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SOME GRAPHS DETERMINED BY THEIR SIGNLESS LAPLACIAN

(DISTANCE) SPECTRA∗

CHANDRASHEKAR ADIGA† , KINKAR CHANDRA DAS‡ , AND RAKSHITH B. R.§

Abstract. In literature, there are some results known about spectral determination of graphs with many edges. In

[M. Cámara and W.H. Haemers. Spectral characterizations of almost complete graphs. Discrete Appl. Math., 176:19–23,

2014.], Cámara and Haemers studied complete graph with some edges deleted for spectral determination. In fact, they found

that if the deleted edges form a matching, a complete graph Km provided m ≤ n − 2, or a complete bipartite graph, then it

is determined by its adjacency spectrum. In this paper, the graph Kn\Kl,m (n > l +m) which is obtained from the complete

graph Kn by removing all the edges of a complete bipartite subgraph Kl,m is studied. It is shown that the graph Kn\K1,m

with m ≥ 4 is determined by its signless Laplacian spectrum, and it is proved that the graph Kn\Kl,m is determined by its

distance spectrum. The signless Laplacian spectral determination of the multicone graph Kn−2α ∨ αK2 was studied by Bu

and Zhou in [C. Bu and J. Zhou. Signless Laplacian spectral characterization of the cones over some regular graphs. Linear

Algebra Appl., 436:3634–3641, 2012.] and Xu and He in [L. Xu and C. He. On the signless Laplacian spectral determination of

the join of regular graphs. Discrete Math. Algorithm. Appl., 6:1450050, 2014.] only for n− 2α = 1 or 2. Here, this problem is

completely solved for all positive integer n− 2α. The proposed approach is entirely different from those given by Bu and Zhou,

and Xu and He.
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1. Introduction. Graphs considered in this paper are all simple. Let G be a graph with vertex

set V (G) = {v1, v2, . . . , vn} and edge set E(G). The degree of a vertex vi is the number of neighbors

of vi in G and is denoted by di(G). Throughout the paper, we assume that the sequence {di(G)}ni=1

is non-increasing, i.e., di(G) ≥ di+1(G), i = 1, 2, . . . , n − 1. The adjacency matrix of G, denoted by

A(G), is the n × n real symmetric matrix whose (i, j)-entry is 1 if vivj ∈ E(G) and 0 otherwise. The

adjacency spectrum or spectrum of G is the multiset of eigenvalues of A(G). The matrix L(G) = Dg(G)−
A(G) (resp., Q(G) = Dg(G)+A(G)), where Dg(G) = diag(d1(G), d2(G), . . . , dn(G)) is the Laplacian matrix

(resp., signless Laplacian) of G and the L-spectrum (resp., Q-spectrum) of G is the spectrum of L(G)

(resp., Q(G)). Two graphs are cospectral (resp., L-cospectral, Q-cospectral) if they have same spectrum

(resp., L-spectrum, Q-spectrum). We say that a graph G is determined by its spectrum (resp., L-spectrum,

Q-spectrum) or simply G is DS (resp., DLS, DQS) if there is no non-isomorphic graph cospectral to G.

One of the interesting problems in spectral graph theory is to characterize graphs which are determined

by their spectra. This question was raised by Günthard and Primas [12] with motivations from Hückel

theory. In [25, 26], Dam and Haemers gave a survey of (partial) answers to the posed question. In literature,
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there are several papers addressing the problem of characterizing graphs which are DS, DLS and DQS. For

some recent papers on this topic, see [8, 14, 16, 22, 24].

The distance between the vertices vi and vj of G is the length of a shortest path between them. It is

denoted by d(vi, vj). The maximum of all distances between any pair of vertices of G is the diameter of G.

The distance matrix D(G) of a connected graph G is the real symmetric matrix of order n with (i, j)-entry

equal to d(vi, vj). The distance spectrum or D-spectrum of G is the spectrum of D(G). Two connected graphs

are D-cospectral if they have same D-spectrum. A connected graph G is DDS if there is no non-isomorphic

graph D-cospectral to G. In [18], Lin et al. showed that the complete graph, the complete bipartite graph

and the complete split graph are DDS. Further, they conjectured that the complete multipartite graph is

DDS and this conjecture was confirmed by Jin and Zhang in [17]. In [28], Xue et al. proved that the path

graph and double star graph is determined by their distance spectrum. In [8], Das and Liu proved that the

kite graph Kin,n−1 (for definition, see [8]) is DDS.

