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INERTIA SETS OF SEMICLIQUED GRAPHS∗
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Abstract. In this paper, we investigate inertia sets of simple connected undirected graphs. The main focus is on the shape

of their corresponding inertia tables, in particular whether or not they are trapezoidal. This paper introduces a special family

of graphs created from any given graph, G, coined semicliqued graphs and denoted K̃G. We establish the minimum rank and

inertia sets of some K̃G in relation to the original graph G. For special classes of graphs, G, it can be shown that the inertia

set of G is a subset of the inertia set of K̃G. We provide the inertia sets for semicliqued cycles, paths, stars, complete graphs,

and for a class of trees. In addition, we establish an inertia set bound for semicliqued complete bipartite graphs.
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1. Introduction. The inverse inertia problem seeks to find which inertias of a graph, G, can be obtained

from a matrix in S(G), the set of real symmetric matrices corresponding to G. Motivated by past results,

[1, 2, 3, 4, 9], we investigate what inertias can be attained by a special family of graphs we define as

semicliqued graphs.

In [4], they introduce a family of graphs called clique-stars, denoted Km ∨ nK1 or KSm,n. This paper

strongly motivated a broader study into the types of graphs investigated in our paper. These clique-stars

can now be classified as a semicliqued star and their results fold nicely into the more general results for

semicliqued graphs found in this paper.

The main focus of this paper is to determine the relationship of the minimum rank, inertia set, and

the clique cover number of a graph and its corresponding semicliqued graphs. In addition, we investigate

the shape of the inertia tables for the original graphs compared to the shapes formed from its semicliqued

graphs.

2. Definitions and Notations. A graph is a pair G = (V (G), E(G)), where V (G) is the set of vertices

and E(G) is the set of edges. In this paper, each graph is connected, simple, undirected, and finite, and has

a nonempty vertex set. The order of a graph G, denoted |G|, is the number of vertices of G. In this paper,

we require |G| ≥ 2. If G is a graph, then S(G) is the set of all real symmetric n× n matrices A = [ai,j ] for

which ai,j 6= 0, i < j if and only if {i, j} ∈ E(G). No restrictions are placed on the diagonal entries.

Given a matrix A, the scalar λ, and a nonzero vector p, which satisfy Ap = λp, λ is an eigenvalue of A.

Given a symmetric matrix, A, the inertia of A is the ordered triple: (π(A), ν(A), δ(A)). π(A) is the number

of positive eigenvalues of A, ν(A) is the number of negative eigenvalues of A, and δ(A) is the multiplicity

of 0 as an eigenvalue of A. For a given matrix, A ∈ S(G), where S(G) is the set of symmetric matrices

corresponding to G, the partial inertia of that matrix is the pair (π(A), ν(A)). The inertia set for G, denoted
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I(G), is the set of all partial inertias for the matrices in S(G). This set can be viewed as a subset of the

integer lattice in the plane which is called an inertia table. The smallest value of r+ s, (r, s) ∈ I(G) is called

the minimum rank of G and is denoted mr(G). The minimum rank line of a graph G consists of all points

(π(A), ν(A)) such that π(A) + ν(A) = mr(G). We employ the T notation to describe this initial table. The

T notation has the form:

T k
[m,n] = {(r, s) ∈ N2|m ≤ r + s ≤ n and k ≤ r ≤ n, k ≤ s ≤ n}

for some nonnegative integers k and m ≤ n. The value m represents the minimum rank, whereas n represents

the order of G and k indicates the inset from the axes. For convenience, k can be left out of the notation

when k = 0. A graph, G, has a trapezoidal inertia if I(G) = T[m,n]. It should be noted that for all G,

I(G) ⊆ T[mr(G),n].

A path is a graph Pn = ({v1, v2, . . . , vn}, E) such that E = {{vi, vi+1} : i = 1, 2, . . . , n − 1}. A cycle

is a graph Cn = ({v1, v2, . . . , vn}, E) such that E = {{vi, vi+1} : 1, 2, . . . , n − 1} ∪ {vn, v1}}. A complete

graph is a graph Kn = ({v1, v2, . . . , vn}, E) such that E = {{vi, vj} : 1 ≤ i < j ≤ n}. A complete

bipartite graph, denoted Km,n, is a graph whose vertices can be partitioned into two sets, V and V ′, where

V = {vj : 1 ≤ j ≤ m}, V ′ = {vj : m + 1 ≤ j ≤ m + n} and E(Km,n) = {{vi, vj}|vi ∈ V, vj ∈ V ′}. A star,

denoted K1,n, is a complete bipartite graph with m = 1. A clique in a graph is a complete subgraph. A

clique cover, sometimes referred to as an edge clique cover, is a set of cliques in G such that the union of

these cliques contains every edge in G. The clique cover number, denoted cc(G), is the minimum number of

cliques needed for a clique cover of G.

