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THE INTERESTING SPECTRAL INTERLACING PROPERTY

FOR A CERTAIN TRIDIAGONAL MATRIX∗

CARLOS M. DA FONSECA† , EMRAH KıLıÇ‡ , AND ANTÓNIO PEREIRA§

Abstract. In this paper, a new tridiagonal matrix, whose eigenvalues are the same as the Sylvester-Kac matrix of the same

order, is provided. The interest of this matrix relies also in that the spectrum of a principal submatrix is also of a Sylvester-Kac

matrix given rise to an interesting spectral interlacing property. It is proved alternatively that the initial matrix is similar to

the Sylvester-Kac matrix.
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1. Introduction. For any positive integer n, the n+ 1 numbers

(1.1) − n, −n+ 2, −n+ 4, . . . , n− 4, n− 2, n

are the eigenvalues of the so-called Sylvester-Kac matrix

An =



0 1

n 0 2

n− 1
. . .

. . .

. . .
. . . n− 1

2 0 n

1 0


.

We will call the sequence (1.1) the n-Sylvester spectrum. In the matrices throughout the text, all non-

mentioned entries should be read as zero.

The tridiagonal matrix An was first considered by J.J. Sylvester in 1854 in a succinct note [25] where its

characteristic polynomial was conjectured. As many problems in mathematics, this was a simple problem

to state but hard to prove. A definite proof to Sylvester’s claim is commonly attributed to M. Kac (for

both eigenvalues and eigenvectors) in his celebrated work [17], almost a century after the original statement.

Notwithstanding, the Sylvester-Kac matrix has a rich history, with many proofs, in different areas, extensions,

reinventions, and applications. Perhaps the most significant literature is [1, 3, 6, 7, 9–16, 18–24, 26, 27]. The

Sylvester-Kac matrix, is also known as Clement matrix due to the independent study of P.A. Clement in [9].
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As mentioned in [26], there are many generalizations of Sylvester’s claim. Some have been established

by Askey and Wilson [2] and remain largely open. Interestingly and somehow surprisingly, there is a close

connection with Krawtchouk polynomials, which are polynomials orthogonal with respect to a binomial

distribution. On the other hand, there is also an intimate relation with graph theory, namely to problems

about distance regular graphs [4, p. 246].

Let us consider the tridiagonal matrix

H̃n =



0 1/2

σn,n 0 1/2

σn−1,n
. . .

. . .

. . .
. . . 1/2

σ2,n 0 1

σ1,n 0


,

where, for any k = 0, 1, . . . , n− 1, we define

σk,n =
(n− k + 1)(n+ k)

2
.

That is, σk,n is the sum of all nonnegative integers from k to n. Clearly, the spectrum of H̃n is the same as

the matrix

Hn =



0 1
2

2n
2 0 2

2

2n−1
2

. . .
. . .

. . .
. . . n−1

2
n+2

2 0 n
n+1

2 0


.

In this paper, we show by two distinct ways that Hn shares the same spectrum as the Sylvester-Kac

matrix An, i.e., the n-Sylvester spectrum. What is particularly interesting in this matrix is that when we

delete the last row and column of Hn, we get a principal submatrix whose eigenvalues form the (n − 1)-

Sylvester spectrum. This means that Cauchy’s interlacing theorem satisfies

−n < 1− n < 2− n < · · · < n− 2 < n− 1 < n.

Since we know all the spectral properties of the Sylvester-Kac matrix, this matrix is very useful as what is

known as test matrix. In general, test matrices are used to evaluate the accuracy of matrix inversion programs

since the exact inverses are known (cf. e.g. [5, 21] and references therein). Recently, Coelho, Dimitrov, and

Rakai in [8] suggested a method for a fast estimation of the largest eigenvalue of an asymmetric tridiagonal

matrix. The proposed procedure was based on the power method and the computation of the square of the

original matrix. Then they provided numerical results with simulations in C/C++ implementation in order
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to demonstrate the effectiveness of the proposed method. They adopted the Sylvester-Kac test matrix [21]

for comparing the power method and the proposed method performance. We also refer to [24] for further

usage of test matrices. It is our purpose that the new matrix that we will present here and the corresponding

explicit eigenvalues will make a significant contribution these type of special matrices.