In [4], Cámara and Haemers proved that the graph Kn\Kl,m is DS. In [29], Zhou and Bu showed that

if G is a disconnected DLS graph, then the join graph G∨Kr is DLS. From this, it follows that the graph

Kn\Kl,m with m > 1 and l
m > 5

3 is DLS, since Kl ∪Km with m > 1 and l
m > 5

3 is DLS, see [1]. Motivated

by these results, in Section 3 of this paper, we show that the graph Kn\K1,m with m ≥ 4 is determined

by its signless Laplacian spectrum and we also prove that the graph Kn\Kl,m is determined by its distance

spectrum. Recently, the signless Laplacian spectral determination of the join of graphs has been studied, for

example, we have the following joins which are DQS.

1. K1 ∨ (cK2 ∪ (n− 2c− 1)K1) with n ≥ 2c+ 1 and c ≥ 0 [20].

2. K1 ∨ Cn, where Cn is the cycle with n vertices [19].

3. G ∨ K1, where G is an r-regular graph on n vertices and r = 1 or n − 2 or 2 with n ≥ 11, and

G ∨K1, where G is an (n− 3)-regular with G having no triangles [3].

4. G∨K2, where G is an r-regular graph on n vertices and r = 1 or n− 2, and G∨K2, where G is an

(n− 3)-regular with G having no triangles [27].

5. G ∨Km, where G is an (n− 2)-regular graph and Kn ∨K2 for n 6= 3 [21].

6. The complete split graph Kn ∨Km for n 6= 3 [7].

Motivated by these results, in Section 4, we prove that the join graph G ∨Kn is determined by its signless

Laplacian spectrum, where G is a 1-regular graph. This result extends the following known theorem.

Theorem 1.1. ([3, 27]) Let G be a 1-regular graph. Then for r = 1, 2, G ∨ Kr is determined by its

signless Laplacian spectrum.

2. Some preliminary results. In this section, we give some necessary theorems and lemmas required

to prove our main results. We denote the eigenvalues of a Hermitian matrix M of order m by θ1(M) ≥
θ2(M) ≥ · · · ≥ θm(M) and also, let γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G) and η1(G) ≥ η2(G) ≥ · · · ≥ ηn(G) be the

signless Laplacian eigenvalues and distance eigenvalues of G, respectively.

Theorem 2.1. ([15]) Let M be a Hermitian matrix of order n.

(i) If Mk is a principal submatrix of M of order k with 1 ≤ k ≤ n, then for 1 ≤ i ≤ k, θn−k+i(M) ≤
θi(Mk) ≤ θi(M).

(ii) If M = N + P , where N and P are Hermitian matrices of order n. Then for 1 ≤ i, j ≤ n, we have:

(a) θi(N) + θj(P ) ≤ θi+j−n(M) (i+ j > n);

(b) θi+j−1(M) ≤ θi(N) + θj(P ) (i+ j − 1 ≤ n).
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A connected bipartite graph G with vertex partition sets U and V is called as balanced if the cardinalities

of U and V are same.

Theorem 2.2. ([5, 6, 8, 11]) Let G be a connected graph of order n.

(i) We have γ2(G) ≤ n − 2, for n ≥ 2. Moreover, γk+1(G) = n − 2 (1 ≤ k ≤ n − 1) if and only if G has

either k balanced bipartite components or k + 1 bipartite components.

(ii) dn−1(G) ≥ γn−1(G)− 1. Furthermore, if the equality holds, then dn−1(G) = dn(G).

(iii) If G is a bipartite graph, then the Q-spectrum of G is equal to its L-spectrum.

(iv) The largest Laplacian eigenvalue of G is at most n and γ1(G) ≤ 2d1(G).

(v) The multiplicity of 0 as an eigenvalue pertaining to Q(G) is the number of connected bipartite compo-

nents of G.

Lemma 2.3. Let l +m ≤ n− 1. Then the signless Laplacian spectrum of Kn\Kl,m consists of n− 2 of

multiplicity n− l −m, n−m− 2 of multiplicity l − 1, n− l − 2 of multiplicity m− 1, and the two roots of

the quadratic polynomial x2 + (l +m− 3n+ 4)x+ 2n2 − (2l + 2m+ 6)n+ (4m+ 2)l + 2m+ 4.

Proof. The signless Laplacian matrix Q of Kn\Kl,m can be written as follows: Jn−m−l + (n− 2)In−m−l J J

J Jl + (n−m− 2)Il 0

J 0 Jm + (n− l − 2)Im

,

where J is a matrix whose all entries are 1 and Im is the identity matrix of order m. From the above matrix,

we see that the matrices Q− (n− 2)In, Q− (n−m− 2)In and Q− (n− l− 2)In have rank at most l+m+ 1,

n− l+ 1 and n−m+ 1, respectively. This implies that the matrices Q− (n− 2)In, Q− (n−m− 2)In and

Q− (n− l − 2)In have nullity at least n− l −m− 1, l − 1 and m− 1, respectively. Thus, the spectrum of

