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Abstract. It is said that a list Λ = {λ1, . . . , λn} of complex numbers is realizable, if it is the spectrum of a nonnegative

matrix A. It is said that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ.

This work does not contain new results. As its title says, its goal is to show and emphasize the relevance and importance of

certain results, by Brauer and Rado, in the study of nonnegative inverse spectral problems. It is shown that virtually all known

results, which give sufficient conditions for Λ to be realizable or universally realizable, can be obtained from results by Brauer

and Rado. Moreover, from these results, a realizing matrix may always be constructed.
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1. Introduction. The nonnegative inverse eigenvalue problem is the problem of characterizing all

possible spectra of entrywise nonnegative matrices. If there exists a nonnegative matrix A with spectrum

Λ = {λ1, λ2, . . . , λn}, we say that Λ is realizable and that A is the realizing matrix. The first element of a

realizable list Λ = {λ1, λ2, . . . , λn}, i.e., λ1, is the Perron eigenvalue of the realizing matrix. In the general

case, when Λ is a list of complex numbers, the problem was solved, for n = 3, by Loewy and London [20],

and for n = 4, by Meehan [24], and, independently, by Torre-Mayo et al. [50]. The case n = 5 was solved for

realizing matrices of trace zero, by Laffey and Meehan [19]. The NIEP remains unsolved for n ≥ 5. When

Λ is a list of real numbers, the NIEP is called the real nonnegative inverse eigenvalue problem(RNIEP),

and a number of sufficient conditions for the existence of a solution are known (see [34, 37, 43] and the

references therein). If the realizing matrix is required to be symmetric we have the symmetric nonnegative

inverse eigenvalue problem(SNIEP), which has been solved for n = 5 with realizing matrices of trace zero

by Spector [48]. For n ≤ 4, the RNIEP and the SNIEP are equivalent, while for n ≥ 5, they are different

[13]. A number of sufficient conditions for the existence of a symmetric nonnegative matrix with prescribed

spectrum have also been obtained (see [38, 39, 43] and the references therein).

We say that a list of complex numbers Λ = {λ1, λ2, . . . , λn} is universally realizable (UR), if Λ is realizable

for each possible Jordan canonical form (JCF ) allowed by Λ. The problem of the universal realizability of

spectra is called the universal realizability problem (URP).

A set K, of conditions, is said to be a realizability criterion if any list Λ of complex numbers, satisfying

the conditions K, is realizable. A real matrix A = (aij)
n
i,j=1 is said to have constant row sums if all its rows

sum up the same constant, say α, that is,
∑n
j=1 aij = α, i = 1, . . . , n. The set of all real matrices with

constant row sums equal to α, will be denoted by CSα. It is clear that any matrix in CSα has an eigenvector

e = (1, . . . , 1)T corresponding to the eigenvalue α. We denote by ei = (0, . . . , 1, . . . , 0)T the i-th column
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of the identity matrix of the appropriate size. The importance of real matrices with constant row sums, is

due to the fact that the problem of finding a nonnegative matrix with spectrum Λ = {λ1, λ2, . . . , λn}, is

equivalent to the problem of finding a nonnegative matrix in CSλ1
(see [12]).

The purpose of this work is to examine the NIEP and the URP, from Brauer and Rado results point

of view [3, 28]. In particular, we show that, virtually all known results, which give realizability criteria for

the NIEP and the URP to have a solution, may be obtained by applying certain results by Brauer or Rado,

which we identify in Section 2. Moreover, the proofs from Brauer and Rado results are constructive, in the

sense that they allow us to construct a realizing matrix.

Brauer’s Theorem shows how to modify one single eigenvalue of a matrix, via a rank-one perturbation,

without changing any of the remaining eigenvalues. This, together with the properties of real matrices

with constant row sums, are the basic ingredients of the technique that has been used in most cases, and

it suggests that Brauer’s Theorem can be a very useful tool to deal with the NIEP and the URP. This

approach goes back to Perfect, who first used it in [27] to obtain sufficient conditions for the NIEP to have

a solution. It was somehow abandoned for many years, until in [34], the author rediscovered it to obtain

sufficient conditions for the realizability of partitioned real spectra, with the partition allowing some of its

pieces to be nonrealizable.

Rado’s Theorem, is an extension of Brauer’s Theorem, which shows how to modify r eigenvalues of a

matrix of order n, r < n, via a rank-r perturbation, without changing any of the remaining (n−r) eigenvalues.

Rado’s Theorem was introduced and applied by Perfect [28], to derive an important realizability criterion

for the RNIEP. Surprisingly, this result was also ignored in the literature about the problem, until in [37],

the authors rescue it and extend it to a new realizability criterion. Theorem 2.6 in Section 2, is a symmetric

version of Rado’s Theorem and it was introduced in [39]. There, by the use of Theorem 2.6, the authors give

a criterion for the symmetric realizability of a list Λ = {λ1, . . . , λn} of real numbers. This criterion, by its

own definition, trivially contains any other sufficient condition for the SNIEP to have a solution.

There are a number of known realizability criteria, which have been obtained from the results by Brauer

and/or Rado. Obviously they are not included in this paper (see [2, 27, 28, 34, 37, 43] for the RNIEP,

[36, 38, 39, 43] for the SNIEP, [2, 31, 41, 42] for the complex case, and [7, 8, 16, 40, 44, 45, 46, 47] for the

URP).

The paper is organized as follows: In Section 2, we introduce the Theorems by Brauer and Rado,

mentioned above. In Section 3, from Brauer’s Theorem point of view, we prove some of Guo’s results [11].

