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RELATIONS BETWEEN CLASSES OF POTENTIALLY STABLE SIGN PATTERNS∗
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Abstract. Two subsets of the potentially stable sign patterns of order n have recently been defined, namely, those that

allow sets of (refined) inertias Sn and Hn. For n = 2 and n = 3, it is proved that a sign pattern is potentially stable if and only

if it is sign stable, allows Sn, or allows Hn. This result is also true for sign patterns of order 4 with associated graph that is

a tree, remains open for non-tree potentially stable sign patterns of order 4, and is false for potentially stable sign patterns of

orders greater than or equal to 5.
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1. Introduction. The characterization of potentially stable sign patterns of order n ≥ 4 is a well known

unsolved problem dating back at least 50 years (see [15]). Here we consider the relationship of potentially

stable sign patterns of order n to sign patterns that allow the set of inertias Sn (see [3]) or the set of refined

inertias Hn (see [4]). The sets Sn and Hn are motivated by the onset of instability in the linearization of a

dynamical system associated, respectively, with a zero eigenvalue or a pair of pure imaginary eigenvalues.

Our results are useful for determining if instability can occur (for example, leading to oscillatory solutions)

for a dynamical system when the linearized matrix is known only up to signs (see, e.g., Section 5 of [4]). If

the sign pattern allows Hn, then oscillatory solutions of the system may arise due to Hopf bifurcation.

To specify the sets Sn and Hn, we give the following definitions. A sign pattern of order n is an n × n
matrix An = [αij ] with αij ∈ {+,−, 0}. The sign pattern class of An, denoted Q(An), is the set of all n× n
real matrices A = [aij ] with sign(aij) = αij for all i, j, and a matrix A ∈ Q(An) is a realization of A. We only

consider sign patterns up to equivalence, i.e., up to permutation similarity, transposition, and/or signature

similarity, since these operations leave (refined) inertia invariant. A sign pattern Bn is a superpattern of An

if Bn is obtained from An by replacing some (or none) of the zero entries of An by + or −.

The inertia of an n × n real matrix A is the ordered triple i(A) = (n+, n−, n0) of nonnegative integers

summing to n where n+ (respectively, n−, n0) is the number of eigenvalues of A with positive (respectively,

negative, zero) real parts. The refined inertia of an n × n real matrix A is the ordered 4-tuple ri(A) =

(n+, n−, nz, 2np), where nz is the number of zero eigenvalues and 2np is the number of nonzero pure imaginary

eigenvalues of A [13]. Note that n0 = nz + 2np.

The inertia of a sign pattern An is i(An) = {i(A) : A ∈ Q(An)}. Similarly, the refined inertia of a sign

pattern An is ri(An) = {ri(A) : A ∈ Q(An)}. If P is any subset of inertias (respectively, refined inertias),

then An allows P if P ⊆ i(An) (respectively, P ⊆ ri(An)) and An requires P if P = i(An) (respectively,

P = ri(An)). Sign pattern An is sign stable if i(An) = {(0, n, 0)}, potentially stable if (0, n, 0) ∈ i(An),
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and minimally potentially stable if it is irreducible and potentially stable with the property that changing

any nonzero sign to 0 results in a sign pattern that is not potentially stable. Superpatterns of potentially

stable sign patterns and direct sums of potentially stable sign patterns are also potentially stable. Thus,

only irreducible potentially stable sign patterns need to be considered.

We focus on potentially stable irreducible sign patterns that allow or require the set of inertias

Sn = {(0, n, 0), (0, n− 1, 1), (1, n− 1, 0)} (n ≥ 2)

or the set of refined inertias

Hn = {(0, n, 0, 0), (0, n− 2, 0, 2), (2, n− 2, 0, 0)} (n ≥ 3).

Thus, An allows Sn if Sn ⊆ i(An) and requires Sn if Sn = i(An), with a similar statement for Hn. Obviously

if An requires Sn (Hn), then An allows Sn (Hn). If An is sign stable, allows Sn, or allows Hn, then clearly

An is potentially stable.