Q consists of n − 2 with multiplicity n − l −m − 1, n −m − 2 with multiplicity l − 1 and n − l − 2 with

multiplicity m− 1. Now observe that the given partition of Q is equitable (see [2]) with the quotient matrix

Q1 =

 2n−m− l − 2 l m

n−m− l n−m+ l − 2 0

n−m− l 0 n− l +m− 2

 .
The spectrum of Q1 consists of n − 2 and the two roots of the polynomial x2 + (l + m − 3n + 4)x + 2n2 −
(2l + 2m+ 6)n+ (4m+ 2)l + 2m+ 4. As the spectrum of Q1 is contained in the spectrum of Q, see [2], we

are done.

The following lemma gives the D-spectrum of Kn\Kl,m. As the proof of the lemma is in similar lines of

the above lemma, we omit the details.

Lemma 2.4. The distance spectrum of Kn\Kl,m consists of −1 with multiplicity n−3 and the three roots

of the polynomial x3 − (n− 3)x2 − (3lm+ 2n− 3)x−ml2 −m(m− n+ 3)l − n+ 1.

Lemma 2.5. ([10]) For i = 1, 2, let Gi be an ri-regular graph on ni vertices. Then the Q-spectrum of

G1 ∨ G2 consists of γj(G1) + n2 (j = 2, 3, . . . , n1), γj(G2) + n1, (j = 2, 3, . . . , n2) and the two roots of the

quadratic polynomial x2 −
(

2(r1 + r2) + (n1 + n2)
)
x+ 2(2r1r2 + r1n1 + r2n2).

Lemma 2.6. Let Q1 = Jn−m+1 + (n− 2)In−m+1 be a square matrix of order n−m+ 1 with n > m+ 1.

Then n− 2 is an eigenvalue of multiplicity n−m and 2n−m− 1 is the remaining eigenvalue of Q1.

Proof. Let x = (x1, x2, . . . , xn)T be an eigenvector corresponding to the eigenvalue θ of Q1. Then
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Q1x = θ x. One can easily see that the eigenvalue n− 2 with corresponding eigenvectors

(1, −1︸ ︷︷ ︸
2

, 0, . . . , 0)T , (1, 0, −1︸ ︷︷ ︸
3

, 0, . . . , 0)T , . . . , and (1, 0, . . . , 0, −1︸ ︷︷ ︸
n−m+1

)T

satisfy the above relation. Since these n −m eigenvectors are linearly independent, n − 2 is an eigenvalue

with multiplicity at least n −m. Since
n−m+1∑
i=1

θi(Q1) = (n − 1) (n −m + 1), 2n −m − 1 is the remaining

eigenvalue.

Corollary 2.7. Let Q1 = Jn−m+1+(n−2)In−m+1 be a square matrix of order n−m+1 with n > m+1.

Then θn−m+1(Q1) = n− 2.

Proof. Since n > m+ 1, by Lemma 2.6, we get the required result.

Lemma 2.8. Let G be a graph of order 2α, where the spectrum of the signless Laplacian of G is

QS(G) =

4α− 4, 2α− 2, . . . , 2α− 2︸ ︷︷ ︸
α

, 2α− 4, . . . , 2α− 4︸ ︷︷ ︸
α−1

 .

Then G is regular of degree (2α− 2).

Proof. From the signless Laplacian spectrum of G, one can easily see that

2α∑
i=1

di =

2α∑
i=1

γi = 4α(α− 1) and

2α∑
i=1

d2i =

2α∑
i=1

γ2i −
2α∑
i=1

γi = 8α(α− 1)2.

Thus, we have
2α∑
i=1

(
di − 2(α− 1)

)2
= 0, that is, di = 2α− 2, i = 1, 2, . . . , 2α.

Hence, G is regular of degree (2α− 2).

Let λ1(G) denote the spectral radius of the graph G and also let LG be the line graph of G. The following

result was obtained in [9, 13]:

Lemma 2.9. ([9, 13]) Let G be a connected graph of order n. Then γ1(G) = 2 + λ1(LG).

Corollary 2.10. Let G be a connected graph of order n with m edges. Then γ1(G) ≤ m + 1 with

equality holding if and only if LG ∼= Km.

Proof. It is well known that the adjacency spectral radius λ1(G) ≤ n − 1 with equality holding if and

only if G ∼= Kn. Then by Lemma 2.9, we have γ1(G) ≤ m+ 1 as m is the number of edges in G. Moreover,

the equality holds if and only if LG ∼= Km.

3. Signless Laplacian (distance) spectral characterization of Kn\Kl,m. Let λ1(G) ≥ λ2(G) ≥
· · · ≥ λn(G) be the spectrum of G. The following theorem gives a general form of Theorem 2.2 (ii).