2. The spectrum of Hn. In this section we prove our main result. We use basically the technique of

the left eigenvectors of Hn and an inductive approach to reach our aim.

Theorem 2.1. The eigenvalues of Hn are (1.1), i.e.,

{−2`,−2`+ 2, . . . ,−2, 0, 2, . . . , 2`− 2, 2`}

for n = 2`, and

{−2`− 1,−2`+ 1,−2`+ 3, . . . ,−1, 1, . . . , 2`− 3, 2`− 1, 2`+ 1}

for n = 2`+ 1.

We start by finding two eigenvalues of Hn and then the two corresponding left eigenvectors associated

to each of them.

Let us define the two (2n+ 1)-vectors

u+ =
(

1 1 1 1 · · · 1 1
)

and

u− =
(

1 −1 1 −1 · · · −1 1
)
.

The next lemma is crucial and it says that u+ and u− are both left eigenvectors of H2n.

Lemma 2.2. The matrix H2n has the eigenvalues λ+ = 2n and λ− = −2n with left eigenvectors u+ and

u−, respectively.

Proof. To prove our claim, it is sufficient to show that

u+H2n = λ+u+ and u−H2n = λ−u− .

From the definitions of H2n and u+, we should show that(
u+H2n

)
1,1

=
(
λ+u+

)
1,1
,(

u+H2n

)
1,2n+1

=
(
λ+u+

)
1,2n+1

and (
u+H2n

)
1,m

=
(
λ+u+

)
1,m

, for 1 < m < 2n+ 1.

The first two claims are simple to check. For example, the first identity comes from(
u+H2n

)
1,1

= 2n = λ+ =
(
λ+u+

)
1,1
.
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We now focus on the case 2 ≤ k ≤ 2n. We consider

(
u+H2n

)
1,k

=
k

2
+

4n− k
2

= 2n.

On the other hand, the definition of λ+ gives(
λ+u+

)
1,k

= 2n,

as claimed. The other case, i.e., u−H2n = λ−u−, can be handled in a similar fashion.

Similarly to the previous case, we define two (2n+ 2)-vectors:

v+ =
(

1 1 1 1 · · · 1 1
)

and

v− =
(

1 −1 1 −1 · · · 1 −1
)
.

The next lemma can be proved analogously to the previous result.

Lemma 2.3. The matrix H2n+1 has the eigenvalues µ+ = 2n + 1 and µ− = − (2n+ 1) with left eigen-

vectors v+ and v−, respectively.

For later use, we define an upper triangle matrix Un of order n with

Ui,i =
(n− bi/2c) (2n+ 1− 2 di/2e)(

n+1
2

) , for 1 ≤ i ≤ n

and

Ui,i+2r =
(n− i) (2n+ 1)(

n+1
2

) , for 1 ≤ i ≤ n− 2r and 1 ≤ r ≤
⌊
n− 1

2

⌋
,

and 0, otherwise, where b·c and d·e stand for the floor and ceiling functions, respectively.

For example, when n = 10, we have

U10 =
21

55



190
21 0 9 0 9 0 9 0 9 0

0 57
7 0 8 0 8 0 8 0 8

0 0 51
7 0 7 0 7 0 7 0

0 0 0 136
21 0 6 0 6 0 6

0 0 0 0 40
7 0 5 0 5 0

0 0 0 0 0 5 0 4 0 4

0 0 0 0 0 0 13
3 0 3 0

0 0 0 0 0 0 0 26
7 0 2

0 0 0 0 0 0 0 0 22
7 0

0 0 0 0 0 0 0 0 0 55
21


.
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For an odd case as n = 11, we have

U11 =
23

66



231
23 0 10 0 10 0 10 0 10 0 10

0 210
23 0 9 0 9 0 9 0 9 0

0 0 190
23 0 8 0 8 0 8 0 8

0 0 0 171
23 0 7 0 7 0 7 0

0 0 0 0 153
23 0 6 0 6 0 6

0 0 0 0 0 136
23 0 5 0 5 0

0 0 0 0 0 0 120
23 0 4 0 4

0 0 0 0 0 0 0 105
23 0 3 0

0 0 0 0 0 0 0 0 91
23 0 2

0 0 0 0 0 0 0 0 0 78
23 0

0 0 0 0 0 0 0 0 0 0 66
23



.