A set of t distinct edges {i1, j′1}, {i2, j′2},. . .,{it, j′t} in G, no two of which are adjacent, is said to be a

t-matching between {i1, . . . , it} and {j′1, . . . , j′t} if vertices i1, . . . , it are distinct, as well as vertices j′1, . . . , j
′
t.

Such a t-matching in G is said to be constrained if it is the only t-matching in G between vertices {i1, . . . , it}
and {j′1, . . . , j′t}.

Let F and G be graphs on at least two vertices, each with a vertex labeled v. Then, F ⊕v G is the graph

on |F |+ |G| − 1 vertices obtained by identifying the vertex v in F with the vertex v in G.

Let G be a graph with n vertices labeled v1, v2, . . . , vn. A semicliqued graph of G, K̃G, is a graph obtained

from G by replacing each vertex j of G by a Kij , ij ≥ 1, such that for at least one j ∈ {1, 2, . . . , n}, ij ≥ 2

and whose edge set is
n⋃

j=1

E(Kij )
⋃
{{u, v}|u ∈ V (Kil), v ∈ V (Kim), {vl, vm} ∈ E(G)}.

In Figure 1, we have one possible semicliqued graph of G15, where Ki1 = K1, Ki2 = K3, Ki3 = K2, and

Ki4 = K1.
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Figure 1: G15 from [10] and one of its K̃G15



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 747-757, December 2021.

749 Inertia sets of semicliqued graphs

3. Useful Techniques and Known Inertia Sets. This section provides the collection of previously

established lemmas, theorems, observations, and techniques that are required in order to establish the main

results of this paper. In Theorem 6.5 of [8], they established the following useful result, rephrased below.

Theorem 1. Let A ∈ S(G) and t ∈ N. If there exist a constrained t−matching in G, then rank(A) ≥ t.

We proceed with a process that provides another bound for minimum rank.

Zero Forcing :

• Color-change rule:

If G is a graph with each vertex colored either white or black, u is a black vertex of G, and exactly

one neighbor v of u is white, then change the color of v to black.

• Given a coloring of G, the derived coloring is the result of applying the color-change rule until no

more changes are possible.

• A zero forcing set for a graph G is a subset of vertices Z such that if initially the vertices in Z are

colored black and the remaining vertices are colored white, the derived coloring of G is all black.

• The zero forcing number, Z(G), is the minimum of |Z| over all zero forcing sets Z ⊆ V (G).

With this process, we have the following bound on a graph’s minimum rank:

Lemma 2 ([9]). For a graph G, |G| − Z(G) ≤ mr(G).

We use the zero forcing number to establish a bound on the minimum rank. Next, we must examine

which of the points on the minimum rank line are actually contained within the inertia of G. A common

tool we implement is also discussed in [1].

To show that a given pattern has a particular inertia, say (k, l) in its inertia set, construct an explicit

matrix with this inertia according to the following procedure. Let D be the (k+ l)× (k+ l) diagonal matrix

with k +1’s and l −1’s on the diagonal. Then, any rank k + l matrix of the form BTDB will have inertia

(k, l). Given a graph G, determine a (k + l) × n matrix B such that, with respect to the indefinite inner

product induced by D, columns i and j of B are orthogonal if and only if {i, j} is not an edge of G. Choose

a starting vertex (vertex 1) and assign it any vector (vector 1). Choose a second vertex and assign a vector

such that vector 2 is orthogonal to vector 1 if and only if vertex 2 is nonadjacent to vertex 1. Continue so

that at step p the pth vertex is assigned vector p such that for j ∈ {1, 2, . . . , p − 1}, vector p is orthogonal

to vector j if and only if vertex p is nonadjacent to vertex j. The following example demonstrates how such

matrices are constructed.

