m-NIL-CLEAN COMPANION MATRICES∗

A. CÎMPEAN†

Abstract. Companion matrices over fields of positive characteristic, \(p \), that are sums of \(m \) idempotents, \(m \geq 2 \), and a nilpotent are characterized in terms of dimension and trace of such a matrix and of \(p \).

Key words. Companion matrix, Idempotent, Nilpotent, \(m \)-nil-clean.

AMS subject classifications. 15A24, 15A83, 16U99.

1. Introduction. In [10], clean rings and clean elements in rings were introduced, in order to study some properties of direct decompositions of modules. Clean elements are sums of a unit and an idempotent element of the ring and a clean ring is such that all of its elements are clean. A particular class of clean rings was introduced by Diesl in [8]: the class of rings such that all elements are sums of a nilpotent and an idempotent. Other generalizations were considered in [6] and [4]. In the former, Chen and Sheibani considered 2-nil-clean rings, rings such that all elements are 2-nil-clean, i.e., elements that are sums of two idempotents and a nilpotent element. Weakly nil-clean rings were firstly introduced in the commutative case by Danchev and McGovern, in [7]. Breaz, Danchev and Zhou characterized weakly nil-clean rings in [4]. In the case of these rings, each element is a sum or a difference of a nilpotent and an idempotent. Moreover, in [1], the author studies elements which are sums of a nilpotent and \(m \) idempotents which commute.

It was proven in [9] that matrix rings over clean rings are clean. Matrix rings over nil-clean rings were studied in [8] and [3]. In the latter, it was proven that a matrix ring over a commutative nil-clean ring is nil-clean. Nil-clean matrices over general fields were studied in [5], where the authors study nil-clean companion matrices. We note that this can be an important step in a possible attempt to characterize general nil-clean matrices since every matrix is similar to a direct sum of companion matrices.

Using this idea we will study in this paper \(m \)-nil-clean companion matrices over fields of positive characteristic. Let \(m \geq 2 \) be an integer. Then an \(m \)-nil-clean element of a ring is an element that represents the sum of \(m \) idempotents and a nilpotent (of that ring). In Theorem 3.4, we characterize \(m \)-nil-clean companion matrices by using the dimension and the trace of such a matrix and the characteristic of the field.

Let \(\mathbb{F} \) be a field of positive characteristic, \(p \). Let \(q \) be a monic polynomial over \(\mathbb{F} \), \(q = X^n + c_{n-1}X^{n-1} + \cdots + c_1X + c_0 \). The companion matrix associated to \(q \) is the \(n \times n \) matrix

\[
C = C_{c_0, c_1, \ldots, c_{n-1}} = \begin{pmatrix}
0 & 0 & \cdots & 0 & -c_0 \\
1 & 0 & \cdots & 0 & -c_1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{pmatrix}.
\]

We also denote \(C \) by \(C_q \).

Received by the editors on March 18, 2019. Accepted for publication on October 11, 2019. Handling Editor: Sergey Sergeev.

†Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Mihail Kogălniceanu 1, 400084, Cluj-Napoca, Romania (cimpeanandrada@yahoo.com).

∗Received by the editors on March 18, 2019. Accepted for publication on October 11, 2019. Handling Editor: Sergey Sergeev.
m-nil-clean Companion Matrices

2. Useful tools. Any matrix is similar to a Frobenius normal form (a direct sum of companion matrices), a matrix similar to a nilpotent is nilpotent and a matrix similar to an idempotent is idempotent. This is why in the proof of Theorem 3 of [2], one restricts without loss of generality to the case of companion matrices. The same technique is used in [6] to prove that $M_n(F_3)$ is 2-nil-clean. We are also determined to consider m-nil-clean companion matrices, based on the previously mentioned facts and on the fact that, if all companion matrices which appear in the Frobenius normal form of a matrix A are m-nil-clean, then A is also m-nil-clean.

Let F be a field of positive characteristic p. In [5], an investigation was made for nil-clean companion matrices over F.