Theorem 3.1. Let G be a graph with n vertices and let Hi be the graph induced by the vertices

vn−i+1, vn−i+2, . . . , vn of G, where 2 ≤ i ≤ n. Then

γn−i+1(G)− λ1(Hi) ≤ dn−i+1(G).
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Proof. Let A(Hi) be the adjacency matrix of Hi with its rows and columns indexed by vn−i+1, vn−i+2,

. . . , vn. Let Qi = Di + A(Hi), where Di = diag(dn−i+1(G), dn−i+2(G), . . . , dn(G)). Then clearly, Qi is a

principal submatrix of Q(G) and so by Theorem 2.1 (i), we have θ1(Qi) ≥ γn−i+1(G). Hence, γn−i+1(G) ≤
θ1(Qi) ≤ dn−i+1(G) + λ1(Hi) by Theorem 2.1 (ii).

In literature, complete graph Kn with some edges deleted is studied for spectral determination. In the

following theorem, it is shown that if the deleted edges form a star graph with at least 4 edges, then it is

determined by its signless Laplacian spectrum.

Theorem 3.2. If n > m+ 1 and m ≥ 4, then Kn\K1,m is DQS.

Proof. Let G be a graph Q-cospectral with Kn\K1,m. Then by Lemma 2.3, the Q-spectrum of G is

(3.1)

(
3n−m− 5±

√
m2 + (2n− 14)m+ (n+ 1)2

)
/2,

n− 2 with multiplicity n−m− 1,

n− 3 with multiplicity m− 1.

 .

This implies

(3.2)

2|E(G)| =
n∑
i=1

di(G) =

n∑
i=1

γi(G) = n2 − 2m− n,
n∑
i=1

di(G)(di(G) + 1) =

n∑
i=1

γ2i (G) = n3 − n2 +m2 − (4n− 3)m.

 .

Since n > m+ 1, from (3.1), one can easily see that

γ1(G) =
(

3n−m− 5 +
√
m2 + (2n− 14)m+ (n+ 1)2

)
/2 > 2(n− 2),

and γ1(G) ≤ 2d1(G) by Theorem 2.2 (iv). It follows that d1(G) = n− 1, and hence, G is connected. Since(
3n−m− 5−

√
m2 + (2n− 14)m+ (n+ 1)2

)
/2 < n− 3,

by Theorem 2.2 (ii) and (3.1), we have dn−1(G) ≥ n− 4. Furthermore, if dn−1(G) = n− 4, then dn−1(G) =

dn(G). Let vn be a vertex of degree dn(G) and let ni be the number of vertices in V (G)\{vn} of degree n− i,
i = 1, 2, 3, 4. Suppose dn−m+1(G) = n − 1. Then Q1 = Jn−m+1 + (n − 2)In−m+1 is a principal submatrix

of Q(G) and so by Theorem 2.1 (i) with Corollary 2.7, we have γn−m+1(G) ≥ θn−m+1(Q1) = n − 2. Since

γn−m+1(G) = n− 3, this is a contradiction. Thus, 1 ≤ n1 ≤ n−m.

From (3.2), we have

(3.3) n4 + n3 + n2 + n1 = n− 1,

(3.4) (n− 4)n4 + (n− 3)n3 + (n− 2)n2 + (n− 1)n1 = n2 − 2m− n− dn(G),

(3.5) (n− 4)2n4 + (n− 3)2n3 + (n− 2)2n2 + (n− 1)2n1 = n3 − 2n2 − (4m− 1)n+m2 + 5m− d2n(G).
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Suppose dn−1(G) = n− 4. Then dn(G) = dn−1(G) = n− 4 and by equations (3.3)–(3.5), we have

(3.6) n3 + 2n2 + 3n1 = 3n− 2m,

(3.7) (n− 3)n3 + 2(n− 2)n2 + 3(n− 1)n1 = 3n2 − 3n+m2 − (2n+ 3)m.

Eliminating n3 from (3.6) and (3.7), we have

n2 = (1/2)m2 − (9/2)m+ 3n− 3n1.(3.8)

Substituting (3.8) in (3.6), we have

n3 = −m2 + 7m− 3n+ 3n1.(3.9)

Since m ≥ 4 and n1 ≤ n−m, from (3.9), we have n3 = 0 and n1 = n− 4. These results with (3.3) and (3.4),

we get n2 +n4 = 3 and n4 = m−3. Therefore, by (3.8), it follows that n2 = 2 and n4 = 1. This is impossible

because if n1 = n− 4, n4 = 1 and dn(G) = n− 4, then we must have n2 = 0. Hence, dn−1(G) ≥ n− 3 and

n4 = 0 holds in equations (3.3)–(3.5). Now from (3.3) and (3.4), we have

(3.10) n2 + 2n1 = 3n− 2m− dn(G)− 3.