A routine calculation lead us to the inverse matrix U−1
n = (Cij) with the recursions

Ci,i
Ci+1,i+1

=
2n− i− 1

2n− i+ 1

for 1 ≤ i ≤ n− 1, while, for 1 ≤ r ≤
⌈
n−2

2

⌉
,

Ci,i+2r

Ci+1,i+2r+1
=

i+ 2

i+ 2r
× n− i
n− i− 1

× 2n− 2 (r + 1)− i
2n+ 1− i

and 0, otherwise, where the initials C11 = n+1
4n−2 , C11/C13 = (2n− 3) / (2n+ 1) and

C1,2i+1

C1,2i+3
=

(n− i− 1) (2n− 2i− 3)

hi+1
,

for 1 ≤ i ≤
⌊
n−3

2

⌋
, where hn is the Hexagonal number defined by hn = n (2n− 1) .

Now our purpose is to find similar matrices to H2n and H2n+1, respectively. For this purpose, we shall

give the following result.

Lemma 2.4. The spectrum of matrix Hn, σ (Hn) , satisfy that

σ (H2n) =
{
λ+, λ−

}
∪ σ (H2n−2)

and

σ (H2n+1) =
{
µ+, µ−} ∪ σ (H2n−1) .

Proof. First, we consider the matrix H2n. Define a matrix T of order 2n+ 1 as shown

T =


1 1 1 1 1 1 · · · 1 1

1 −1 1 −1 1 −1 · · · −1 1

0(2n−1)×2 I2n−1

 ,
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where 0(2n−1)×2 is the (2n− 1)× 2 zero matrix and Ik is the identity matrix of order k. Its inverse is

T−1 =


1
2

1
2 −1 0 −1 0 −1 · · · 0 −1

1
2 − 1

2 0 −1 0 −1 0 · · · −1 0

0(2n−1)×2 I2n−1

 .

We can easily check that H2n is similar to the matrix

E =


λ+ 0

0 λ− 02×(2n−1)

2λ+−1
4

2λ−+1
4

0(2n−2)×2 W

 ,

where W is the block of order 2n− 1 defined by

W =



0 4−4n
2 0 − 4n−1

2 · · · 0 − 4n−1
2 0

4n−2
2 0 4

2
4n−3

2 0 5
2

4n−4
2 0

. . .

4n−5
2

. . .
. . .

. . .
. . . 2n−1

2
2n+2

2 0 2n
2n+1

2 0


,

since E = TH2nT
−1. Consequently, λ± are eigenvalues of both E and H2n.

We will study now the matrix H2n+1. Define the matrix Y of order 2n+ 2 as

Y =


1 1 1 1 1 1 · · · 1 1

1 −1 1 −1 1 −1 · · · 1 −1

02n×2 I2n

 .

Likewise to the previous case, we obtain

Y −1 =


1
2

1
2 −1 0 −1 0 −1 · · · −1 0

1
2 − 1

2 0 −1 0 −1 0 · · · 0 −1

02n×2 I2n

 .
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Therefore, H2n+1 is similar to D = Y H2n+1Y
−1, where

D =


µ+ 0

0 µ− 02×2n

2µ+−1
4

2µ−+1
4

0(2n−1)×2 Q



and Q is the matrix, of order 2n,

Q =



0 2−4n
2 0 − 4n+1

2 0 − 4n+1
2 · · · 0 − 4n+1

2
4n
2 0 4

2
4n−1

2 0 5
2

4n−2
2 0 6

2

4n−3
2 0

. . .

. . .
. . . 2n−1

2
2n+4

2 0 2n
2

2n+3
2 0 2n+ 1

2n+2
2 0


.

Thus, µ+ and µ− are eigenvalues of the matrix H2n+1.

To compute the remaining eigenvalues of H2n+1 and H2n, we proceed providing some auxiliary results.

Taking into account the definition of Un, we clearly have

H2n−2 = U2n−1W U−1
2n−1 and H2n−1 = U2nQU

−1
2n .

