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RANK OF LINEAR AND QUADRATIC COMBINATIONS OF MATRICES∗

CH.R. JOHNSON† , J.M. PEÑA‡ , AND T. SZULC§

Abstract. In this paper, the rank of some combinations of matrices is analysed. In particular, the rank of all matrices

on the line joining two rank 1 matrices is characterized, and the rank of convex combinations of two matrices and quadratic

combinations of three matrices is studied. Presented results concern the problem of robustness of rank under certain kinds of

perturbations of a matrix.
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1. Introduction. We are generally interested in when two rank k matrices A and B exhibit rank k

among all matrices on the line segment joining them. In the case k = 1, we give a complete characterization

(and more), and in the case k > 1 (and not full rank matrices), we give a partial characterization. Then we

consider quadratic combinations of three matrices of the same size and full rank. It is characterized when

all combinations have full rank. These results may be compared to the classic fact in the square case (e.g.

[4, 5]) that all combinations of two matrices are full rank, unless A−1B has a negative real eigenvalue.

Let us introduce some basic notations. Given a field F (with either F = R or F = C) and two matrices

A,B with entries in F, let

Su(A,B) = {tA+ uB; t, u ∈ F, not both 0}

be the subspace generated by A and B, except for the 0 matrix;

L(A,B) = {tA+ (1− t)B; t ∈ F},

the affine line generated by A and B; and

LS(A,B) = {tA+ (1− t)B; t ∈ [0, 1]},

the line segment joining A and B, that is, the set of convex combinations of A and B.

Finally, denote the spectral norm of a square matrix A by ‖A‖2. Recall that the spectral norm coincides

with the maximal singular value of the matrix.

The paper is organized as follows. Section 2 analyzes the case of linear combinations of rank 1 matrices.

Section 3 presents a result on the rank of convex combinations of two matrices. Section 4 presents results
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on quadratic combinations of three matrices. Finally, Section 5 presents some results on full rank matrices

related to P-matrices.

2. Linear combinations of two rank 1 matrices. The following result characterizes the rank of all

matrices on the subspace generated by two rank 1 matrices A and B (that is, of matrices in L(A,B)).

Theorem 2.1. Suppose that A,B ∈ Fm,n are rank 1 matrices: A = aαT , B = bβT , a, b ∈ Fm, α, β ∈ Fn,

a, b, α, β 6= 0. Then:

a) if b is a multiple of a (b = ra, r 6= 0), or β is a multiple of α (β = sα, s 6= 0), but not both, then all

matrices in Su(A,B) are rank 1;

b) if b is a multiple of a and β is a multiple of α, then all matrices in Su(A,B) are rank 1, except ones

of the form tA+ uB, with t = −urs, that are 0;

c) if neither b is a multiple of a, nor β is a multiple of α, then all matrices in L(A,B) are rank 2,

except for A and B.

Proof. For part a), C ∈ Su(A,B) satisfies C = tA + uB. Without loss of generality, assume b = ra,

but β 6= sα. Then, C = taαT + uraβT = a(tα + urβ)T . Since a 6= 0 and tα + urβ 6= 0 (else β would be a

multiple of α), C is rank 1.

For part b), C ∈ Su(A,B) is of the form taαT +ursaαT , which is a nonzero multiple of aαT (and, thus,

rank 1), unless t = −urs, in which case C = 0.

For part c), C ∈ L(A,B), note that rank C can be at most 2, so that if rankC ≥ 2, it is 2. If any 2-by-2

submatrix has rank 2, then C has rank 2. There must be corresponding submatrices meeting the hypothesis,

else the entire pair would fail. Either there is such a submatrix pair with a common nonzero entry in each

matrix, or not. Suppose there is. After normalization (independently of each, which may be absorbed in the

coefficients of a linear combination), we have

t

(
1

w

)(
1 x

)
+ (1− t)

(
1

y

)(
1 z

)
whose determinant, after algebra, is

t(1− t)((w − y)(x− z)).

Since neither t nor 1− t = 0 ( else we would have one of A or B) and w 6= y, x 6= z, this cannot be 0. Thus,

the determinant is nonzero and the rank is 2, completing the proof. If no nonzero matches occur, cases may

be considered to the same end (also special form, etc.)

We shall close this section with some concrete examples illustrating Theorem 2.1. Let A = aαT , B = bβT ,

with a = (1, 2)T , α = (1, 1, 0)T , b = (2, 4)T and β = (0, 1, 2)T . Then it is easy to see that for all t, u ∈ t, u ∈ F
with |t|2 + |u|2 > 0 we have

rank(tA+ uB) = rank

(
t t+ 2u 4u

2t 2t+ 4u 8u

)
= rank

(
t t+ 2u 4u

0 0 0

)
= 1.