In Section 4, we give alternative proofs of realizability criteria of Suleimanova [49], Salzmann [32], Kellogg

[18], Ciarlet [6], Borobia [1], and Šmigoc [33], by applying Brauer’s Theorem. In Section 5, we consider

results related to SNIEP. In particular, from the symmetric version of Rado’s Theorem, we prove two results

by Fiedler [10]. In Section 6, we consider results associated with spectra of complex numbers, and we give,

from Rado’s Theorem point of view, a proof of a result by Šmigoc [33]. Finally, In Section 7, we examine

the universal realizability problem (URP), and give an alternative proof of one of Minc’s result in [26].

2. Brauer and Rado theorems. The Brauer and Rado results have proven to be important for the

study of the NIEP and the URP. They have been applied with success to generate sufficient conditions for

the NIEP and the URP to have a solution. These two theorems will be the sole results used, throughout

this paper, to give alternative proofs of distinct realizability criteria compared in the maps constructed in

[22, 23]. We show that virtually all known realizability criteria for the NIEP and the URP can be obtained
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by applying Brauer’s Theorem or Rado’s Theorem.

Theorem 2.1. (Brauer, [3]) Let A be an n × n arbitrary matrix with eigenvalues λ1, λ2, . . . , λn. Let

v = (v1, v2, . . . , vn)T be an eigenvector of A associated with the eigenvalue λk and let q be any n-dimensional

vector. Then the matrix A+ vqT has eigenvalues λ1, λ2, . . . , λk−1, λk + vTq, λk+1, . . . , λn.

Another proof, simpler than the one given in [3], can be found in [30]. An immediate consequence of

Brauer’s Theorem is:

Corollary 2.2. If Λ = {λ1, . . . , λn} is realizable, then Λε = {λ1+ε, λ2, . . . , λn}, ε ≥ 0, is also realizable.

Proof. There exists a nonnegative matrix A with spectrum Λ, which can be taken as A ∈ CSλ1
. Then,

the matrix Aε = A+ εeeT1 is nonnegative and, from Theorem 2.1, it has spectrum Λε.

In [2], the authors introduce the concept of Brauer’s negativity, a quantity reflecting, in a certain way,

how far Λ is from being realized as the spectrum of a nonnegative matrix. This negativity can be diminished

by joining the list with a realizable list, at best until the negativity is fully compensated and the joint list

becomes realizable. Then we have:

Definition 2.3. Given a list Λ = {λ1, λ2, . . . , λn}, the Brauer’s negativity of Λ is

N (Λ) ≡ min{δ ≥ 0 : {λ1 + δ, λ2, . . . , λn} is realizable}.

Note that a list Λ is realizable if and only if N (Λ) = 0.

The following result is an extension of Theorem 2.1, and shows how to modify r eigenvalues of a matrix

of order n, r < n, via a rank − r perturbation, without changing any of the n − r remaining eigenvalues.

This result was introduced by Perfect in [28]. There, she points out that the result and its proof are due to

R. Rado.

Theorem 2.4. (Rado, [28]) Let A be an n × n arbitrary matrix with eigenvalues λ1, λ2, . . . , λn. Let

X = [x1 | x2 | · · · | xr] be such that rank(X) = r and Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be an r × n
arbitrary matrix. Then the matrix A + XC has eigenvalues µ1, . . . , µr, λr+1, . . . , λn, where µ1, . . . , µr are

eigenvalues of the matrix Ω + CX with Ω = diag{λ1, . . . , λr}.

Observe that for r = 1, Rado’s Theorem is Brauer’s Theorem. The following example shows the impor-

tance of Theorem 2.4. In [37], the authors give a sufficient condition, which allow us, not only to decide on

the realizability of the list Λ = {6, 3, 3,−5,−5}, but also to construct a realizing matrix. Although to some

degree tedious, it is easy to check that no other realizability criterion, distinct from the one given in [37], is

satisfied by Λ.

Example 2.5. [37] Consider Λ = {6, 3, 3,−5,−5}. We define the partition Λ0 = {6, 3, 3}, Λ1 = Λ2 =

{−5}, Λ3 = ∅, with the associated realizable lists Γ1 = Γ2 = {5,−5}, Γ3 = {2}. The matrices

A1 = A2 =

[
0 5

5 0

]
, A3 =

[
2
]
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realize the lists Γ1 = Γ2 and Γ3, respectively, and the matrix

A =

A1 0 0

0 A2 0

0 0 A3


has the spectrum Γ1 ∪ Γ2 ∪ Γ3. To apply the Theorem 2.4 we need to compute a 3× 3 nonnegative matrix

with spectrum Λ0 and diagonal entries 5, 5, 2. From a Perfect’s result [28, Theorem 4 ] it is

B =

5 0 1

1 5 0

0 4 2

 .
Then, for

X =


1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

 , C =

0 0 0 0 1

1 0 0 0 0

0 0 4 0 0

 ,

where the columns of X are eigenvectors of A and C is obtained from B in a certain appropriate way (see

[28, 37]), we have that

M = A+XC =


0 5 0 0 1

5 0 0 0 1

1 0 0 5 0

1 0 5 0 0

0 0 4 0 2


is nonnegative with spectrum Λ.

It was proven by Johnson, Marijuán and Pisonero [14, Theorem 1] and by Loewy and Spector [21,

Theorem 5.1], that Λ = {6, 3, 3,−5,−5} is not symmetrically realizable.

In [39], the authors prove the following symmetric version of Theorem 2.4.

Theorem 2.6. ([39]) Let A be an n× n symmetric matrix with eigenvalues λ1, λ2, . . . , λn. Let {x1,x2,

. . . ,xr} be an orthonormal set of eigenvectors of A such that AX = XΩ, where X = [x1 | x2 | · · · | xr] and

Ω = diag{λ1, λ2, . . . , λr}. Let C be any r × r symmetric matrix. Then the symmetric matrix A + XCXT

has eigenvalues µ1, . . . , µr, λr+1, . . . , λn where µ1, . . . , µr are eigenvalues of the matrix Ω + C.