Eliminating n3 from (3.3) and (3.5), we have

(3.11) (2n− 5)n2 + 4(n− 2)n1 = 5n2 +m2 − 4mn+ 5m− 14n+ 9− d2n(G).

Solving equations (3.10) and (3.11) for n1, we have

(3.12) n1 = (1/2)m2 − (1/2)n2 + (n− 5/2)dn(G)− (1/2)d2n(G)− (5/2)m+ (7/2)n− 3.

If dn(G) ≥ n− 2, then by (3.12), we have n1 ≥ n− 3, a contradiction, since n1 ≤ n−m and m ≥ 4. Thus,

1 ≤ dn(G) ≤ n− 3.

Now, define

φ(x) = (1/2)m2 − (1/2)n2 + nx− (1/2)x2 − (5/2)m+ (7/2)n− (5/2)x− 3.

Then

φ′(x) = n− x− 5/2 > 0, 1 ≤ x ≤ n− 3.

Hence, φ(x) is an increasing function on 1 ≤ x ≤ n− 3. If n−m ≤ dn(G) ≤ n− 3, then φ(n−m) = n− 3 ≤
n1 ≤ n−m, a contradiction, since m ≥ 4. Thus, dn(G) ≤ n−m−1. Since |E(G)| = 1

2
(n−2)(n−1)+n−m−1,

we have

(n− 2)(n− 1) + 2(n−m− 1) = 2|E(G)|
≤ dn(G) + dn(G)(n− 1) + (n− dn(G)− 1)(n− 2)

= (n− 1)(n− 2) + 2dn(G).(3.13)

If dn(G) ≤ n−m− 2, then from (3.13), we get a contradiction. Thus, we have dn(G) = n−m− 1. Again

since |E(G)| = 1

2
(n− 2)(n− 1) + n−m− 1, we have G\{vn} ∼= Kn−1. Hence, G ∼= Kn\K1,m.
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Theorem 3.3. Let G be a connected graph on n vertices with diameter 2 and having a distance eigenvalue

−1 with multiplicity n− 3. Then G ∼= Kn\Kl,m, where l,m ≥ 1 and l +m ≤ n− 1.

Proof. Since −1 is a distance eigenvalue of G with multiplicity n − 3, it follows that the symmetric

matrix D(G) + I is of rank 3. Thus, we can assume that

D(G) + I =

[
D1 X

XT D2

]
,

where D1 is a nonsingular matrix of order 3. Since the nullity of D(G) + I is n− 3 and D1 is a nonsingular

matrix of order 3, we have D2 = XTD−11 X. Thus, xTD−11 x = 1 for each column x of X, since D2 is a

matrix with 1 as its diagonal entries. Now as D1 − I is a principal submatrix of D(G), the distance matrix

of G with diameter 2 and rank(D1) = 3, we have

D1 =

 1 2 2

2 1 2

2 2 1

 or D1 =

 1 1 1

1 1 2

1 2 1

.

In the first case,

D−11 = (1/5)


−3 2 2

2 −3 2

2 2 −3


and it is easy to see that the only possible columns x of X satisfying 1 = xTD−11 x are [1, 2, 2]T , [2, 1, 2]T

and [2, 2, 1]T . In the second case,

D−11 =


3 −1 −1

−1 0 1

−1 1 0


and so xTD−11 x = 1 implies that x is one of the three vectors [1, 1, 1]T , [1, 1, 2]T and [1, 2, 1]T . Thus, these

two cases leads to the following two possibilities for D(G) + I:

D(G) + I =

 Jk 2J 2J

2J Jl 2J

2J 2J Jm

 or

 Jk J J

J Jl 2J

J 2J Jm

 .
The first possibility is impossible because G is a connected graph. Thus, we must have

D(G) + I =

 Jk J J

J Jl 2J

J 2J Jm

 , i.e., G ∼= Kn\Kl,m.

Theorem 3.4. The graph Kn\Kl,m is DDS.

Proof. Let G be a graph D-cospectral with Kn\Kl,m. If the diameter of G is at least 3, then G has P4,

the path of length 3 as its induced subgraph and D(P4) as a principal submatrix of D(G). Therefore, by

Theorem 2.1 (i), η2(G) ≥ −0.586 and η3(P4) ∼= −1.162 ≥ ηn−1(G), which is a contradiction to Lemma 2.4.