Now let A = aαT , B = bβT , with a = (1, 1, 0)T , α = (−2, 3)T , b = (2, 2, 0)T and β = (2,−3)T . Then it is

easy to see that for all t, u ∈ F with t 6= 2u we have

rank(tA+ uB) = rank

 −2t+ 4u 3t− 6u

−2t+ 4u 3t− 6u

0 0

 = rank

 −2t+ 4u 3t− 6u

0 0

0 0

 = 1.
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In the case t = 2u, then

rank(tA+ uB) = rank

 0 0

0 0

0 0

 = 0.

Finally, let A = aαT , B = bβT , with a = (−1, 2)T , α = (1, 0, 1)T , b = (1, 3)T and β = (0, 1, 1)T . Then it is

easy to see that for any t ∈ F \ {0, 1} we have

rank(tA+ (1− t)B) = 2.

3. Rank of convex combinations of two matrices. We now present a result on the rank of convex

combinations of two matrices A,B (that is, of matrices in LS(A,B)).

Theorem 3.1. Let A,B ∈ Cm×n, m ≥ n, and let rank(A) =rank(B) = k, 1 ≤ k ≤ n. Moreover, assume

that there is a common factor CA,B in the full rank factorization of A and B, and let

(3.1) Spec
(
M−1

1 M2

)
∩ (−∞, 0] = ∅

if A = CA,BSA and B = CA,BSB with CA,B ∈ Cm×k,

M1 =

(
SAS

∗
A 0

−I I

)
, M2 =

(
SBS

∗
B SAS

∗
B + SBS

∗
A − SAS∗

A − SBS∗
B

0 I

)
,

or

(3.2) Spec
(
P−1
1 P2

)
∩ (−∞, 0] = ∅

if A = SACA,B and B = SBCA,B with CA,B ∈ Ck×n,

P1 =

(
S∗
ASA 0

−I I

)
, P2 =

(
S∗
BSB S∗

ASB + S∗
BSA − S∗

ASA − S∗
BSB

0 I

)
.

Then all convex combinations of A and B have rank k.

Proof. We restrict ourselves to the case when (3.1) holds (the proof in the case when (3.2) holds is

similar).

It is well–known that for any matrix X we have

(3.3) rank(X) = rank(X∗X) = rank(XX∗).

Hence, for any α ∈ [0, 1], we get

rank(αA+ (1− α)B) = rank(αCA,BSA + (1− α)CA,BSB)(3.4)

= rank(CA,B(αSA + (1− α)SB)) =

= rank((CA,B(αSA + (1− α)SB))∗(CA,B(αSA + (1− α)SB)))

= rank((αSA + (1− α)SB)∗C∗
A,BCA,B(αSA + (1− α)SB))).

Observe that C∗
A,BCA,B ∈ Ck×k is a positive definite matrix, and therefore, it admits a Cholesky

factorization, i.e.,

(3.5) C∗
A,BCA,B = LL∗,
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where L is a nonsingular lower triangular k × k matrix. So, by (3.5) and (3.3), (3.4) becomes

rank(αA+ (1− α)B) = rank(L∗(αSA + (1− α)SB)),

which, as L∗ is nonsingular, yields

(3.6) rank(αA+ (1− α)B) = rank(αSA + (1− α)SB)

for any α ∈ [0, 1]. To complete the proof, we recall that SA, SB ∈ Ck×n have full row rank. So, keeping

in mind (3.1), by Theorem 2 from [5], we get that all convex combinations of SA, SB have full row rank k.

Thus, by (3.6), for any α ∈ [0, 1], we obtain

rank(αA+ (1− α)B) = rank(αSA + (1− α)SB) = k,

which completes the proof.

4. Quadratic combinations of three matrices. We now present results on quadratic combinations

of three matrices.

Theorem 4.1. Let A,B,C ∈ Cm×n, let rank(A+B + C) = rank(C) = m and let

(4.7) P =

(
A+B + C 0

In In

)
and Q =

(
C A

0 In

)
.

A necessary and sufficient condition for all quadratic combinations of A,B,C (i.e., for all matrices α2A +

αB + C, α ∈ [0, 1]) to be of rank m is that

(4.8) Spec(H1H
−1
2 ) ∩ (−∞, 0] = ∅,

where

H1 =

(
PP ∗ 0

−In+m In+m

)
, H2 =

(
QQ∗ PQ∗ + SBSAQP

∗ − PP ∗ −QQ∗

0 In+m

)
.

Proof. First observe that α2A+ αB + C is a Schur complement of In in

(4.9) Rα =

(
α(A+B) + C (1− α)A

αIn In

)
.