3. On Guo results. An important result by Guo [11, Theorem 3.1], which we prove using Theorem

2.4, establishes that:

Theorem 3.1. Let Λ = {λ1, λ2, . . . , λn}, λ2 ∈ R, be realizable. Then, for any ε > 0, Λε = {λ1 + ε,

λ2 ± ε, . . . , λn} is also realizable.

Proof. First we consider the case Λ+ε = {λ1 + ε, λ2 + ε, . . . , λn}. Let Λ = {λ1, λ2, . . . , λn} be realizable

with realizing matrix A ∈ CSλ1 . Then Ae = λ1e. Let Ax = λ2x, with xT = (x1, x2, . . . , xn), x1 =
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max{x1, x2, . . . , xn}, x2 = min{x1, x2, . . . , xn}. It is clear that x1 ≥ 0 and x2 ≤ 0. Let

X =


1 x1
1 x2
...

...

1 xn

 , C =

[
c11 c12 · · · · · · c1n
c21 c22 · · · · · · c2n

]
, and Ω =

[
λ1 0

0 λ2

]
,

with

c11 =
−εx2
x1 − x2

, c12 =
εx1

x1 − x2
, c1j = 0, j = 3, . . . , n

c21 =
ε

x1 − x2
, c22 =

−ε
x1 − x2

, c2j = 0, j = 3, . . . , n.

Then

XC =


c11 + c21x1 c12 + c22x1 0 · · · 0

c11 + c21x2 c12 + c22x2 0 · · · 0
...

...
...

. . .
...

c11 + c21xn c12 + c22xn 0 · · · 0

 ≥ 0 and CX =

[
ε 0

0 ε

]
.

Now, from Theorem 2.4, A+XC is nonnegative with spectrum Λ+ε = {λ1 + ε, λ2 + ε, . . . , λn}. For the case

Λ−ε = {λ1 + ε, λ2 − ε, . . . , λn}, we take

c11 =
εx1

x1 − x2
, c12 =

−εx2
x1 − x2

, c1j = 0, j = 3, . . . , n

c21 =
−ε

x1 − x2
, c22 =

ε

x1 − x2
, c2j = 0, j = 3, . . . , n.

and the result follows.

A weaker version of this result is:

Lemma 3.2. Let Λ1 = {α1, α2, . . . , αn} and Λ2 = {β1, β2, . . . , βm} be realizable lists. Then for any

ε ≥ max{β1 − α1, 0},

Λ = {α1 + ε, β1 − ε, α2, . . . , αn, β2, . . . , βm} is realizable.

A result from Guo [11, Theorem 2.1] states the existence of a real number λ0,

(3.1) max
2≤j≤n

|λj | ≤ λ0 ≤ 2n max
2≤j≤n

|λj | ,

such that the list of complex numbers Λ = {λ1, λ2, . . . , λn} is realizable if and only if λ1 ≥ λ0. The Guo

index λ0 is the minimum λ such that {λ, λ2, . . . , λn} is realizable. The problem of finding λ0 is not solved in

Guo’s paper . Here, we show that the upper bound in (3.1) may be reduced to (n− 1) max2≤j≤n |λj | , and

that it is sharp.

Theorem 3.3. Let Λ′ = {λ2, . . . , λn} ⊂ C be such that Λ′ = Λ′ with λ2 ≥ · · · ≥ λp real, 2 ≤ p ≤ n.

Then, the Guo upper bound in (3.1) may be reduced to

(3.2) λ0 ≤ (n− 1) max
2≤j≤n

|λj | .
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Proof. Let m = max2≤j≤n |λj | and let µj =
λj

m(n−1) , j = 2, 3, . . . , n. Then, Γ′ = {µ2, . . . , µn} is a list of

complex numbers such that
∣∣µj∣∣ ≤ 1

n−1 , j = 2, 3, . . . , n. Consider the initial matrix

B =



0 0 0 · · · · · · · · · · · · · · · 0

−µ2 µ2

. . .
...

...
. . .

. . .
. . .

...

−µp
...

. . . µp 0
...

−xs ys
. . . xs −ys

...

−xs −ys ys xs
. . .

...
...

...
. . .

. . .
. . . 0

−xt yt
. . . xt −yt

−xt −yt · · · · · · · · · · · · 0 yt xt



,

where µ2, µ3, . . . , µp are real, xj = Reµj , yj = Imµj , p + 1 ≤ j ≤ n+p
2 . Then B ∈ CS0 has eigenvalues

0, µ2, . . . , µp, µp+1, . . . , µn.

If Reµj ≤ 0, j = 2, 3, . . . , n, then all the entries in the first column of B are nonnegative. Let

q =

(
0,

1

n− 1
, . . . ,

1

n− 1

)T
.

From Theorem 2.1, the matrix A′ = B + eqT is nonnegative with eigenvalues 1, µ2, . . . , µn and the matrix

A = m(n− 1)A′ is nonnegative with eigenvalues (n− 1)m,λ2, . . . , λn.

If Reµk > 0 for some k, 3 ≤ k ≤ n, then all the entries in the k-th column of B (or in the (k − 1)-th

column of B if k corresponds to the second column in the corresponding 2×2 complex block) are nonnegative.

Let

q =

(
1

n− 1
, . . . ,

1

n− 1
, 0,

1

n− 1
, . . . ,

1

n− 1

)T
with zero in the k-th position ((k − 1)-th position). Then, the matrix A′ = B + eqT is nonnegative

with eigenvalues 1, µ2, µ3, . . . , µn and the matrix A = m(n − 1)A′ is nonnegative with eigenvalues (n −
1)m,λ2, λ3, . . . , λn.