Theorem 2.1. Let F be a field of positive characteristic p. Let $C = C_{c_0,c_1,\ldots,c_{n-1}} \in M_n(F)$ be a companion matrix. The following are equivalent:

1. C is nil-clean.
2. One of the following conditions is true:
 (a) C is nilpotent (i.e., $c_0 = \cdots = c_{n-1} = 0$);
 (b) C is unipotent (i.e., $c_i = (-1)^i \binom{n}{n-i}$ for all $i \in \{0,\ldots,n-1\}$);
 (c) there exists an integer $k \in \{1,\ldots,p\}$ such that $-c_{n-1} = k \cdot 1$ and $n > k$.

As a consequence of this fact, the following result holds for characteristic 2:

Corollary 2.2. Let F be a field of characteristic 2. Let $C = C_{c_1,\ldots,c_{n-1}} \in M_n(F)$ be a companion matrix. Then C is nil-clean if and only if $-c_{n-1} \in \{0,1\}$.

Here is another corollary of the above theorem:

Corollary 2.3. Let $n \geq 3$ be a positive integer. The following are equivalent for a field F:

1. $F \equiv F_p$ for a prime $p < n$;
2. every companion matrix $C \in M_n(F)$ is nil-clean.

In [2] and [11], the authors use some decompositions which involve matrices that are the sum of a diagonal matrix with entries only 0 and 1 and a companion matrix. In the following, we will use a similar technique.

The following lemma will be useful while proving results on m-nil-clean companion matrices. We will use the notation: $\text{Lin}(\{v_1,v_2,\ldots,v_n\})$ for the subspace of a vector space X generated by the set of vectors v_1,v_2,\ldots,v_n of X.

Lemma 2.4. Let F be a field. For every companion matrix $C_q \in M_n(F)$ and every $k \in \{1,\ldots,n\}$, there exists a companion matrix C_q' such that C_q and $\text{diag}(1,\ldots,1,0,\ldots,0) + C_q'$ are similar.

Proof. First we will prove the statement for $k \in \{1,2,\ldots,n-1\}$. Let V denote the $n-$dimensional vector space of columns over F and consider C_q as an endomorphism $C_q : V \to V$. Denoting by $\{e_1,e_2,\ldots,e_n\}$ the standard basis of V, C_q maps each e_i to e_{i+1}, for each $i \in \{1,2,\ldots,n-1\}$.

Now we define $\{f_1,f_2,\ldots,f_n\}$, $f_i \in V$, $i \in \{1,2,\ldots,n-1\}$, inductively as it follows. First set $f_1 = e_1$. Assuming that $2 \leq i \leq n$ and that f_{i-1} has been defined, set $f_i = C_q(f_{i-1}) - f_{i-1}$, if $i \in \{1,2,\ldots,k+1\}$ and $f_i = C_q(f_{i-1})$, if $i \in \{k+2,\ldots,n\}$
We have $e_1 = f_1$, so $e_1 \in \text{Lin}(\{f_1\})$ and $f_2 = C_q(f_1) - f_1 = C_q(e_1) - f_1 = e_2 - f_1$, so $e_2 = f_1 + f_2$ and $e_2 \in \text{Lin}(\{f_1, f_2\})$.

It is easy to see that each f_i is the sum of e_i and a linear combination of $e_{i-1}, e_{i-2}, \ldots, e_2, e_1$. Hence, e_i is the difference of f_i and a linear combination of $e_{i-1}, e_{i-2}, \ldots, e_2, e_1$. Assuming $e_1, e_2, \ldots, e_{i-1} \in \text{Lin}(\{f_1, f_2, \ldots, f_n\})$, we get e_i is a linear combination of f_1, f_2, \ldots, f_n. Therefore, $\text{Lin}(\{e_1, e_2, \ldots, e_n\}) = \text{Lin}(\{f_1, f_2, \ldots, f_n\})$, and thus, $\{f_1, f_2, \ldots, f_n\}$ is a basis of V.