Example 3. Let G = G41 as in [10] and Figure 2:
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Figure 2: G41
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It is well known that G has minimum rank 3. To show the point (2, 1) ∈ I(G), construct the following

matrix, A ∈ S(G) by multiplying BTDB where:

D =

 1 0 0

0 1 0

0 0 −1

 B =

 1 0 0 0 1

1 2 0 2 0

0 1 1 1 0

 A =


2 2 0 2 1

2 3 −1 3 0

0 −1 −1 −1 0

2 3 −1 3 0

1 0 0 0 1


Observe A has approximate eigenvalues 0, 0, 7.67, 1.74, and -1.42, confirming (2, 1) ∈ I(G)

Once we establish an actual point in the inertia set, there are many results we may use in order to

determine the full inertia table of a given graph. The results listed below are of use for the purposes of this

paper, but there are many more. Most are included in [3], [4], [7], and [9].

Lemma 4 (Northeast Lemma). For a graph G with n vertices, (p+1, q), (p, q+1) ∈ I(G) if (p, q) ∈ I(G)

and p+ q < n.

In Example 3, this lemma allows us to conclude that points such as (3, 1) and (2, 2) are contained in

I(G). We use the notation, S↗, to indicate the set of points in S and all additional points northeast of any

point (p, q) ∈ S.

Observation 5. For a graph G, if (p, q) ∈ I(G), then (q, p) ∈ I(G).

In Example 3, this lemma allows us to conclude that points such as (1, 2) and (1, 3) are contained in

I(G).

In [3], they establish a direct method of finding the inertia of a given graph if it is of the form F ⊕v G.

Theorem 6. Let F and G be graphs on at least two vertices with a common vertex v and let n =

|F |+ |G| − 1. Then:

I(F ⊕v G) = [I(F ) + I(G)]n
⋃

[I(F − v) + I(G− v) + T 1
[2,2]]n.

In [2], Lemma 4, the authors establish that the minimum rank of an induced subgraph is bounded above

by the minimum rank of the original graph. We may extend this result to inertias in the following way.

Lemma 7. If H is an induced subgraph of a graph G, then I(G) ⊆ I(H)
↗
.

Note that G is an induced subgraph of any K̃G. Thus, from Lemma 7, we observe the following.

Observation 8. For a graph G, I(K̃G) ⊆ I(G)↗ and mr(G) ≤ mr(K̃G).

Throughout this paper, we use Observation 8 in order to establish bounds on the minimum rank of K̃G

as well as narrow our search for inertia points.

Observation 9. For any graph G, mr(G) ≤ mr+(G) ≤ cc(G).

In [4] Theorem 4.6, they prove the following very useful result.

Theorem 10. Let G be a graph on n vertices. If mr(G) = cc(G), then I(G) = T[mr(G),n].
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In this paper, we use Observation 9 and Theorem 10 to form a collection of semicliqued graphs which

have trapezoidal inertia tables. The following well-known results establish the inertia tables for several

common graphs. All are found in [4]. These inertias along with Observation 8 aid in our investigation of

their corresponding cliqued and semicliqued graphs.

Lemma 11. For m,n ∈ N with m ≤ n,
I(Pn) = T[n−1,n].

I(Cn) = T[n−2,n].

I(Kn) = T[1,n].

I(K1,n) = T 1
[2,n] ∪ T[n,n+1].

I(Km,n) = T 1
[2,n] ∪ T[n,n+m].

4. General Results for Semicliqued Graphs. The following results are derived from examining

the relationship between a graph and any of its semicliqued graphs. Recall, in this paper, each graph is

connected, simple, undirected, finite, and |G| ≥ 2. We begin by establishing that the clique cover number

of a semicliqued graph is equal to the clique cover number of the original graph. This establishes an upper

bound for the minimum semidefinite rank of semicliqued graphs for such graphs where cc(G) is known.

Theorem 12. For any graph, G, with |G| ≥ 2, cc(K̃G) = cc(G).

Proof. Let G be a graph such that |G| = n ≥ 2 and |E(G)| = s. Let |K̃G| = p. Observe, for any

{j, k} ∈ E(G), Kij andKik form a possibly larger clique in K̃G. Label thisKij+ik . Let Y(j,k) = {(E(Kij+ik)\
E(Kik)) ∩ (E(Kij+ik) \ E(Kij ))}. Let Y (K̃G) = {Y(a,b)|{a, b} ∈ E(G)}. Observe, |Y (K̃G)| = s = |E(G)|.
So, there exists a bijection, F : E(G)→ Y (K̃G): (p, q)→ Y(p,q).