If µ2 > 0 with Reµj < 0, j = 3, . . . , n, then we write the −Reµ′js, 3 ≤ j ≤ n, along the second column

of B and the ±Imµ′js, p+ 1 ≤ j ≤ n, along the first column of B. Finally, with

q =

(
1

n− 1
, 0,

1

n− 1
, . . . ,

1

n− 1

)T
we obtain, as before, the nonnegative matrix A = m(n− 1)A′ with the required eigenvalues.

The inequality (3.2) is sharp. In fact, let λj = −1, 2 ≤ j ≤ n. Then, from a result by Suleimanova [49,

Theorem 4.1], the problem has a solution if and only if λ1 ≥ λ0 = (n − 1). Thus, in the real case, Guo’s
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result guarantees the existence of a nonnegative matrix A with spectrum Λ = {λ1, λ2, . . . , λn} for all

(3.3) λ1 ≥ (n− 1) max
2≤j≤n

|λj | .

If Λ = {λ1, λ2, . . . , λn}, with
n∑
i=1

λi = 0, is a realizable list of complex numbers, then λ1 is the Guo’s index.

Remark 3.4. In [31], the authors show how to calculate the Guo’s index λ0, for circulant nonnegative

matrices. There, they give a necessary and sufficient condition for a list Λ = {λ1, λ2, . . . , λn} of complex

numbers to be the spectrum of a circulant nonnegative matrix. However, to calculate λ0 becomes a prohibitive

task for large n. Then, they prove, by the use of Theorem 2.1, a more manageable realizability criterion (see

[31]).

4. RNIEP. In this section, we consider the real nonnegative inverse eigenvalue problem, and we show

that the realizability criteria given by Suleimanova [49], Salzmann [32], Ciarlet [6], Kellogg [18], and Borobia

[1], may all be obtained by applying Theorem 2.1. Perfect [27] was the first one to use Theorem 2.1

and Theorem 2.4 to derive sufficient conditions for the RNIEP to have a solution. There are a number

of realizability criteria, which are not considered here because they were obtained from Theorem 2.1 or

Theorem 2.4.

In this section, we also examine a result by Šmigoc [33, Theorem 10], which can be proved using Theorem

2.4. Since Theorem 2.4 is a generalization of Theorem 2.1, criteria from Theorem 2.4 give, in general, better

information about the realizability of a given real list Λ = {λ1, . . . , λn}. All proofs of criteria generated from

Theorem 2.1 or Theorem 2.4 are constructive. Then, they allow us to construct a realizing matrix.

Theorem 4.1. (Suleimanova, [49]) Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers satisfying λ1 +

λ2 + · · ·+ λn ≥ 0, λk < 0, k = 2, 3, . . . , n. Then, Λ is realizable.

Proof. It was proved in [34] by the use of Theorem 2.1.

Theorem 4.2 (Salzmann [32]). Let Λ = {λ1, λ2, . . . , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn such that

(4.4)

n∑
k=1

λk ≥ 0,

and

(4.5) λk + λn−k+1 ≤
2

n

n∑
k=1

λk, k = 2, 3, . . . ,

[
n+ 1

2

]
.

Then, Λ is realizable.

Proof. We only need to prove the assertion for Λ satisfying
∑n
k=1 λk = 0. First, let n be even and

suppose conditions (4.4) and (4.5) are satisfied with
∑n
k=1 λk = 0. Then λk+λn−k+1 ≤ 0 for k = 2, 3, . . . , n2 .

Now, we apply [34, Theorem 11], which is a criterion obtained by applying Theorem 2.1. Let

B =


B11 0

. . . 0

B21 B22
. . .

. . .

. . .
. . .

. . . 0

Bn
2 1

. . . 0 Bn
2

n
2
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with diagonal blocks

B11 =

[
0 0

−λn λn

]
, Bkk =

[
0 λk

−λn−k+1 λk + λn−k+1

]
and

Bk1 =

[
0 −λk
0 −λk

]
, k = 2, 3, . . . ,

n

2
.

Let q = (q1, q2, . . . , qn)T with

q2k−1 = 0, k = 1, 2, . . . ,
n

2
,

q2 = −λn,
q2k = −(λk + λn−k+1), k = 2, 3, . . . ,

n

2
.

Then, A = B + eqT is nonnegative with spectrum Λ. The proof for odd n is similar with the 1× 1 blocks

Bn+1
2

n+1
2

=
[
λn+1

2

]
, Bn+1

2 2 =
[
−λn+1

2

]
, where λn+1

2
≤ 0,

and qn = −λn+1
2
.

Theorem 4.3. (Ciarlet, [6]) Let Λ = {λ1, λ2, . . . , λn} such that

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 > λp+1 ≥ · · · ≥ λn and 1 ≤ p ≤ n− 1.

If |λk| ≤ λ1

n , k = 2, 3, . . . , n, then Λ is realizable.

Proof. Consider the matrix

B =



0 0 0 · · · 0 0 · · · 0

−λ2 λ2 0 · · · 0 0 · · · 0

−λ3 0 λ3 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...

−λp 0 0 · · · λp 0 · · · 0

−λp+1 0 0 · · · 0 λp+1 · · · 0
...

...
... · · ·

...
...

. . .
...

−λn 0 0 · · · 0 0 · · · λn


∈ CS0.

B has spectrum {0, λ2, . . . , λn}. Then, for q = (λ1

n , . . . ,
λ1

n )T , we have that A = B + eqT has spectrum Λ,

and since |λk| ≤ λ1

n , k = 2, 3, . . . , n, A is nonnegative.

Theorem 4.4. (Kellogg, [18]) Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 ≥ λ2 ≥ · · · ≥ λn
and let p be the largest index j (1 ≤ j ≤ n) for which λj ≥ 0. Let the set of indices

K =

{
i : λi ≥ 0 and λi + λn−i+2 < 0, i ∈

{
2, 3, . . . ,

[
n+ 1

2

]}}
.
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If

(4.6) λ1 ≥ −
∑

i∈K, i<k

(λi + λn−i+2)− λn−k+2 for all k ∈ K,

and

(4.7) λ1 ≥ −
∑
i∈K

(λi + λn−i+2)−
n−p+1∑
j=p+1

λj , provided that n ≥ 2p,

then Λ is realizable.