Thus, the diameter of G is at most 2. Clearly G � Kn and so G is of diameter 2. Hence, by Theorem 3.3,

G ∼= Kn\Kl1,m1 . Since G and Kn\Kl,m have same Q-spectrum, from Lemma 2.4, we have lm = l1m1 and

l +m = l1 +m1. Solving these equations, we get l = l1 and m = m1. Thus, G ∼= Kn\Kl,m.
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4. Signless Laplacian spectral characterization of the join graph αK2 ∨Kn−2α.

In this section, we prove that the multicone graph αK2 ∨Kn−2α is determined by its signless Laplacian

spectrum which complement the works of Bu and Zhou in [3], and Xu and He in [27].

Theorem 4.1. Let n and α be positive integers with n− 2α ≥ 1. Then the graph αK2 ∨Kn−2α is DQS.

Proof. Let G ∼= αK2 ∨ Kn−2α (n − 2α ≥ 1). When α = 1, G is a complete graph and so G is QDS.

For n − 2α = 1, by Theorem 1.1, G ∼= αK2 ∨K1 is determined by its Q-spectrum. Otherwise, α ≥ 2 and

n− 2α ≥ 2. Let H be a graph Q-cospectral with G. Then by Lemma 2.5, the Q-spectrum of H is

(4.14)

γ1(H), γn(H) =
(

3n− 4α±
√
n2 + 8n(α− 1)− 16α2 + 16

)
/2,

γ2(H) = γ3(H) = · · · = γn−2α(H) = n− 2,

γn−2α+1(H) = γn−2α+2(H) = · · · = γn−α−1(H) = n− 2α+ 2,

γn−α(H) = γn−α+1(H) = · · · = γn−1(H) = n− 2α.


.

Let H be the complement graph of H. From Theorem 2.1 (ii) and (4.14), we have

n− 2 ≤ γn−2α(H) + γ2α+2(H) ≤ θ2(Q(H) +Q(H)) = n− 2,

n− 2 = θn(Q(H) +Q(H)) ≤ γn−2α+1(H) + γ2α(H) = n− 2α+ 2 + γ2α(H),

n− 2α+ 2 + γα+3(H) = γn−α−1(H) + γα+3(H) ≤ θ2(Q(H) +Q(H)) = n− 2,

n− 2 = θn(Q(H) +Q(H)) ≤ γn−α(H) + γα+1(H) = n− 2α+ γα+1(H)

and

n− 2α+ γ3(H) = γn−1(H) + γ3(H) ≤ θ2(Q(H) +Q(H)) = n− 2.

Thus,

(4.15)

γ3(H) = γ4(H) = · · · = γα+1(H) = 2α− 2,

γα+3(H) = γα+4(H) = · · · = γ2α(H) = 2α− 4,

γ2α+2(H) = γ2α+3(H) = · · · = γn(H) = 0.

 .

Since G and H are Q-cospectral, it is easy to see that

n∑
i=1

γi(H) = 2|E(H)| =
n∑
i=1

di(H) =

n∑
i=1

di(G) = 4α(α− 1),(4.16)

n∑
i=1

γ2i (H) =

n∑
i=1

di(H)(di(H) + 1) =

n∑
i=1

di(G)(di(G) + 1) = 4α(α− 1)(2α− 1).(4.17)

If α = 2, then from (4.16), |E(H)| = 4. Thus, we have the following possibilities for H.

H ∼=



H1 ∪ (n− 5)K1, H1 is a tree on 5 vertices,

H1 ∪ (n− 4)K1, H1 is a connected graph with 4 vertices and 4 edges,

K3 ∪K2 ∪ (n− 5)K1 or P4 ∪K2 ∪ (n− 6)K1 or S1,3 ∪K2 ∪ (n− 6)K1, or

P3 ∪ P3 ∪ (n− 6)K1 or P3 ∪K2 ∪K2 ∪ (n− 7)K1 or 4K2 ∪ (n− 8)K1.
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By Sage [23], using the Q-spectrum of connected graphs with at most 5 vertices, one can easily check that all

these cases for H, except H ∼= K2,2∪(n−4)K1 contradicts either (4.15) or (4.17). Thus, H ∼= K2,2∪(n−4)K1,

and hence, the theorem is true for 1 ≤ α ≤ 2. Now let α ≥ 3. The following claim is important for our

proof.

Claim: H has at least one connected component H1 with γ2(H1) ≥ 2α− 2.

Proof of Claim: Let H = H1 ∪H2 ∪ · · · ∪Hk ∪ rK1, where Hi (1 ≤ i ≤ k) is i-th connected component

of order ni in H (r = n−n1−n2− · · · −nk). Then γ(H) = γ(H1)∪ γ(H2)∪ · · · ∪ γ(Hk)∪{0, . . . , 0︸ ︷︷ ︸
r

}, where

γ(Hi) denotes the signless Laplacian spectrum of Hi. Suppose to the contrary that γ2(Hi) < 2α−2 for all i,

1 ≤ i ≤ k. Since γ1(H) ≥ γ2(H) ≥ γ3(H) = γ4(H) = · · · = γα+1(H) = 2α− 2, there exists α+ 1 connected

components Hi1 , Hi2 , . . . , Hiα+1 such that

γ1(H) = γ1(Hi1), γ2(H) = γ1(Hi2), . . . , γα+1(H) = γ1(Hiα+1).