Furthermore, if we define the matrix of order n

Mn =

(
I2 02×(n−2)

0(n−2)×2 Un−2

)
,

then we get

M2n+1EM
−1
2n+1 =


λ+ 0 02×(2n−1)

0 λ−

(4n−1)(4n−3)
4n − (4n−1)(4n−3)

4n

0(2n−2)×2 U−1
2n−1WU2n−1
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and

M2n+2DM
−1
2n+2 =


µ+ 0 02×(2n−2)

0 µ−

(4n−1)(4n+1)
2(2n+1) − (4n−1)(4n+1)

2(2n+1)

0(2n−1)×2 U−1
2n QU2n

 .

So far, we derived the identities

E = T H2n T
−1 ,

D = Y H2n+1 Y
−1 ,

H2n−2 = U2n−1W U−1
2n−1 ,

H2n−1 = U2nQU
−1
2n .

From the definition of Hn, both M2n+1EM
−1
2n+1 and M2n+2DM

−1
2n+2 can be rewritten in the following lower-

triangular block form

(2.2)


λ+ 0

0 λ−
0

∗ H2n−2

 and


µ+ 0

0 µ−
0

∗ H2n−1

 ,

respectively, which give us the claimed results.

From (2.2), we derive our main result, Theorem 2.1, on the spectra of the matrix Hn.

Also for the matrix Hn (x) defined by

Hn (x) =



x 1
2

2n
2 x 2

2

2n−1
2

. . .
. . .

. . .
. . . n−1

2
n+2

2 x n
n+1

2 x


,

we immediately get the recurrences on a positive integer n,

detH2n+1 (x) = (x− (2n+ 1)) (x+ (2n+ 1)) detH2n−1 (x) , with detH1 (x) = x2 − 1,

and

detH2n (x) = (x− 2n) (x+ 2n) detH2n−2 (x) , with detH0 (x) = x,

which means that

detH2n+1 (x) =

n∏
k=0

(
x2 − (2k + 1)

2
)
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and

detH2n (x) =

n∏
k=0

(
x2 − (2k)

2
)
.

3. The interlacing. Recently, it was proved in [12] the following:

Theorem 3.1. The eigenvalues of the matrix

Gn =



0 1

2n+ 2 0 2

2n+ 1 0
. . .

. . .
. . .

. . .

. . .
. . . n− 1

n+ 4 0 n

n+ 3 0


(n+1)×(n+1)

are {
±2k̄

}n
k̄=0

,

with k̄ ≡ n (mod 2). That is, they are, for G2n−1,

{±2,±6,±10, . . . ,±2 (2n− 1)} ,

while, for G2n, they are

{0,±4,±8,±12, . . . ,±4n} .

Notice that Theorem 3.1 says that the eigenvalues of Gn are the double of the Sylvester-Kac matrix.

Suppose that Ĥn is the principal submatrix of order n obtained from Hn by the deletion of its last row

and column. We find that Ĥn = 1
2Gn−1. Surprisingly, this means that Hn is a matrix with an n-Sylvester

spectrum with principal submatrix Ĥn with an (n−1)-Sylvester spectrum. Therefore, the interlacing between

the eigenvalues of Hn and Ĥn is:

−n < −n+ 1 < −n+ 2 < · · · < −2 < −1 < 0 < 1 < 2 < · · · < n− 2 < n− 1 < n.

4. The relation between the Sylvester-Kac matrix An and the new matrix Hn. Now we

provide a similarity relation between the usual Sylvester-Kac matrix An and the tridiagonal matrix Hn. For

this, define the upper triangular matrix T = (Tij) of order n with the recursions for terms on the band

entries for 0 ≤ r ≤ b(n− 1) /2c,

Ti,i+2r

Ti+1,i+2r+1
=

i

i+ 2r
× 2n− 2r − i− 1

2 (n− r − i)
,

and for 0 ≤ i ≤ b(n− 3) /2c,

T1,2i+1

T1,2i+3
=

2n− 2i− 3

2i+ 1
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and 0, otherwise, with the initial T1,1 = L (n), where L(n) is the leading coefficient of the Legendre polynomial

P (x), that is,

L(n) =
(2n− 1)!!

n!
,

where (2n− 1)!! is the double factorial defined by (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Now, by straight computations, the inverse matrix T−1 = (Ωij) is given by the recursion for the elements

on the bands as shown for 0 ≤ r ≤ b(n− 1) /2c

Ωi,i+2r

Ωi+1,i+2r+1
= (−1)

r 2i (n− i− r − 1) (n− i)
(i+ 2r) (n− i− 1) (2n− i− 1)

and, for 0 ≤ i ≤ b(n− 2) /2c,

Ω1,2i+1

Ω1,2i+3
=

2 (n− i− 2)

2i+ 1

and 0, otherwise, with the initial Ω1,1 = 1/L (n) , where L(n) is the leading coefficient of the Legendre

polynomial P (x), that is,

Ω1,1 =
n!