Proof. Suppose conditions (4.6) and (4.7) are satisfied. Let K = {k1, k2, . . . , kt} be the Kellogg set of

indices. Consider the partition Λ = Λ1 ∪ ∪ti=1Λki ∪ ΛR, where

Λ1 = {λ1, λp+1, . . . , λn−p+1},
Λki = {λki , λn−ki+2}, ki ∈ K, i = 1, 2, . . . , t (λk1 ≥ λk2 ≥ · · · ≥ λkt ≥ 0),

ΛR = Λ− Λ1 − ∪ti=1Λki .

From (4.7), we have that

λ1 +

n−p+1∑
j=p+1

λj ≥ −
∑
i∈K

(λi + λn−i+2) > 0 ((λi + λn−i+2) < 0 ∀i ∈ K).

Since λp+1, λp+2, . . . , λn−p+1 are negative, from Theorem 4.1, Λ1 is realizable.

If ΛR = ∅ then Λ = Λ1 ∪ ∪ti=1Λki . If ΛR 6= ∅, then ΛR contain sublists Λi = {λi, λn−i+2} such that

(λi + λn−i+2) ≥ 0. So, the lists Λi are realizable by

Ai =

[
0 λi

−λn−i+2 λi + λn−i+2

]
.

Let AR be the realizing matrix of ΛR. On the other hand, for each sublist Λki = {λki , λn−ki+2} with ki ∈ K,

i = 1, 2, . . . , t,

Bki =

[
0 λki

−λn−ki+2 λki + λn−ki+2

]
is a 2× 2 matrix with spectrum Λki , i = 1, 2, . . . , t. Since λki ≥ 0 and (λki + λn−ki+2) < 0, then

−λn−ki+2 > 0.

Let

Λ′1 =

{
λ1 +

t∑
i=1

(λki + λn−ki+2), λp+1, . . . , λn−p+1

}
,

From (4.7), Λ′1 is realizable by an (n− 2p+ 2)× (n− 2p+ 2) matrix B′1 ∈ CSµ, where

µ = λ1 +

t∑
i=1

(λki + λn−ki+2).
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Now, let

B =



B′1 0 0 · · · · · · 0 0

B2 Bkt 0
. . .

...
...

...

0 Bkt−1
(µ) Bkt−1

. . .
. . .

...
...

... Bkt−2(µ) B′kt−1
Bkt−2

. . .
. . .

...
...

...
...

...
. . . 0 0

... Bk2(µ) B′kt−1
B′kt−2

· · · Bk2 0

0 Bk1(µ) B′kt−1
B′kt−2

· · · B′k2 Bk1


,

where

B2 =

[
0 · · · 0 µ− λkt
0 · · · 0 µ− λkt

]
2×(n−2p+2)

,

Bki =

[
0 λki

−λn−ki+2 λki + λn−ki+2

]
, i = 1, 2, . . . , t,

Bki(µ) =

0 µ− λki −
t−1∑
j=i+1

(λkj + λn−kj+2)

0 µ− λki −
t−1∑
j=i+1

(λkj + λn−kj+2)

 , i = 1, 2, . . . , t− 1,

B′ki =

[
0 λki + λn−ki+2

0 λki + λn−ki+2

]
, i = 2, 3, . . . , t− 1,

are such that B ∈ CSµ with spectrum Λ′1 ∪ ∪ti=1Λki .

Note that the sum
t−1∑
j=i+1

(λkj + λn−kj+2) in the matrix Bki(µ) is zero if i+ 1 > t− 1 for some i. From

Theorem 2.1, we have for

q =
(

0, 0, . . . , 0︸ ︷︷ ︸
(n−2p+2)−times

, 0,−(λkt + λn−kt+2), . . . , 0,−(λk1 + λn−k1+2)
)T

,

that M = B + eqT ∈ CSλ1 is nonnegative with spectrum Λ1 ∪ ∪ti=1Λki .

Finally, a matrix A = M ⊕AR is nonnegative with spectrum Λ.

Before proving Borobia’s result from Theorem 2.1we need the following result, which was proved in [35]:

Lemma 4.5. Let

Bk =

[
0 λk

−λn−k+2 λk + λn−k+2

]
,
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where λn−k+2 =
∑r
j=1 µj < 0 with µj < 0, j = 1, 2, . . . , r. Then

Λk = {λk, λn−k+2} and Λr = {λk, µ1, . . . , µr}

have the same Brauer’s negativity, N (Λk) = N (Λr). Moreover, there exists a matrix Br ∈ CSλk
, of order

r + 1, with spectrum Λr.

Theorem 4.6. (Borobia, [1]) Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers with λ1 ≥ λ2 ≥ · · · ≥
λp ≥ 0 > λp+1 ≥ · · · ≥ λn (p is the largest index j (1 ≤ j ≤ n) for which λj ≥ 0. ) If there exists a partition

J1 ∪ J2 ∪ · · · ∪ Jt of J = {λp+1, λp+2, . . . , λn}, for some 1 ≤ t ≤ n− p, such that

(4.8) λ1 ≥ λ2 ≥ · · · ≥ λp ≥
∑
λ∈J1

λ ≥
∑
λ∈J2

λ ≥ · · · ≥
∑
λ∈Jt

λ

satisfies the Kellogg conditions (4.6) and (4.7), then Λ is realizable.