Suppose that cc(G) = u. Denote a set of complete graphs which minimally cover G as {Ka1
, . . . ,Kau

}.
Observe, since Kav

is a complete graph which covers vertices v1, . . . , vq ∈ V (G), Kiv1+···+ivq
covers Kiv1

, . . .,

Kivq
and all of their mutually incident edges in K̃G. Therefore, the clique cover for K̃G does not require

more cliques than the clique cover of G. Hence, cc(K̃G) ≤ cc(G).

If cc(K̃G) < cc(G), let B = {B1, B2, . . . , Bm} be a minimal clique cover of K̃G where m < u. Since, for

any {j, k} ∈ E(G), the subgraph induced by V (Kij )∪V (Kik) forms clique in K̃G. Again, labeling thisKij+ik ,

any such minimum clique cover has at least two such Kij and Kik in each Bz. Let tz = {vj ∈ V (G)|Kij ⊆ Bz}
with 1 ≤ z ≤ m. Then, K|tz| covers the subgraph of G induced by tz. If there exists an edge {c, d} ∈ E(G)

that is not covered by one of these K|tz|, then Y(c,d) is not covered by any of the Bz’s. A contradiction.

Hence, K|t1|,K|t2|, . . . ,K|tm| covers G. So, Ka1 ,Ka2 , . . . ,Kau is not a minimal clique cover of G. Thus,

implying cc(K̃G) ≥ cc(G). Hence, cc(G) = cc(K̃G)

The next lemma establishes a sufficient condition for a trapezoidal inertia table of any semicliqued graph.

This result follows directly from Theorems 12 and 10.

Lemma 13. Let K̃G have order p. If mr(G) = cc(G), then I(K̃G) = T[mr(G),p].

Proof. Let G be a connected simple graph with |G| = n ≥ 2 and |K̃G| = p. Suppose mr(G) = cc(G). By

observation 8, mr(G) ≤ mr(K̃G). By observation 9, mr(K̃G) ≤ cc(K̃G) which implies cc(G) = mr(G) ≤
mr(K̃G) ≤ cc(K̃G). Theorem 12 states that cc(K̃G) = cc(G), hence cc(G) = mr(G) ≤ mr(K̃G) ≤
cc(K̃G) = cc(G), giving mr(K̃G) = cc(K̃G). Thus, by Theorem 10, I(K̃G) = T[mr(G),p].
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The final theorem of this section establishes that all points that lie on the axes in the inertia table of G

are also contained in the inertia table of K̃G.

Theorem 14. If (m, 0) ∈ I(G), then (m, 0) ∈ I(K̃G).

Proof. Let G be a graph on n vertices such that (m, 0) ∈ I(G). For A ∈ S(G) with inertia (m, 0),

there is an m × n matrix B with orthogonal rows and a diagonal matrix D such that A = BTDB where

D has m positive eigenvalues. Now consider K̃G, a semicliqued graph for G with order p. Let u ∈ V (G)

and Kiu denote the clique in K̃G corresponding to u. Construct an m× p matrix, C, such that the column

corresponding to u in B is repeated iu times in C. Observe any relationships of orthogonality between

columns j and k within B hold for corresponding ij and ik columns in C. Thus, F ∈ K̃G is formed by

multiplying CTDC = F ∈ S(K̃G). Hence, (m, 0) ∈ I(K̃G).

An immediate consequence of Theorem 14 and Observation 5 is that (0,m) is also contained within the

inertia set of K̃G. Observe, this provides us with an upper bound for mr(K̃G). That is if (m, 0) ∈ I(G)

then mr(K̃G) ≤ m.

5. Trapezoidal Semicliqued Inertia Tables.

5.1. Semicliqued Common Graphs. The result in Section 4 are now utilized to derive the following

inertias of the semicliqued graphs constructed from common graphs. The following results establish the

inertias for semicliqued graphs of Kn, Pn, K1,n, and Cn. We end this section with a bound on the inertia

table for semicliqued graphs K̃Km,n.

Corollary 15. I(K̃Kn) = T[1,p].

Proof. Let Kn be a complete graph on n vertices. Let K̃Kn be a semicliqued graph of Kn with order p.

