4.13).

Moreover, ‖H‖1 = ‖K‖1 = 1 implies (2h11,−h12)T and (k12, 2k11)T are unit vectors. Thus, ∆C
0 ≤ 1 = δR0

and we are done.

(III) h12 = 0. If k12 = 0 then ∆C
|λ| = 0 and hence a contradiction. If |k12| = 1, again, we are done.

Suppose 0 < |k12| < 1. Then

|h21| ≥ |λ|/|k12| and 2|h11| = ∆C
|λ|/|k12|.

With 4|h11|2 + |h21|2 = ‖H‖21 = 1, we get back to
(
∆C
|λ|
)2

+ |λ|2 ≤ |k12|2 < 1, which implies (as 1+ |λ| < 4|λ|
for |λ| > 1/3) (

∆C
|λ|
)2
< 1− |λ|2 ≤

{
1 if 0 ≤ |λ| ≤ 1/2

4|λ|(1− |λ|) if 1/2 < |λ| ≤ 1

}
=
(
δR|λ|

)2
,

which gives a contradiction.

Step 2. We derive some necessary conditions on H and K. From now on, we can assume all the entries

of H and K nonzero. If detH = 0, then H ∈ Σ2(C) with zero trace. By Proposition 4.1, we have ∆C
|λ| ≤ δ

R
|λ|

and we are done. The same is true for K. We now further assume

(4.16) detH 6= 0 and detK 6= 0.

Via multiplication by suitable unit scalars on H and K, we assume h11 > 0 and k11 > 0.

Write

H =

[
h11 |h12|eiθ12

|h21|eiθ21 −h11

]
and K =

[
k11 |k12|eiµ12

|k21|eiµ21 −k11

]
,

where θ12, θ21, µ12, µ21 ∈ [0, 2π). Define

H1(θ) =

[
h11 h12e

iθ

h21 −h11

]
and K1(θ) =

[
k11 k12e

iθ

k21 −k11

]
, θ ∈ J,

where J is an open interval containing 0 such that detH1(θ) and detK1(θ) are nonzero on J . Such an interval

exists because H1(0) = H, K1(0) = K and (4.16). We see that for any θ ∈ J , H1(θ) and K1(θ) satisfy (4.13)

and (4.14), though they may not belong to Φ(C) because their trace norms may not be 1. If there exists

a θ0 ∈ J such that ‖H1(θ0)‖21 · ‖K1(θ0)‖21 < 1, then for α = 1/‖H1(θ0)‖1 and β = 1/‖K1(θ0)‖1, αβ > 1,

‖αH1(θ0)‖1 = 1 and ‖βK1(θ0)‖1 = 1. It is easy to check that αH1(θ0) and βK1(θ0) satisfy (4.13)–(4.15)

and

F (αH1(θ0), βK1(θ0)) =
∣∣αβeiθ0(2h11k12 − 2k11h12)

∣∣ = αβ∆C
|λ| > ∆C

|λ|.
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This gives a contradiction. Thus, the function G(θ) = ‖H1(θ)‖21 · ‖K1(θ)‖21 has a global minimum value 1

attained at θ = 0 and, consequently, G′(0) = 0 and G′′(0) ≥ 0. As ‖H1(0)‖1 = ‖K1(0)‖1 = 1, we get

(4.17)
(
‖H1(θ)‖21

)′ ∣∣
θ=0

+
(
‖K1(θ)‖21

)′ ∣∣
θ=0

= G′(0) = 0,

and

(4.18)
(
‖H1(θ)‖21

)′′ ∣∣
θ=0

+ 2
(
‖H1(θ)‖21

)′ ∣∣
θ=0
·
(
‖K1(θ)‖21

)′ ∣∣
θ=0

+
(
‖K1(θ)‖21

)′′ ∣∣
θ=0

= G′′(0) ≥ 0.