Since γ2(Hij ) < 2α− 2 (1 ≤ j ≤ α+ 1) and H has at most α non-zero signless Laplacian eigenvalues which

are strictly less than 2α − 2, there exist at least one connected component say Hij such that γ2(Hij ) = 0.

Therefore, Hij is of order 2, since γ2(Hij ) = 0 and 0 can be a signless Laplacian eigenvalue of a connected

graph with multiplicity at most 1. So Hij
∼= K2. This implies that 2 = γ1(Hij ) ≥ 2α− 2 > 2 as α ≥ 3. This

is a contradiction, and the claim is proven.

Let H1 be a connected component of H with γ2(H1) ≥ 2α − 2, then from Theorem 2.2 (i), 2α − 2 ≤
γ2(H1) ≤ |V (H1)| − 2, thus |V (H1)| ≥ 2α. From (4.15) and Theorem 2.2 (v), it follows that the number

of bipartite components of H is either n− 2α or n− 2α− 1. First we assume that the number of bipartite

components of H is exactly n − 2α. Then we have γ2α+1(H) = 0. Since |V (H1)| ≥ 2α, then we have the

following possibilities for H.

H ∼=


H1 ∪ (n− 2α)K1, H1 is a non-bipartite graph of order 2α,

H1 ∪ (n− 2α− 2)K1 ∪K2, H1 is a bipartite graph of order 2α, or

H1 ∪ (n− 2α− 1)K1, H1 is a bipartite graph of order 2α+ 1.

Case I: H ∼= H1 ∪ (n − 2α)K1, H1 is a non-bipartite graph of order 2α. Since |V (H1)| = 2α and

γ2(H) ≥ 2α− 2, by Theorem 2.2 (i), we have γ2(H) = 2α− 2. From (4.15), (4.16) and (4.17), we get

γ1(H) + γα+2(H) = 6α− 8 and γ21(H) + γ2α+2(H) = 20α2 − 48α+ 32.

Solving these equations, we obtain γ1(H) = 4(α − 1) and γα+2(H) = 2α − 4. By Lemma 2.8, H1 is a

(2α− 2)-regular graph on 2α vertices. Therefore, H1
∼= αK2, and hence, H ∼= G.

Case II: H ∼= H1 ∪ (n− 2α− 2)K1 ∪K2, H1 is a bipartite graph of order 2α. Then we have γ2α(H) =

2α − 4 ≤ 2, that is α ≤ 3, and hence, α = 3. From (4.16), H1 is a bipartite graph with 6 vertices and 11

edges. This is impossible, since the maximum size of a bipartite graph with 6 vertices is 9.

Case III: H ∼= H1 ∪ (n − 2α − 1)K1, H1 is a bipartite graph of order 2α + 1. From (4.15), (4.16) and

Theorem 2.2 (i), (iii) and (iv), we get 8α − 10 = γ1(H) + γ2(H) + γα+2(H) ≤ 6α − 2. Thus, α = 3 or 4.

Then from (4.16), we see that H1 is a bipartite graph with 7 vertices and 12 edges, i.e., H1
∼= K3, 4 (α = 3)

or H1 is a bipartite graph with 9 vertices and 24 edges (α = 4). The second case is clearly impossible, where

as the first case contradicts (4.17).
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Next we assume that the number of bipartite components of H is exactly n−2α−1. Then γ2α+1(H) > 0.

Since |V (H1)| ≥ 2α, we have the following possibilities for H.

H ∼=



H1 ∪ (n− 2α− 2)K1, H1 is a bipartite graph of order 2α+ 2,

H1 ∪ (n− 2α− 3)K1 ∪ P3, H1 is a bipartite graph of order 2α,

H1 ∪ (n− 2α− 2)K1 ∪K2, H1 is non bipartite graph of order 2α,

H1 ∪ (n− 2α− 4)K1 ∪ 2K2, H1 is a bipartite graph of order 2α,

H1 ∪ (n− 2α− 1)K1, H1 is a non bipartite graph of order 2α+ 1, or

H1 ∪ (n− 2α− 3)K1 ∪K2, H1 is a bipartite graph of order 2α+ 1.