Then, by a well known property of a rank of a block matrix, we have

(4.10) rank(Rα) = rank(α2A+ αB + C) + rank(In),

and therefore, the full rank property of α2A + αB + C is equivalent to the full rank property of Rα for all

α ∈ [0, 1]. Now it is easy to see that for Rα we have(
α(A+B) + C (1− α)A

αIn In

)
= α

(
A+B + C 0

In In

)
+ (1− α)

(
C A

0 In

)
,

which by (4.7) becomes (
α(A+B) + C (1− α)A

αIn In

)
= αP + (1− α)Q.

Then the assertion follows from Theorem 2 of [6].
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Remark 4.2. In Theorem 4.1, one can assume that rank(A+B +C) = rank(C) = n and the condition

(4.8) is changed accordingly.

Theorem 4.3. Let A,B,C ∈ Cn×n and let A+B+C and C be nonsingular. A necessary and sufficient

condition for all quadratic combinations of A,B,C to be nonsingular is that

Spec

((
A+B + C 0

In In

)(
C A

0 In

)−1
)
∩ (−∞, 0] = ∅.

Proof. By the arguments used in the proof of Theorem 4.1, we have that nonsingularity of α2A+αB+C

for all α ∈ [0, 1] is equivalent to the nonsingularity of all convex combinations of(
A+B + C 0

In In

)
and

(
C A

0 In

)
.

Then the assertion follows by [5].

Remark 4.4. Another characterization of nonsingularity of quadratic combinations of three matrices

can be found in [9].

From now on, X+ will denote the Moore-Penrose generalized inverse of a matrix X.

Theorem 4.5. Let A,B,C ∈ Cm×n, let rank(A+B + C) = rank(C) = m and let

(4.11) Spec

((
A+B + C 0

In In

)(
C A

0 In

)+
)
∩ (−∞, 0] = ∅.

Then all quadratic combinations of A,B,C are of rank m.

Proof. Using the notation of our Theorem 4.1, we start by observing that for the (m+ n)× 2n matrix

Q of (4.7) we have

(4.12) rank(Q) = rank(C) + rank(In) = m+ n.

So, Q is a full (row) rank matrix, and therefore, QQ∗ is a nonsingular (m+ n)× (m+ n) matrix. Next, by

(4.11), the (m+ n)× (m+ n) matrix

(4.13)

(
A+B + C 0

In In

)(
C A

0 In

)+

=

(
A+B + C 0

In In

)
Q+

is nonsingular and, from Theorem 2 of [5], we get that all convex combinations of the matrix (4.13) and

Im+n are nonsingular, i.e., for all α ∈ [0, 1] we have

(4.14) rank

(
α

(
A+B + C 0

In In

)(
C A

0 In

)+

+ (1− α)Im+n

)
= m+ n.

It is well-known that for a full row rank matrix Q, taking into account that QQ∗ is nonsingular, we have

Q+ = Q∗(QQ∗)−1 and QQ+ = Im+n. Then from (4.14) we obtain

m+ n = rank

((
α

(
A+B + C 0

In In

)
+ (1− α)

(
C A

0 In

)+
)
Q+

)
,
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which, as rank(Q+) = m+ n by (4.12), from a property of the product of matrices becomes

m+ n = rank

(
α

(
A+B + C 0

In In

)
+ (1− α)

(
C A

0 In

)+
)

(4.15)

= rank

(
α(A+B) + C (1− α)A

αIn In

)
.

To complete the proof, we use arguments from the proof of Theorem 4.1. So, using (4.9) and (4.10), (4.15)

becomes

m+ n = rank(α2A+ αB + C) + n.

So, from the last equality we get m = rank(α2A+ αB + C), which completes the proof.

5. P-matrices and some results on full rank matrices. Let us recall that a principal submatrix

of an n-by-n matrix A is a submatrix using the same rows and columns of A, and its determinant will be

the corresponding principal minor. The matrix A is called a P-matrix if all its principal minors are positive.

Dp[0,1] will denote the set of all diagonal p-by-p matrices with diagonal entries on the interval [0, 1]. In our

next results, the order of the identity matrices will follow from the context.

Theorem 5.1. Let A,B,C ∈ Rm×n and let rank(A + B + C) = rank(B + C) = rank(C) = m. If the

2m× 2m matrix

(5.16)

(
AC+ +BC+ + I −I

−AC+ I

)
is a P-matrix, then for any D̃,D ∈ Dm[0,1], we have

rank(D̃DA+ D̃B + C) = rank(C) = m.

Proof. Full rank property for “extremal” matrices, i.e., for cases when diagonal matrices are identity or

zero ones, follows by an assumption. By Corollary 3.2 of [2], keeping in mind the form of the matrix (5.16),

for any D ∈ Dm[0,1] the matrix

D(AC+ +BC+ + I) + (I −D)(BC+ + I) = DAC+ +BC+ + I

is a P-matrix, and therefore, so is the matrix (DAC+ +BC+ + I)−1. Then, by Theorem 3.3 of [5], for any

D̃ ∈ Dm[0,1] the matrix

D̃(DAC+ +BC+ + I) + (I − D̃)

is nonsingular. So, for all D̃,D ∈ Dm[0,1], we have

m = rank(D̃DAC+ + D̃BC+ + D̃ + I − D̃) = rank(D̃DAC+ + D̃BC+ + I)

= rank(D̃DAC+ + D̃BC+ + CC+) = rank((D̃DA+ D̃B + C)C+).