From (4.17), we have
(
‖H1(θ)‖21

)′ ∣∣
θ=0
·
(
‖K1(θ)‖21

)′ ∣∣
θ=0
≤ 0, and thus, (4.18) implies

(4.19)
(
‖H1(θ)‖21

)′′ ∣∣
θ=0

+
(
‖K1(θ)‖21

)′′ ∣∣
θ=0
≥ 0.

We now obtain the explicit expressions for (4.17) and (4.19). From (4.14), since h11k21 6= 0, we have

θ21 = µ21.(4.20)

Then

‖H1(θ)‖21 = 2h211 + |h12|2 + |h21|2 + 2
∣∣∣h211 + |h12||h21|ei(θ12+θ21+θ)

∣∣∣
= 2h211 + |h12|2 + |h21|2 + 2

√
h411 + 2h211|h12||h21| cos(θ12 + θ21 + θ) + |h12|2|h21|2.

Thus,

(
‖H1(θ)‖21

)′
=

−2h211|h12||h21| sin(θ12 + θ21 + θ)√
h411 + 2h211|h12||h21| cos(θ12 + θ21 + θ) + |h12|2|h21|2

,

and hence,

(4.21)
(
‖H1(θ)‖21

)′ ∣∣
θ=0

=
−2h211|h12||h21| sin(θ12 + θ21)

|detH|
.

With a similar expression for (‖K1(θ)‖1)
′ ∣∣
θ=0

, condition (4.17) implies

(4.22)
h211|h12||h21| sin(θ12 + θ21)

|detH|
+
k211|k12||k21| sin(µ12 + µ21)

|detK|
= 0.

Also, by direct calculation,

(‖H1(θ)‖21)′′
∣∣
θ=0

=
−2|h11|2|h12||h21| cos(θ12 + θ21)

|detH|
− 2|h11|4|h12|2|h21|2 sin2(θ12 + θ21)

|detH|3
.

Thus, with a similar expression for (‖K1(θ)‖1)
′′ ∣∣
θ=0

, (4.19) implies

h211|h12||h21| cos(θ12 + θ21)

|detH|
+
h411|h12|2|h21|2 sin2(θ12 + θ21)

|detH|3

+
k211|k12||k21| cos(µ12 + µ21)

|detK|
+
k411|k12|2|k21|2 sin2(µ12 + µ21)

|detK|3
≤ 0(4.23)

Step 3. We now come to the final argument. We refer to (4.22) and divide the proof into two cases,

depending on whether sin(θ12 + θ21) is zero or not.
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Case 1. sin(θ12+θ21) = 0. By (4.22), sin(µ12+µ21) = 0 and so both θ12+θ21 and µ12+µ21 are multiples

of π. With (4.20), we can easily deduce that H and K are of the form

H =

[
h11 τH |h12|e−θ21i

|h21|eθ21i −h11

]
and K =

[
k11 τK |k12|e−θ21i

|k21|eθ21i −k11

]
,

where τH , τK ∈ {1,−1}. Let D = diag(1, eiθ21), which is unitary. Then D∗HD and D∗KD are real matrices.

For notation simplicity, instead of using D∗HD and D∗KD, we now just assume H and K are real. We

have three subcases.

Subcase 1.1. detH < 0 and detK < 0. Here, both H and K belong to Φ(R). Consequently, we have

∆R
|λ| ≥ ∆C

|λ| and the result follows.

Subcase 1.2. detH > 0 and detK > 0. The condition detH > 0 implies h211 + h12h21 < 0 and

consequently the condition ‖H‖21 = 1 becomes (h12 − h21)2 = 1, which is independent of h11. It means that

as long as the condition h211 + h12h21 < 0 is satisfied, we may vary h11 freely. The same is true for k11 when

detK > 0. Thus, for ε > 0 but small enough, the pair

Ĥ =

[
(1 + ε)h11 h12

h21 −(1 + ε)h11

]
and K̂ =

[
(1 + ε)k11 h12

k21 −(1 + ε)k11

]
satisfies (4.13)–(4.15) and F (Ĥ, K̂) = (1 + ε)F (H,K) > F (H,K) = ∆C

|λ|. This gives a contradiction.