Case I: H ∼= H1 ∪ (n − 2α − 2)K1, H1 is a bipartite graph of order 2α + 2. From (4.14), we have

γn−2α(H) = n− 2. Therefore, by Theorem 2.2 (i), H has either n− 2α− 1 balanced bipartite components

or n − 2α bipartite components. Since the number of bipartite components of H is exactly n − 2α − 1, all

n− 2α− 1 bipartite components of H are balanced. Since H ∼= H1 ∪ (n− 2α− 2)K1 and an isolated vertex

K1 is not balanced, it follows that n − 2α − 2 = 0 and H1 is a balanced bipartite component. Therefore,

by (4.16), 2|E(H)| = 4α(α − 1) ≤ 2(α + 1)2. This implies that α = 3 or 4. If α = 3, then H1 is balanced

bipartite graph with 8 vertices and 12 edges, and so H1 is a graph obtained from K4,4 by deleting 4 edges.

In this case, by Sage [23], it can be seen that no such graphs satisfies (4.17). If α = 4, then H1 is a balanced

bipartite graph with 10 vertices and 24 edges, and so H1
∼= K5,5\{e}, where e is an edge in K5,5. By Sage

[23], this is not possible by (4.17).

Case II: H ∼= H1 ∪ (n − 2α − 3)K1 ∪ P3, H1 is a bipartite graph of order 2α. From (4.14), we have

γn−2α(H) = n− 2. Therefore, by Theorem 2.2 (i), H has either n− 2α− 1 balanced bipartite components

or n − 2α bipartite components. Thus, H has n − 2α − 1 balanced bipartite components as the number of

bipartite components of H is exactly n− 2α− 1. Since P3 is not balanced, we have a contradiction.

Case III: H ∼= H1 ∪ (n − 2α − 2)K1 ∪K2, H1 is non bipartite graph of order 2α. Since |H1| = 2α, by

Theorem 2.2 (i), we have γ2(H) ≤ 2α− 2. From (4.15), we get γ2(H) ≥ 2α− 2, and hence, γ2(H) = 2α− 2.

Since H = H1∪ (n−2α−2)K1∪K2, we have that H has 2 as its signless Laplacian eigenvalue. Since α ≥ 3,

from (4.15), we have γ2α(H) = 2α − 4 ≥ 2. From (4.15), we conclude that γ2α(H) = 2 or γ2α+1(H) = 2.

First we assume that γ2α+1(H) = 2. Then by (4.15), (4.16) and (4.17), we get

γ1(H) + γα+2(H) = 6α− 10 and γ21(H) + γ2α+2(H) = 20α2 − 48α+ 28.

Solving these equations, we have γα+2(H) = 3α − 5 −
√
α2 + 6α− 11 < 2α − 4, a contradiction. Next we

assume that γ2α(H) = 2α− 4 = 2, that is, α = 3. Then H1 is a non bipartite graph with 6 vertices and 11

edges. Using the Q-spectrum of connected graphs with 6 vertices and 11 edges, by Sage [23], one can easily

see that all the choices for H1 contradicts (4.15).

Case IV: H ∼= H1∪ (n−2α−4)K1∪2K2, H1 is a bipartite graph of order 2α. Since α ≥ 3, from (4.15),

we have γ2α(H) = 2α− 4 ≥ 2. Since H ∼= H1 ∪ (n− 2α− 4)K1 ∪ 2K2, then H has 2 as its signless Laplacian

eigenvalue with multiplicity 2 and so γ2α(H) = 2, that is, 2α − 4 = 2, that is, α = 3. From (4.16), H1 is a

bipartite graph with 6 vertices and 10 edges. This is not possible, since there exists no bipartite graph with

6 vertices and 10 edges.

Case V: H ∼= H1 ∪ (n− 2α− 1)K1, H1 is a non bipartite graph of order 2α+ 1. From (4.14), we have

γn−2α(H) = n− 2. Therefore, by Theorem 2.2 (i), H has either n− 2α− 1 balanced bipartite components
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or n − 2α bipartite components. Thus, H has n − 2α − 1 balanced bipartite components as the number of

bipartite components of H is exactly n− 2α − 1. Since an isolated vertex K1 is not balanced, in this case,

we must have n− 2α = 1, a contradiction as n− 2α ≥ 2.

Case VI: H ∼= H1 ∪ (n− 2α− 3)K1 ∪K2, H1 is a bipartite graph of order 2α+ 1. From (4.14), we have

γn−2α(H) = n− 2. Therefore, by Theorem 2.2 (i), H has either n− 2α− 1 balanced bipartite components

or n − 2α bipartite components. Since H = H1 ∪ (n − 2α − 3)K1 ∪ K2 and an isolated vertex K1 is not

balanced, it follows that n− 2α = 3 and H1 is a balanced bipartite component of order 2α+ 1. This case is

not possible because a balanced bipartite graph has even number of vertices.
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