Observe, mr(Kn) = cc(Kn) = 1, so by Lemma 13, I(K̃Kn) = T[1,p].

An alternative to the above proof is to observe K̃Kn is just isomorphic to Kp. Then by Lemma 11,

I(K̃Kn) = T[1,p].

Corollary 16. I(K̃Pn) = T[n−1,p].

Proof. Let Pn, be a path on n vertices and let K̃Pn be a semicliqued graph of Pn with order p. Observe,

mr(Pn) = cc(Pn) = n− 1 so by Lemma 13, I(K̃Pn) = T[n−1,p].

Theorem 17. I(K̃Cn) = T[n−2,p].

Proof. Let Cn be a cycle on n vertices. Note, I(Cn) = T[n−2,n]. Let K̃Cn be a semicliqued graph of

order p. To show the point (k, j) ∈ I(K̃Cn), where k+ j = n− 2 for all k ≥ j, create a diagonal matrix, D,

with k positive ones and j negative ones on the diagonal. Construct an additional matrix, B, as found in

Appendix A, under the following conditions: b 6= 1 and b2 6= k− j+1. Lastly if j = 1, the expressions in row

k+1 must be implemented in the construction of B. In addition, the leading ones in each row correspond to

each Kij in K̃Cn. Multiplying BTDB = A where A ∈ S(K̃Cn) with k positive and j negative eigenvalues.

Thus, (k, j) ∈ I(K̃Cn) and by Lemma 5, (j, k) ∈ I(K̃Cn). Utilizing Lemma 4, T[n−2,p] ⊆ I(K̃Cn). Since

Cn is a induced subgraph of K̃Cn, by Lemma 7, I(K̃Cn) ⊆ I(Cn)↗, which implies that I(K̃Cn) ⊂ T[n−2,p].
Hence, I(K̃Cn) = T[n−2,p].
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The following theorem establishes a lower bound for the minimum rank for semicliqued graphs of com-

plete bipartite graphs. This in turn provides a bound for the inertia set of a K̃Km,n.

Theorem 18. Let K̃Km,n be a semicliqued graph of Km,n where n ≥ m. Let S be the set of cliques of

order 2 or more in the partite set in K̃Km,n corresponding to m and R be the set of cliques of order 2 or more

in the other partite set in K̃Km,n. If |R| ≥ m, then mr(K̃Km,n) ≥ |R| and I(K̃Km,n) ⊆ T 1
[|R|,n]

⋃
T[n,p].

Otherwise, mr(K̃Km,n) ≥ |S| and I(K̃Km,n) ⊆ T 1
[|S|,n]

⋃
T[n,p].

Proof. Let G = Km,n where n ≥ m. Label one partite set of vertices 1, 2, . . . ,m and the remaining

partite set of vertices m + 1,m + 2, . . . ,m + n. Let K̃Km,n be a semicliqued graph of G with order p.

Let Ki1 ,Ki2 , . . . ,Kim correspond to vertices 1, 2, . . . ,m and S = {Kij |1 ≤ j ≤ m and |Kij | > 1}. Let

Kim+1 ,Kim+2 , . . . ,Kim+n correspond to vertices m+ 1,m+ 2, . . . ,m+ n and R = {Kij |m+ 1 ≤ j ≤ m+ n

and |Kij | > 1}. We proceed by finding a constrained matchings for K̃Km,n.

Suppose |R| ≥ m. Then for each of the Kij ∈ R match, two vertices contained in that Kij . This

creates a constrained |R|-matching in K̃Km,n. Then by Theorem 1 mr(K̃Km,n) ≥ |R| and by Lemma 7,

I(K̃Km,n) ⊆ T 1
[|R|,n]

⋃
T[n,p].

Suppose |R| < m. Then for each of the Kij ∈ S match, two vertices contained in that Kij . This

creates a constrained |S|-matching in K̃Km,n. Then by Theorem 1 mr(K̃Km,n) ≥ |S| and by Lemma 7,

I(K̃Km,n) ⊆ T 1
[|S|,n]

⋃
T[n,p].

It should be noted when m = 1 this is a “clique-star” (now a semicliqued star) as defined in [4]. In that

paper, they established that mr(K̃K1,n) = 2 and I(K̃K1,n) = T 1
[2,n]

⋃
T[n,p]. We may observe that Theorem

18 confirms that the bump of T 1
[2,n] has the potential of reducing toward the trapezoidal region of T[n,p] as

the set T is increased.