Moreover, by the definition, we have:

\[
C_q(f_1) = f_1 + f_2, \\
C_q(f_2) = f_2 + f_3, \\
\vdots \quad \vdots \quad \vdots \\
C_q(f_k) = f_k + f_{k+1}, \\
C_q(f_{k+1}) = f_{k+2}, \\
\vdots \quad \vdots \quad \vdots \\
C_q(f_{n-1}) = f_n.
\]

Let M be the matrix the endomorphism C_q corresponds to, with respect to the basis $B = \{f_1, f_2, \ldots, f_n\}$. Therefore,

\[
M = \begin{bmatrix}
|C_q(f_1)|_B, |C_q(f_2)|_B, \ldots, |C_q(f_k)|_B, |C_q(f_{k+1})|_B, \ldots, |C_q(f_{n-1})|_B, |C_q(f_n)|_B
\end{bmatrix}.
\]

Hence,

\[
M = \begin{bmatrix}
|f_1 + f_2|_B, |f_2 + f_3|_B, \ldots, |f_k + f_{k+1}|_B, |f_{k+2}|_B, \ldots, |f_n|_B, |C_q(f_n)|_B
\end{bmatrix}.
\]

It follows that $M = \text{diag}(1, \ldots, 1, 0, \ldots, 0) + C_q'$ for some monic polynomial q' of degree n. So, $C_q = P^{-1}(\text{diag}(1, \ldots, 1, 0, \ldots, 0) + C_q')P$, where P is the transition matrix mapping each e_i to f_i.

As next step, we will solve the case $k = n$, that is we will prove that C is similar to $I_n + C_{q'}$, where $q' = q'' + X^{n-1}$, and q'' is such that $\text{diag}(1, \ldots, 1, 0) + C_{q''}$ is similar to C. We consider the vector space of column vectors of dimension n over F. Let P be the transition matrix from canonical basis to basis B defined in the first part of this lemma, taking $C_q = C$. Then $P(C_q - I_n)P^{-1} = PC_qP^{-1} - I_n = \text{diag}(1, \ldots, 1, 0) + C_{q'} - I_n = C_{q''}$, where $q'' = q'' + X^{n-1}$. Therefore, $C - I_n$ is similar to $C_{q''}$, where $q' = q'' + X^{n-1}$, and q'' is such that $\text{diag}(1, \ldots, 1, 0) + C_{q''}$ is similar to C. Hence, C_q is similar to $I_n + C_{q''}$.

Example 2.5. For $p = 11$, $n = 6$, $k = 5$, $q = X^6 + 3X^5 - X^3 - X^2 - X - 1$ we want to see what matrix of the type $\text{diag}(1, \ldots, 1, 0, \ldots, 0) + C_{q'}$ is similar to C_q. We want to express the vectors in the basis $B = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ as linear combinations of vectors in the canonical basis and vectors in the canonical basis as linear combinations of vectors in basis B in order to find out the transition matrix from canonical basis to basis B and its inverse (P and P^{-1}).
m-nil-clean Companion Matrices

After doing this we obtain
\[
P = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\quad \text{and} \quad
P^{-1} = \begin{pmatrix}
1 & -1 & -1 & -1 & -1 \\
0 & 1 & -2 & 3 & -4 \\
0 & 0 & 1 & -3 & 6 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

Since \(C_q = P^{-1}(\text{diag}(1,1,1,1,0) + C_{q'})P \), we have
\[
C_q = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}
\sim \begin{pmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 1 & 6 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
= \text{diag}(1,1,1,1,0) + C_{q'}.
\]

3. m-nil-clean companion matrices. As a consequence of Theorem 2.1, if \(n > p \), then every \(n \times n \) companion matrix over \(\mathbb{F} \) is nil-clean, where \(\mathbb{F} \) is a field of positive characteristic \(p \). Therefore, we will assume that \(n \leq p \).

Secondly, for \(n = 1 \) the only nilpotent of \(M_n(\mathbb{F}) \) is \((0) \) and the only idempotents of \(M_n(\mathbb{F}) \) are \((0) \) and \((1) \). Therefore, \(C \in M_1(\mathbb{F}) \) is m-nil-clean if and only if \(C \in \{ (0), (1), (2), \ldots, (m) \} \). Hence, we will not refer to the case \(n = 1 \), so we will assume \(n > 1 \) from now on.