Proof. Suppose that Borobia realizability criterion is satisfied. Then, there exists a partition

J1 ∪ J2 ∪ · · · ∪ Jt of J = {λp+1, . . . , λn},

with ∑
λ∈Jj

λ = µp+j , j = 1, 2, . . . , t, 1 ≤ t ≤ n− p,

such that the new list

Γ =
{
µ1, µ2, . . . , µp, µp+1, . . . , µp+t

}
with µ1 ≥ · · · ≥ µp ≥ 0 > µp+1 ≥ · · · ≥ µp+t, where µi = λi, i = 1, . . . , p, satisfies the Kellogg realizability

criterion.

Now, we apply the same proof as in Theorem 4.4, except for one detail. Since the new list

Γ =
{
µ1, . . . , µp, µp+1, . . . , µp+t

}
.

has less elements than the original list Λ = {λ1, λ2, . . . , λn} and we want to obtain a nonnegative matrix of

order n realizing Λ, then, in each step of the proof, before manipulating any of the new sublists

Γki = {µki , µp+t−ki+2}, ki ∈ K (Kellogg set of indices),

where

µp+t−ki+2 = µp+j =
∑
λ∈Jj

λ < 0, ∀ki ∈ K and j = 1, . . . , t,

we must extend Γki to the lists Γri = {µki , λ1j , . . . , λrj}, ∀ki ∈ K, where

λsj ∈ Jj , s = 1, . . . , r, and

r∑
s=1

λsj = µp+t−ki+2, j = 1, . . . , t.
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From Lemma 4.5 N (Γki) = N (Γri). Then, the realizing matrix for Γri is of the required size. In the same

way, if necessary, we must also extend the new list

Γ′1 = {µ, µp+1, . . . , µt+1}, with µ = µ1 +
∑
ki∈K

(µki + µp+t−ki+2)

to a new list Γ′′1 with the same Brauer’s negativity, by replacing the corresponding µp+1, . . . , µt+1 by∑
λ∈J1 λ, . . . ,

∑
λ∈Jt−p+1

λ, respectively. Again, from Lemma 4.5, N (Γ′1) = N (Γ′′1). Thus, the realizing

matrix of Γ′′1 has the required size. Finally, from Suleimanova criterion, is easy to construct the realizing

matrices for Γri ,Γ
′′
1 and ΓR, and, analogously as in proof of Theorem 4.4, we use Theorem 2.1for constructing

a nonnegative matrix with spectrum Λ.

Remark 4.7. Some realizability criteria, such as those of Kellogg and Borobia, give sufficient conditions

for the existence of a solution, but not for its construction, as with the criteria from Theorem 2.1 and

Theorem 2.4

The following result, by Šmigoc [33], can be proved by using Theorem 2.4.

Theorem 4.8. ([33, Theorem 10]) Let A =

[
A1 a

bT c

]
be an n× n nonnegative matrix with spectrum Λ

and let B be an m × m nonnegative matrix with Perron eigenvalue λ1, spectrum {λ1} ∪ Λ′ and maximal

diagonal element d. If λ1 ≤ c, then there exists an (n + m − 1) × (n + m − 1) nonnegative matrix M with

spectrum Λ ∪ Λ′ and maximal diagonal element greater than or equal to c+ d− λ1.

Proof. We suppose, without loss of generality, that B ∈ CSλ1 with maximal diagonal element d in the

position bmm. If λ1 ≤ c, we take ε = c − λ1 ≥ 0, and from Theorem 2.1 there exists a nonnegative matrix

B′ = B + εeen with spectrum {c,Λ′} and maximal diagonal element d + c − λ1. On the other hand, let

A be a nonnegative matrix with spectrum Λ and diagonal entries a2, a3, . . . , an, c. From Theorem 2.4, the

(n+m− 1)× (n+m− 1) matrix

M =


a2

a3
. . .

an
B′

+XC, with X =



1 0 · · · 0 0

0 1 · · · 0 0
... 0

. . .
...

...
...

...
. . . 1 0

...
... · · · 0 1

...
... · · · 0

...
...

... · · ·
...

...

0 · · · · · · 0 1


(n+m−1)×n

,

has spectrum {Λ,Λ′}, where Λ is the spectrum of Ω + CX = A, being Ω = diag{a2, a3, . . . , an, c}. Since

CX = A− Ω ≥ 0, it is clear that the n× (n+m− 1) matrix

C =

[
A′1 a 0 · · · 0
bT 0 0 · · · 0

]
(A′1 is A1 with tr(A1) = 0)

is nonnegative. Therefore, the matrix M is nonnegative. Finally, from the construction of M, it is clear that

M has a maximal diagonal element greater than or equal to c+ d− λ1.
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Remark 4.9. In [22], the authors construct a map of sufficient conditions for the RNIEP to have a

solution, with inclusion relations or independency relations between them. There, they point out that Soto

2, Perfect 2 +, and Soto-Rojo realizability criteria (all them obtained from results by Brauer and Rado), are

the most general criteria. In particular, they conclude that Soto-Rojo criterion, by its own nature, trivially

contains all realizability criteria, which are compared in [22].

5. SNIEP. In this section, we consider the symmetric nonnegative inverse eigenvalue problem (SNIEP).

It is well known that the RNIEP and the SNIEP are equivalent for n ≤ 4, while they are different for n ≥ 5

[13]. The first results about symmetric nonnegative realizations are due to Fiedler [10]. Several realizability

criteria obtained for the NIEP, have later been proved to be also symmetric realizability criteria. Fiedler

and Radwan, in [10] and [29], respectively, show that Kellogg and Borobia realizability criteria are also

symmetric realizability criteria. In [36, 38], it is shown that the NIEP realizability criteria given in [34],

are also symmetric realizability criteria. In [39], the authors prove Theorem 2.6, which gives a symmetric

version of Theorem 2.4. Then, by applying Theorem 2.6, they prove a new symmetric realizability criterion

[39, Theorems 2.6 and 3.1], which strictly contains criteria in [34]. In [43], it is also shown that the criteria

called Family Soto p criteria are also NIEP and SNIEP realizability criteria (see [9, 23]).