Corollary 19. Let K̃K1,n have order p where all of the pendent vertices correspond to |Kij | > 1 then

I(K̃K1,n) = T[n,p].

Proof. Let K̃K1,n be a semicliqued graph of K1,n with order p where all of the pendent vertices cor-

respond to |Kij | > 1. Note I(K1,n) = T 1
[2,n] ∪ T[n,n+1] and by Lemmas 4 and 7, I(K̃K1,n) ⊆ I(K1,n)↗ =

T 1
[2,n] ∪ T[n,n+1]

↗
. From Theorem 18, we know mr(K̃K1,n) ≥ n and I(K̃K1,n) ⊆ T[n,p]. Observe that

cc(K̃K1,n) = n. Thus, n ≤ mr(K̃K1,n) ≤ cc(K̃K1,n) = n. Hence, by Theorem 10, I(K̃K1,n) = T[n,p].

5.2. Inertia Tables of uv-Starpaths. In this paper, a tree, T, is classified as a uv-starpath if it can

be written as a series of consecutive adjoinings of the centers of stars with vertices, ri, in the uv path, a

longest path in the tree. We can represent such a tree as T = Pk

⊕
ri
K1,ni

where Pk corresponds to the

uv-path, 1 ≤ ni, and each K1,ni
is joined at their center.

Consider the tree, T, below:

u r1 r2 r3 r4 v
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Note that this tree, T, is a uv-starpath because we can identify the uv path and the individual stars that

were adjoined to this uv path. We can write T = P7 ⊕r1 K1,3 ⊕r2 K1,1 ⊕r3 K1,1 ⊕r4 K1,3. Below we can see

the path and the stars that were adjoined to it.

u r1 r2 r3 r4 v

r1 r2 r3 r4

It should be noted that no stars are adjoined to the endpoints of the uv path. If there was a star adjoined

to one of the endpoints, you would get a tree such as the one on the left:

u r1 r2 v u r1 r2 v

However, the initially identified uv path is no longer the longest path in the tree, so it can be redrawn to

the tree on the right. This tree now has a new endpoint in the uv path. We proceed by utilizing zero forcing

and clique covers. With these, we relate the zero forcing number of a semi-cliqued uv-starpath to the clique

cover number of that semi-cliqued uv-starpath.

Theorem 20. Let T be a uv-starpath with longest path, Pj, and q stars adjoined to vertices on Pj. Let

K̃T be a semi-cliqued graph of T with all star pendents cliqued. Then K̃T is trapezoidal.

Proof. Let T be a uv-starpath with longest path, Pj , and q stars adjoined to vertices on Pj . Label the

pendents of the adjoined star r1 as 1, 2, . . . , s. Label the pendents of the adjoined star r2 as s+1, s+2, . . . , s+t.

Proceed in this manner until the last adjoined star rq has had its pendents labeled l − x through l. Now

label the vertices of the path Pj as l + 1, l + 2, . . . , l + j. Finally, label the vertices r1 as l + c1, r2 as l + c2,

. . . , and rq as l + cq. Observe that |V (T )| = j + l and cc(T ) = j + l − 1. Create K̃T by cliqueing up all

the pendents of the stars. Label these cliques Ki1 ,Ki2 ,Ki3 , . . . ,Kil with im ≥ 2 for all m ∈ 1, 2, 3, . . . , l.

So |K̃T | = j + i1 + i2 + · · · + il. Color 1 + (i1 − 1) + (i2 − 1) + · · · + (il − 1) vertices black such that

each of the (im − 1) black vertices lie within the cliqued star Kim and the remaining black vertex on

l + 1. Label the white vertex wm and a black vertex bm in each Kim for all m ∈ 1, 2, 3, . . . , l. Then

the following chain occurs: [l + 1 → l + 2 → . . . → l + c1, b1 → w1, b2 → w2, . . . , bs → ws, l + c1 →
l + c1 + 1 → . . . → l + c2, bs+1 → ws+1, . . . , bs+t → ws+t, l + c2 → . . . → l + cq, bl−x → wl−x, . . . , bl →
wl, l + cq → . . . → l + j]. This creates a zero forcing set of size 1 + (i1 − 1) + (i2 − 1) + · · · + (il − 1).