Lemma 3.1. Let \(m \geq 2 \) be an integer. Let \(\mathbb{F} \) be a field of positive characteristic \(p \). Let \(A \in M_n(\mathbb{F}) \) be a (not necessarily companion) matrix, for which there exists the decomposition \(A = E_1 + E_2 + \cdots + E_m + N \), with \(k_i = \text{rank}(E_i) \), \(E_i \) idempotent, \(i \in \{1,2,\ldots,m\} \) and \(N \) is nilpotent. Then there is an integer \(c \) such that \(\text{trace}(A) = c \cdot 1 \), and \(c = k_1 + k_2 + \cdots + k_m \) (mod \(p \)) and each \(k_i \) is a natural number less than or equal to \(n \).

Proof. If \(A = E_1 + E_2 + \cdots + E_m + N \), \(E_i \) idempotent, \(i \in \{1,\ldots,m\} \) and \(N \) is nilpotent, then \(\text{trace}(A) = \text{trace}(E_1) + \text{trace}(E_2) + \cdots + \text{trace}(E_m) + \text{trace}(N) \). It follows that \(\text{trace}(A) = \text{trace}(E_1) + \text{trace}(E_2) + \cdots + \text{trace}(E_m) \). Moreover, it is known that if \(E \) is an idempotent, then \(\text{trace}(E) = \text{rank}(E) \cdot 1 \). So \(\text{trace}(A) = (k_1 + k_2 + \cdots + k_m) \cdot 1 \), and \(k_i \leq n, i \in \{1,2,\ldots,m\} \).

Lemma 3.2. Let \(\mathbb{F} \) be a field of positive characteristic \(p \), \(1 < n \leq p \). If \(-c_{n-1} = c \cdot 1 \) and \(c \in \{ 2,3,\ldots,2n-2,2n-1 \} \), then \(C = C_{c_0,c_1,\ldots,c_{n-1}} \in M_n(\mathbb{F}) \) is 2-nil-clean.

Proof. Since \(c \in \{ 2,3,\ldots,2n-1 \} \), there exist \(k \in \{ 1,2,\ldots,n \} \) and \(l \in \{ 1,2,\ldots,n-1 \} \) such that \(c \cdot 1 = (k + l) \cdot 1 \). Let \(C = C_q \), where \(q = X^n + c_{n-1}X^{n-1} + \cdots + c_1X + c_0 \). Then, by Lemma 2.4, there exists \(q' = X^n + d_{n-1}X^{n-1} + \cdots + d_1X + d_0 \), \(q' \in \mathbb{F}[X] \) such that
\[
C_q \sim \text{diag}(1,\ldots,1,0,\ldots,0) + C_{d_0,d_1,\ldots,d_{n-1}}.
\]

Hence, it follows \(-c_{n-1} = k - d_{n-1} \) and so \(-d_{n-1} = l \cdot 1 \), and we know \(n > l \) and \(l \neq 0 \). Now, by Theorem 2.1, it follows that there exist an idempotent matrix \(E \) and a nilpotent matrix \(N \) such that \(C_{d_0,d_1,\ldots,d_{n-1}} = E + N \). Using this and equation 3.1 we have \(C_q \sim \text{diag}(1,\ldots,1,0,\ldots,0) + E + N \). We know
that $C_q = P^{-1} \left(\text{diag}(1, \ldots, 1, 0, \ldots, 0) + C_{d_0, d_1, \ldots, d_{n-1}} \right) P$, where P is the transition matrix mapping each e_i of canonical basis to f_i of the basis met in Lemma 2.4. Now we have

$$C_q = P^{-1} \left(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \right) P + P^{-1} EP + P^{-1} NP. \quad (3.2)$$

Since a matrix similar to an idempotent is idempotent and a matrix similar to a nilpotent is nilpotent, we have actually showed the fact that C_q is 2-nil-clean.