Next, by the use of Theorem 2.6, we give alternative proofs for the following two results of Fiedler:

Lemma 5.1. (Fiedler, [10]) Let A be a symmetric m×m matrix with spectrum Λ1 = {α1, . . . , αm}. Let

u = (u1, . . . , um), ‖u‖ = 1, be a unit eigenvector of A corresponding to α1. Let B be a symmetric n×n matrix

with spectrum Λ2 = {β1, . . . , βn}. Let v = (v1, . . . , vn), ‖v‖ = 1, be a unit eigenvector of B corresponding to

β1. Then for any scalar ρ, the matrix

C =

[
A ρuvT

ρvuT B

]

has spectrum Λ = {γ1, γ2, α2, . . . , αm, β2, . . . , βn}, where γ1, γ2 are eigenvalues of the matrix

Ĉ =

[
α1 ρ

ρ β1

]
.

Proof. The matrix M =

[
A 0

0 B

]
is symmetric of order (m+n) with eigenvalues α1, . . . , αm, β1, . . . , βn.

Let

XT
1 = (u1, . . . , um, 0, . . . , 0) and XT

2 = (0, . . . , 0, v1, . . . , vn)

(m+ n)−dimensional vectors. Let X = [X1 | X2] and Ω = diag{α1, β1}. Then MX = XΩ. Let

C =

[
0 ρ

ρ 0

]
.

Then

XCXT =

[
0 ρuvT

ρvuT 0

]
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and the matrix

M +XCXT =

[
A ρuvT

ρvuT B

]
is symmetric. From Theorem 2.6, it has spectrum

Λ = {γ1, γ2, α2, . . . , αm, β2, . . . , βn} ,

where γ1 and γ2 are eigenvalues of the matrix

Ω + C =

[
α1 ρ

ρ β1

]
for any ρ.

Observe that Theorem 2.6 generalizes Lemma 5.1 by Fiedler. In fact, if we have symmetric matrices

A1, A2, . . . , Ap, with corresponding spectra Λi = {α(i)
1 , α

(i)
2 , . . . , α

(i)
ni }, i = 1, 2, . . . , p, and unitary eigenvectors

u(i) associated, respectively, to the eigenvalues α
(i)
1 , then from Theorem 2.6, we may obtain a symmetric

n× n matrix

A = (A1 ⊕A2 ⊕ · · · ⊕Ap) +XCXT ,

with spectrum {γ1, . . . , γp, α
(1)
2 , . . . , α

(1)
n1 , . . . , α

(p)
2 , . . . , α

(p)
np }, where γ1, . . . , γp are eigenvalues of the matrix

Ω + C, with Ω = diag{α(1)
1 , α

(2)
1 , . . . , α

(p)
1 }.

In what follows Sn (Ŝn) denote the set of all lists Λ for which there exists an n×n symmetric nonnegative

(positive) matrix with spectrum Λ.

Theorem 5.2. (Fiedler, [10]) If

Λ1 = {α1, . . . , αm} ∈ Sm, Λ2 = {β1, . . . , βn} ∈ Sn

and α1 ≥ β1, then for any ε ≥ 0,

Λ = {α1 + ε, β1 − ε, α2, . . . , αm, β2, . . . , βn} ∈ Sm+n.

Proof. If Λ1 ∈ Sm and Λ2 ∈ Sn, then there exist symmetric nonnegative matrices A and B, with

spectrum Λ1 and Λ2, Au = α1u, Bv = β1v, ‖u‖ = ‖v‖ = 1, respectively. From Theorem 2.6 we have

M =

[
A 0

0 B

]
, with MX = XΩ,

where

Ω =

[
α1 0

0 β1

]
and X =

[
u 0

0 v

]
.

Moreover, for

C =

[
0 ρ

ρ 0

]
, ρ > 0,



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 484-502, July 2020.

Ana I. Julio and Ricardo L. Soto 498

M +XCXT =

[
A ρuvT

ρvuT B

]
is symmetric nonnegative with spectrum {γ1, γ2, α2, . . . , αm, β2, . . . , βn}, where γ1 and γ2 are eigenvalues

of Ω + C =

[
α1 ρ

ρ β1

]
. If we choose ρ =

√
ε(ε+ (α1 − β1)), then, γ1 and γ2 are obtained as α1 + ε and

β1 − ε, respectively.

It is known that if Λ = {λ1, λ2, . . . , λn} ∈ Sn and ε > 0, then Λε = {λ1 + ε, λ2, . . . , λn} ∈ Ŝn. It is clear

that this result can be also proved by using Theorem 2.1.

Remark 5.3. The criterion obtained from Theorem 2.6 is good for SNIEP (in general Theorem 2.1

destroy the symmetry of a matrix). In [23] the authors construct a map of sufficient conditions for SNIEP.

Again, as for the RNIEP, the most general sufficient conditions for the SNIEP to have a solution, have

been obtained from results by Brauer or Rado. In particular, the criterion given in [39], by its own nature,

trivially contains any other realizability criterion for the SNIEP.

6. Complex NIEP. In this section, we consider a list Λ = {λ1, λ2, . . . , λn} of complex numbers. In

[2] the authors introduce the following complex generalization of Theorem 4.1 by Suleimanova. The proof

uses Theorem 2.1:

Theorem 6.1. ([2]) Let Λ = {λ1, λ2, . . . , λn}, with Λ = Λ and

(6.9) Λ′ = {λ2, . . . , λn} ⊂ { z ∈ C : Rez ≤ 0, |Rez| ≥ |Imz|} .

Then, Λ is realizable if and only if
∑n
i=1 λi ≥ 0.