Since rank(C+) = m, the assertion follows from the property of the rank of a product of matrices.

The following result is a direct consequence of Theorem 5.3.
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Corollary 5.2. Let A,B,C ∈ Rm×m with A + B + C, B + C and C nonsingular. If the 2m × 2m

matrix

(5.17)

(
AC−1 +BC−1 + I −I

−AC−1 I

)
is a P-matrix, then for any D̃,D ∈ Dm[0,1] we have that the matrix D̃DA+ D̃B + C is nonsingular.

Theorem 5.3. Let A,B,C ∈ Rm×n and let rank(A + B + C) = rank(B + C) = rank(C) = n. If the

2n× 2n matrix

(5.18)

(
C+A+ C+B + I −C+A

−I I

)
is a P-matrix, then for any D̃,D ∈ Dn[0,1], we have

rank(ADD̃ +BD̃ + C) = rank(C) = n.

Proof. Full rank property for “extremal” matrices, i.e., for cases when diagonal matrices are identity or

zero ones, follows by an assumption. By Corollary 3.1 of [2], keeping in mind the form of the matrix (5.18),

for any D ∈ Dn[0,1] the matrix

(C+A+ C+B + I)D + (BC+ + I)(I −D) = C+AD + C+B + I

is a P-matrix. Then, by Theorem 3.4 of [5], for any D̃ ∈ Dm[0,1] the matrix

(C+AD + C+B + I)D̃ + (I − D̃)

is nonsingular. So, for all D̃,D ∈ Dm[0,1], we have

m = rank(C+ADD̃ + C+BD̃ + D̃ + I − D̃) = rank(C+ADD̃ + C+BD̃ + I)

= rank(C+ADD̃ + C+BD̃ + C+C) = rank(C+(ADD̃ +BD̃ + C)).

Since rank(C+) = m, the assertion follows from the property of the rank of a product of matrices.

Analogously to Corollary 5.2, a similar corollary can be derived from Theorem 5.3. We shall close this

section with some special cases of theorems 5.1 and 5.3.

Theorem 5.4. Let A,B ∈ Rm×n and let rank(A + B) = rank(2A + B) = rank(A) = m. If the matrix

BA+ is a P-matrix, then for any D̃,D ∈ Dm[0,1], we have

rank(D̃DA+ D̃B +A) = m.

Proof. Full rank property for “extremal” matrices, i.e., for cases when diagonal matrices are identity

or zero ones, follows by an assumption. We start by the observation that, as the sum of a P-matrix and a

nonnegative diagonal matrix is a P-matrix (cf. Theorem 3.1 (5) of [10]), then for any D ∈ Dm[0,1] the matrix

BA+ +D + I is a P-matrix. Then, as also (BA+ +D + I)−1 is a P-matrix, by Theorem 3.3 of [5], for any

D̃ ∈ Dm[0,1] the matrix

D̃(D + I +BA+) + (I − D̃)
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is nonsingular. So, for all D̃,D ∈ Dm[0,1], we have

m = rank(D̃(D + I +BA+) + I − D̃) = rank(D̃D + D̃BA+ + I)

= rank(D̃DA+ D̃BA+ +AA+) = rank((D̃DA+ D̃B +A)A+).

Since rank(A+) = m, the assertion follows from the property of the rank of a product of matrices.

Theorem 5.5. Let A,B ∈ Rm×n and let rank(A + B) = rank(2A + B) = rank(A) = n. If A+B is a

P-matrix, then for any D̃,D ∈ Dn[0,1], we have

rank(ADD̃ +BD̃ +A) = n.

Proof. Full rank property for “extremal” matrices, i.e., for cases when diagonal matrices are identity or

zero ones, follows by an assumption. By the argument used in the proof of Theorem 5.4, for any D ∈ Dm[0,1]
the matrix A+B +D + I is a P-matrix. Then, by Theorem 3.4 of [5], for any D̃ ∈ Dm[0,1] the matrix

(D + I +BA+)D̃ + (I − D̃)

is nonsingular. So, for all D̃,D ∈ Dm[0,1], we have

m = rank((A+B +D + I)D̃ + I − D̃) = rank(A+BD̃ +DD̃ + I)

= rank(A+BD̃ +A+ADD̃ +A+A) = rank(A+(ADD̃ +BD̃ +A)).

Since rank(A+) = m, the assertion follows from the property of the rank of a product of matrices.
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