Lemma 3.3. Let $m \geq 2$ be an integer. Let \mathbb{F} be a field of positive characteristic p, and $1 < n \leq p$. If $-c_{n-1} = c \cdot 1$ and $c \in \{m, m+1, \ldots, mn-1\}$, then $C = C_{c_0, c_1, \ldots, c_{n-1}} \in M_n(\mathbb{F})$ is m-nil-clean.

Proof. This lemma’s statement is proved for $m = 2$ in Lemma 3.2.

Now assume that the lemma’s statement is true for $m \geq 2$. We will prove that it is true also for $m + 1$. Let

$$c \in \{m + 1, m + 2, \ldots, (m+1)n-1\}.$$

We will prove that C is $(m+1)$-nil-clean.

Since $c \in \{m + 1, m + 2, \ldots, (m+1)n-1\}$, it follows that there exist $k \in \{1, 2, \ldots, n\}$ and $l \in \{m, m+1, \ldots, mn-1\}$ such that $c = (k+l) \cdot 1$. Let $C = C_q$, $q = X^n + c_{n-1}X^{n-1} + \cdots + c_1X + c_0$. Then by Lemma 2.4, there exists $q' = X^n + d_{n-1}X^{n-1} + \cdots + d_1X + d_0$, $q' \in \mathbb{F}[X]$, such that

$$C_q \sim \text{diag}(1, \ldots, 1, 0, \ldots, 0) + C_{d_0, d_1, \ldots, d_{n-1}}. \quad (3.3)$$

It follows $-c_{n-1} = k - d_{n-1}$ and so $-d_{n-1} = l \cdot 1$. We know that $l \in \{m, m+1, \ldots, mn-1\}$, so by hypothesis induction we obtain that there exist idempotent matrices E_1, E_2, \ldots, E_m, and the nilpotent matrix N, such that $C_{d_0, d_1, \ldots, d_{n-1}} = E_1 + E_2 + \cdots + E_m + N$. Using this and equation 3.3 we have

$$C_q \sim \text{diag}(1, \ldots, 1, 0, \ldots, 0) + E_1 + E_2 + \cdots + E_m + N.$$

We know that there exists an invertible matrix P such that

$$C_q = P^{-1} \left(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \right) P + P^{-1} E_1 P + P^{-1} E_2 P + \cdots + P^{-1} E_m P + P^{-1} NP.$$

Therefore,

$$C_q = P^{-1} \left(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \right) P + P^{-1} E_1 P + P^{-1} E_2 P + \cdots + P^{-1} E_m P + P^{-1} NP.$$

Since a matrix similar to an idempotent is idempotent and a matrix similar to a nilpotent is nilpotent, we have actually showed the fact that C_q is $(m+1)$-nil-clean.

Having the case $p = 2$ solved in Corollary 2.2 (C is nil-clean in this case, so is also m-nil-clean), we can assume from now on that p is odd.

Theorem 3.4. Let $m \geq 2$ be an integer. Let \mathbb{F} be a field of positive odd characteristic p, and $1 < n \leq p$. Let $C = C_{c_0, c_1, \ldots, c_{n-1}}$ be a companion matrix. Let c be the smallest nonnegative integer such that $-c_{n-1} = c \cdot 1$.

The following hold:

1. If $c = 0$ and $mn - 1 < p$, then C is m-nil-clean if and only if C is nilpotent or $C - (m-1)I_n$ is unipotent.
2. If \(c = t, 1 \leq t \leq m \), then \(C \) is \(t \)-nil-clean (1-nil-clean is just nil-clean), so is \(m \)-nil-clean.
3. If \(c \in \{m, m + 1, \ldots, mn - 2, mn - 1\} \), then \(C \) is \(m \)-nil-clean.
4. If \(mn - 2 \geq p \), then \(C \) is \(m \)-nil-clean.
5. Assume that \(mn - 2 < p \).
 (a) If \(c = mn \) and \(p = mn - 1 \), then \(C \) is nil-clean, so is \(m \)-nil-clean.
 (b) If \(c = mn \) and \(p = mn \), then \(C \) is \(m \)-nil-clean if and only if \(C \) is nilpotent or \(C - (m - 1)I_n \) is an unipotent matrix.
 (c) If \(c = mn, p > mn \), then \(C \) is \(m \)-nil-clean if and only if \(C - (m - 1)I_n \) is an unipotent matrix.
 (d) If \(c > mn \), then \(C \) is not \(m \)-nil-clean.