So |K̃T | − |Z(K̃T )| ≥ j + i1 + i2 + · · · + il − (1 + (i1 − 1) + (i2 − 1) + · · · + (il − 1)) = j + l − 1. Thus,

j + l − 1 ≤ |K̃T | − |Z(K̃T )| ≤ mr(K̃T ) ≤ cc(K̃T ) = cc(T ) = j + l − 1. Therefore, mr(K̃T ) = j + l − 1.

Thus, since mr(K̃T ) = cc(K̃T ) = j + l − 1, then K̃T is trapezoidal.

6. Nontrapezoidal Inertia Tables for Semicliqued Graphs. In the investigation of semicliqued

graphs, for every connected simple graphs of 6 or fewer vertices that we checked, when every Kij has ij ≥ 2

(fully cliqued), then I(K̃G) is trapezoidal. Most of the analysis was a direct implementation of Lemma 13,

the remaining were confirmed by hand with the assistance of Maple. We also observed several occurrences

where the inertia became trapezoidal before the graph was fully cliqued. We have yet to confirm but it also

appears that a fully cliqued complete bipartite graph has trapezoidal inertia. A natural question arises, is

this observation true for any graph G regardless of the shape of the initial inertia table? The answer turns

out to be no and an example may be found with just seven vertices.
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Consider the following graph, S(2, 2, 2):

S(2, 2, 2) P5 P3

Observe that S(2, 2, 2) = P3 ⊕v P5. Using the inertia equation in Theorem 6 along with the known inertias

of paths from Lemma 11, the inertia for S(2, 2, 2) is T 1
[5,6] ∪ T[6,7].

What follows is a realization of a K̃S(2, 2, 2) where every Kij has ij ≥ 2:

A =



1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1


Matrix A produces the spectrum, {−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 4, 6}. This set corresponds to the partial

inertia (4, 1) on the inertia table of K̃S(2, 2, 2). Thus, we have established that the K̃S(2, 2, 2) inertia table

can achieve the same minimum rank as S(2, 2, 2), namely 5. Observe if I(K̃S(2, 2, 2)) could achieve every

point on the minimum rank line of 5, then (5, 0) ∈ I(K̃S(2, 2, 2)). This would imply I(K̃S(2, 2, 2)) *
I(S(2, 2, 2))↗, contradicting observation 8. Since I(S(2, 2, 2)) does not contain every point on the minimum

rank line of 5, neither can I(K̃S(2, 2, 2)). Thus, I(K̃S(2, 2, 2)) is nontrapezoidal.

Naturally, the next question we seek to answer is if this is the only such graph that has this property?

Consider the following construction of a family of trees we denoted Nk:

N1 N2 N3

Nk
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Note k is the number of total S(2, 2, 2)s in the Nk. It can be confirmed using Theorem 6 that when each

Kij has ij ≥ 2, I(K̃Nk) is nontrapezoidal.

7. Conclusion. Within this paper, we discovered various properties of semicliqued graphs. As a result,

we established the inertia tables of semicliqued common graphs. Many of these results utilize properties of

the induced subgraph, G, to establish properties of K̃G. The most substantial result being cc(G) = cc(K̃G).

In the investigation of uv-starpaths, we discovered exactly how many cliques are required and where to

place those cliques to achieve a trapezoidal inertia. It would be interesting to find a more formal method

for where cliques should be placed in any nontrapezoidal graph in order for its semicliqued graph to be

trapezoidal. In general, discovering a minimum number of cliques that create a trapezoidal inertia table

would be of interest as well.

Lastly, we found a family of trees, Nk, which seem to resist becoming trapezoidal regardless of how

many cliques are placed in K̃Nk. Are these the only ones? What underlying properties of these graphs is

causing this and how may we use that to find more such graphs? We observed that this family of graph’s

have the same minimum rank regardless of how many cliques are used to form K̃G. Thus, a natural question

would be what other graphs maintain their minimum rank for any K̃G? We also observed specific examples

of the graphs that have the property if mr(G) = mr(K̃G) then I(K̃G) = I(G)↗. Is this true anytime

mr(G) = mr(K̃G)?

8. Acknowledgments. We want to thank the anonymous referees who suggested a substantial number

of changes that have improved the paper considerably.
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Appendix A

B matrix for Theorem 17
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