In [33], Šmigoc proved that (6.9) can be improved to

(6.10) Λ′ = {λ2, . . . , λn} ⊂
{
z ∈ C : Rez ≤ 0,

√
3 |Rez| ≥ |Imz|

}
.

Then, Λ = {λ1, λ2, . . . , λn} is also realizable if and only if
∑n
i=1 λi ≥ 0.

Next, we give an alternative proof of a result by Šmigoc [33]. First, we need the following lemma, given

in [41, Theorem 2.2].

Lemma 6.2. The numbers ω1, ω2, ω3 and λ1, λ2, λ3 (λ1 ≥ |λi|, i = 2, 3) are, respectively, the diagonal

entries and eigenvalues of a nonnegative matrix B ∈ CSλ1 if only if

i) 0 ≤ ωk ≤ λ1, k = 1, 2, 3,

ii) ω1 + ω2 + ω3 = λ1 + λ2 + λ3,

iii) ω1ω2 + ω1ω3 + ω2ω3 ≥ λ1λ2 + λ1λ3 + λ2λ3, and

iv) maxωk ≥ Reλ2.

Theorem 6.3. Let Λ = {λ1, λ2, . . . , λn}, Λ = Λ, λj = aj + ibj with aj ≤ 0, j = 2, 3, . . . , n, satisfying

|bj | ≤ −
√

3aj. Then, Λ is realizable if only if
∑n
k=1 λk ≥ 0.

Proof. The condition is necessary. Now, suppose that
∑n
k=1 λk ≥ 0. We use induction on n, with n ≥ 2.
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For n = 2, Λ = {λ1, λ2} must be a real list with λ2 < 0. Then,

A =
1

2

[
λ1 + λ2 λ1 − λ2
λ1 − λ2 λ1 + λ2

]
is nonnegative with spectrum Λ. For n = 3 and Λ = {λ1, λ2, λ3} with λj < 0, j = 2, 3, the conditions from

Lemma 6.2 are satisfied and, therefore, there exists a nonnegative matrix with prescribed eigenvalues and

diagonal entries.

If Λ = {λ1, a+ ib, a− ib} with a < 0, |b| ≤ −
√

3a, λ1 + 2a ≥ 0, then, since

2aλ1 + 4a2 ≤ 0 and − 3a2 + b2 ≤ 0,

we have 2λ1a+ a2 + b2 ≤ 0. So, the conditions from Lemma 6.2 are also satisfied and, therefore, there exists

a 3× 3 nonnegative matrix with spectrum Λ and the prescribed diagonal entries. Now, we suppose that Λ,

with m− 2 numbers, 4 ≤ m ≤ n, is realizable. Let

Λ′ = {λ1, λ2, . . . , λm}, with Reλj ≤ 0, and
√

3|Reλj | ≥ |Imλj |, j = 2, . . . ,m.

We take the partition

Λ0 = {λ1, λi, λj}, Λ2 = Λ′ − Λ0, Λ1 = Λ3 = ∅,

with

Γ2 = {λ1 + λi + λj} ∪ Λ2, Γ1 = Γ3 = {0},

where λi, λj are real numbers or complex conjugated numbers. From the hypothesis of induction, Γ2 is

realizable by a nonnegative matrix A2. Then

A =

A2

0

0


is nonnegative with spectrum Γ2 ∪ {0, 0}. From Lemma 6.2, we can construct a 3× 3 nonnegative matrix B

with spectrum Λ0 and diagonal entries {λ1 + λi + λj , 0, 0}. Finally, from Theorem 2.4 with

X =

x2 0 0

0 1 0

0 0 1


m×3

and A2x2 = (λ1 + λi + λj)x2,

we have B = Ω + CX, Ω = diag{λ1 + λi + λj , 0, 0}. Then the m×m matrix

M =

A2

0

0

+XC

has the spectrum Λ = {λ1, . . . , λm}. Moreover, since, A,X and C are nonnegative, M is nonnegative.
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7. Universal realizability. We say that a list Λ = {λ1, . . . , λn} of complex numbers is universally

realizable, if it is realizable for each possible Jordan canonical form allowed by Λ. As far as we know, the

first works on the universal realizability problem are due to Minc [25, 26]. In [26], Minc proves that if a list

Λ = {λ1, . . . , λn} of complex numbers has a diagonalizable positive realization, then Λ is UR. Next, we give

an alternative proof for this result.

Theorem 7.1. (Minc, [26]) Let Λ = {λ1, λ2, . . . , λn} be realizable by a diagonalizable positive matrix A.

Then Λ is universally realizable.

Proof. Let A be positive with spectrum Λ and let S be a nonsingular matrix, such that S−1AS = J(A)

is the diagonal Jordan canonical form of A. We perturb the diagonal matrix J(A) by using Theorem 2.4. It

is clear that the eigenvectors of J(A) are the canonical vectors e1, e2, . . . , en. Let Ω = diag{λ2, λ3, . . . , λr+1}
and consider the n × r matrix X = [e2 | e3 | · · · | er+1] and the r × n matrix C such that Ω + CX has

eigenvalues λ2, λ3, . . . , λr+1. Then XC is of the form
∑
i∈K Ei,i+1, K = {2, 3, . . . , n− 1}, and

J(A) +XC = S−1AS +XC = S−1
(
A+ SXCS−1

)
S.

By a convenient ordering of the columns, Minc [26] proved that the matrix SXCS−1 is real. Hence, for

ε > 0 small enough,

M = A+ εSXCS−1

is positive, with Jordan canonical form J(M) = J(A) +XC.

Results on the universal realizability problem, all of which have been obtained by applying Theorem 2.1

or Theorem 2.4, can be found in [4, 5, 7, 8, 15, 16, 17, 40, 44]. Other results give sufficient conditions for

the universal realizability problem for structured matrices [45, 46, 47].
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