Proof.

1. If \(c = 0 \) and \(mn - 1 < p \), then \(c = 0 \) and \(mn \leq p \).
 If \(mn < p \), then \(c = (0 + \cdots + 0) \) is the only form of \(c \) as sum, modulo \(p \) of \(m \) positive integers less or equal to \(n \), and since \(C \) is \(m \)-nil-clean it follows that the idempotents in the \(m \)-nil-clean decomposition of \(C \) have rank zero. Therefore, they are \(O_n \), and hence, \(C \) is nilpotent.
 If \(mn = p \), then \(c = (0 + \cdots + 0) \) and \(c = (n + \cdots + n) \) are the only forms of \(c \) as a sum modulo \(p \) of \(m \) positive integers less or equal to \(n \), and, since \(C \) is \(m \)-nil-clean, it follows \(C \) is nilpotent or \(C - (m - 1)I_n \) is unipotent.
 It is obvious that if \(C \) is nilpotent or \(C - (m - 1)I_n \) is unipotent, then \(C \) is \(m \)-nil-clean.
2. If \(c = 1 \) and \(n > 1 \), then we have by Theorem 2.1 that \(C \) is nil-clean. If \(c = t, 2 \leq t \leq m \), by Lemma 3.3, we have that \(C \) is \(t \)-nil-clean.
3. This is Lemma 3.3.
4. This is a direct consequence of 3.
5. (a) If \(c = mn \) and \(p = mn - 1 \), it follows that \(-c_{n-1} = 1 \cdot 1 \), so \(C \) is nil-clean.
 (b) Since \(c = mn, p = mn \) it follows that \(c = 0 \) and \(mn - 1 < p \), so by 1, we have that \(C \) is \(m \)-nil-clean if and only if \(C \) is nilpotent or \(C - (m - 1)I_n \) is unipotent.
 (c) Since \(c = mn, p > mn \), it follows that \(-c_{n-1} = mn = (n + n + \cdots + n)(mod p) \), that is the only decomposition as a sum of \(m \) integers between 0 and \(n \). Hence, the idempotents in the \(m \)-nil-clean decomposition of \(C \) are idempotent units, which means they are \(I_n \), so \(C - (m - 1)I_n \) is unipotent. Conversely, if \(C - (m - 1)I_n \) is unipotent, then it is obvious that \(C \) is \(m \)-nil-clean.
 (d) If \(c > mn \), then \(c \) cannot be written modulo \(p \) as sum of \(m \) integers less or equal to \(n \), but by Lemma 3.1, we have that \(C \) is not \(m \)-nil-clean.

Remark 3.5. In Theorem 3.4, one of the conclusions was that \(C - (m - 1)I_n \) is unipotent. We can prove that \(C - (m - 1)I_n \) is similar to a companion matrix, so one can say more, the companion matrix with whom \(C - (m - 1)I_n \) is similar can be only the unipotent companion matrix of type \(n \times n \).

Let us prove that \(C - (m - 1)I_n \) is similar to a companion matrix. To begin with, we have by Lemma 2.4, case \(k = n \), that there exists the monic polynomial \(q_1 \) of degree \(n \) such that \(C - I_n \sim C_{q_1} \). But using again Lemma 2.4, case \(k = n \), we get \(C_{q_1} - I_n \sim C_{q_2} \). Therefore, one can obtain \(C - 2I_n \sim C_{q_2} \). Repeating these steps we find that there exists the sequence of monic polynomials \((q_i)_{1 \leq i \leq m-1} \) such that \(C - iI_n \sim C_{q_i} \), for \(i \in \{1, 2, \ldots, m-1\} \).
REFERENCES