Subcase 1.3. detH < 0 and detK > 0 (the other case detH > 0 and detK < 0 is the same). We

check that X = H +
√
|detH|I2 ∈ Σ2(R) and Y = K +

√
|detK|I2i ∈ Σ2(C). By Lemma 4.2, we conclude

that either ∆C
|λ| ≤ δR|λ| or there is another pair that gives a larger value of F . The latter contradicts the

maximality of F (H,K). The result follows.

Case 2. sin(θ12 + θ21) 6= 0. Suppose sin(θ12 + θ21) > 0 (the case sin(θ12 + θ21) < 0 is similar). Then

sin(µ12 + µ21) < 0 by (4.22) and we have from (4.21)(
‖H1(θ)‖21

)′ ∣∣
θ=0

< 0 and
(
‖K1(θ)‖21

)′ ∣∣
θ=0

> 0.

Subcase 2.1. cos((θ12 + θ21) − (µ12 + µ21)) 6= −1. We can find an ε ∈ J (with |ε| small enough, to be

determined later) such that

cos((θ12 + θ21)− (µ12 + µ21)) > cos((θ12 + θ21)− (µ12 + µ21) + ε).

Then, using (4.20),

∆C
|λ| = 2

∣∣∣h11|k12| − k11|h12|ei((θ12+θ21)−(µ12+µ21))
∣∣∣

< 2
√
h211|k12|2 − 2h11k11|h12||k12| cos((θ12 + θ21)− (µ12 + µ21) + ε) + k211|h12|2 := p

and at the same time, again using (4.20),

|λ| ≤ |h12k21 − k12h21| =
∣∣∣|h12||k21|ei(θ12+µ21−µ12−θ21) − |k12||h21|

∣∣∣
<
√
|h12|2|k21|2 − 2|h12||k21||h21||k12| cos((θ12 + θ21)− (µ12 + µ21) + ε) + |k12|2|h21|2 := q.
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Suppose ε > 0. Since
(
‖H1(θ)‖21

)′ ∣∣
θ=0

< 0, we know that
(
‖H1(θ)‖21

)′
, being continuous on J , is

negative on a neighborhood N of 0. Thus, ‖H1(θ)‖21 is decreasing on N . We can assume ε small enough so

that ‖H1(ε)‖21 < ‖H1(0)‖21 = 1. Note that

H1(ε)K −KH1(ε) =

[
h12e

iεk21 − k12h21 2h11k12 − 2k11h12e
iε

0 −(h12e
iεk21 − k12h21)

]
with |2h11k12 − 2k11h12e

iε| = p > ∆C
|λ| and |h12eiεk21 − k12h21| = q > |λ|. We now have a contradiction

because H1(ε)/‖H1(ε)‖1 and K satisfy (4.13)–(4.15) and

F (H1(ε)/‖H1(ε)‖1,K) = p/‖H1(ε)‖1 > ∆C
|λ|/‖H1(ε)‖1 > ∆C

|λ|.

If ε < 0, we use
(
‖K1(θ)‖21

)′ ∣∣
θ=0

> 0, and we have a contradiction similarly.

Subcase 2.2. cos((θ12 + θ21)− (µ12 + µ21)) = −1. We have

(θ12 + θ21) = (µ12 + µ21) + (2k + 1)π for some integer k.

This implies

(4.24) (0 6=) sin(θ12 + θ21) = − sin(µ12 + µ21) and cos(θ12 + θ21) = − cos(µ12 + µ21).

Then, (4.22) and the first part of (4.24) give

(4.25)
h211|h12||h21|
|detH|

=
k211|k12||k21|
|detK|

.

We now refer to (4.23). Using (4.24), (4.25) and the assumption that all the entries of H and K are nonzero,

we get a contradiction.
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