(2n− 1)!!
.

For instance, when n = 10, we have the matrix T and its inverse T−1 as follows

12 155
128 0 715

128 0 143
128 0 55

128 0 35
128 0

0 12 155
128 0 2145

128 0 715
128 0 385

128 0 315
128

0 0 715
8 0 1001

32 0 495
32 0 175

16 0

0 0 0 5005
64 0 715

16 0 1925
64 0 105

4

0 0 0 0 1001
16 0 825

16 0 175
4 0

0 0 0 0 0 715
16 0 385

8 0 189
4

0 0 0 0 0 0 55
2 0 35 0

0 0 0 0 0 0 0 55
4 0 18

0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 0 1



−1

=



128
12 155 0 − 8

12 155 0 12
85 085 0 − 1

17 017 0 1
24 310 0

0 128
12 155 0 − 192

85 085 0 16
17 017 0 − 8

12 155 0 9
12 155

0 0 8
715 0 − 4

715 0 3
715 0 − 7

1430 0

0 0 0 64
5005 0 − 64

5005 0 12
715 0 − 24

715

0 0 0 0 16
1001 0 − 30

1001 0 10
143 0

0 0 0 0 0 16
715 0 − 56

715 0 252
715

0 0 0 0 0 0 2
55 0 − 14

55 0

0 0 0 0 0 0 0 4
55 0 − 72

55

0 0 0 0 0 0 0 0 1
5 0

0 0 0 0 0 0 0 0 0 1


.

Now we can give our latest main result without proof which follows from matrix multiplication.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 587-598, August 2020.

597 The Interesting Spectral Interlacing Property for a Certain Tridiagonal Matrix

Theorem 4.1. The similarity relation between the Sylvester-Kac matrix An−1 and the matrix Hn−1 can

be given by

An−1 = THn−1T
−1.

For example, when n = 9, we have that

6435
128 0 429

128 0 99
128 0 45

128 0 35
128

0 6435
128 0 1287

128 0 495
128 0 315

128 0

0 0 3003
64 0 297

16 0 675
64 0 35

4

0 0 0 1287
32 0 825

32 0 315
16 0

0 0 0 0 495
16 0 225

8 0 105
4

0 0 0 0 0 165
8 0 189

8 0

0 0 0 0 0 0 45
4 0 14

0 0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 0 0 1





0 1
2 0 0 0 0 0 0 0

8 0 1 0 0 0 0 0 0

0 15
2 0 3

2 0 0 0 0 0

0 0 7 0 2 0 0 0 0

0 0 0 13
2 0 5

2 0 0 0

0 0 0 0 6 0 3 0 0

0 0 0 0 0 11
2 0 7

2 0

0 0 0 0 0 0 5 0 8

0 0 0 0 0 0 0 9
2 0



×



6435
128 0 429

128 0 99
128 0 45

128 0 35
128

0 6435
128 0 1287

128 0 495
128 0 315

128 0

0 0 3003
64 0 297

16 0 675
64 0 35

4

0 0 0 1287
32 0 825

32 0 315
16 0

0 0 0 0 495
16 0 225

8 0 105
4

0 0 0 0 0 165
8 0 189

8 0

0 0 0 0 0 0 45
4 0 14

0 0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 0 0 1



−1

=



0 1 0 0 0 0 0 0 0

8 0 2 0 0 0 0 0 0

0 7 0 3 0 0 0 0 0

0 0 6 0 4 0 0 0 0

0 0 0 5 0 5 0 0 0

0 0 0 0 4 0 6 0 0

0 0 0 0 0 3 0 7 0

0 0 0 0 0 0 2 0 8

0 0 0 0 0 0 0 1 0


.
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