The sign pattern An = [αij ] is combinatorially symmetric when αij 6= 0 if and only if αji 6= 0. If An

is combinatorially symmetric and irreducible, then An is associated with an undirected, connected, signed

graph G. The graph G has vertex set {1, 2, . . . , n}, a loop at vertex i signed as αii if and only if αii 6= 0,

and an edge between vertices i and j signed as αijαji if and only if αij 6= 0. We primarily focus on tree sign

patterns, i.e., patterns associated with connected graphs having no cycles of length 3 or longer. The graph

of a star sign pattern is a tree with one central vertex connected by an edge to all other vertices, while the

graph of a path sign pattern is a tree where each vertex is connected by an edge to no more than two other

vertices. For n = 3, every tree sign pattern is equivalent to a path sign pattern; and for n = 4, every tree

sign pattern is equivalent to a star or a path sign pattern.

2. Preliminary results. We present some results from the recent literature that relate to the sets Sn
and Hn.

The Jacobian matrix associated with a sign pattern plays an important role in studying the sets Sn
and Hn (see, e.g., [2, 3]). Let A = [aij ] be a (real) matrix of order n with m ≥ n nonzero entries. Form

matrix X by replacing the m nonzero entries ai1j1 , . . . , aimjm of A by variables x1, . . . , xm. The characteristic

polynomial of X is

zn + p1z
n−1 + · · ·+ pn−1z + pn,

where p1, . . . , pn depend on x1, . . . , xm. Compute the Jacobian matrix J with (i, j)-entry ∂pi(x1,...,xm)
∂xj

eval-

uated at xk = aikjk for 1 ≤ k ≤ m. If J has rank n, then A allows a Jacobian of full rank. This Jacobian

matrix and the implicit function theorem are used to prove the results in the following theorem.

Theorem 1. ([3, Theorem 2.2], [2, Theorem 3.1]) Let An be a sign pattern of order n and A ∈ Q(An).

If i(A) = (0, n − 1, 1) or ri(A) = (0, n − 2, 0, 2) and A allows a Jacobian of full rank, then An and any

superpattern of An allow Sn or Hn, respectively.

Using a Jacobian matrix of full rank, a useful method for constructing sign patterns of order n+ 1 that

allow Sn+1 from a sign pattern of order n that allows Sn is given in [1]. We extend this result so that it also

applies to Hn, with a similar proof (where (n+, n−, n0) is replaced by (n+, n−, nz, 2np) and (0, n − 1, 1) is

replaced by (0, n− 2, 0, 2)).
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Theorem 2. ([1, Theorem 3.1 and Corollary 3.2]) Let An be a sign pattern of order n that has at least

n nonzero entries and define An+1 = An ⊕ [−]. If An allows Sn (respectively, Hn) and has a realization A

with i(A) = (0, n− 1, 1) (respectively, ri(A) = (0, n− 2, 0, 2)) that allows a Jacobian of full rank, then every

superpattern of An+1 allows Sn+1 (respectively, Hn+1), and also has a realization B with i(B) = (0, n, 1)

(respectively, ri(B) = (0, n− 1, 0, 2)) that allows a Jacobian of full rank.

3. Potentially stable sign patterns of order n ≤ 3. We begin our study of relationships between

potentially stable sign patterns and certain subsets of them by considering orders 2 and 3.

Theorem 3. An irreducible sign pattern of order 2 is potentially stable if and only if it is sign stable or

allows S2.

Proof. A potentially stable sign pattern must have at least one negative diagonal entry, and for order

2 must allow a positive determinant. Thus, up to equivalence, there are four irreducible potentially stable

sign patterns of order 2:

B2,1 =

[
− +

− 0

]
, B2,2 =

[
− +

− −

]
, B2,3 =

[
− +

− +

]
, B2,4 =

[
− +

+ −

]
.

Patterns B2,1 and B2,2 are sign stable, B2,3 allows S2, and B2,4 requires S2. The converse is clearly true.

Theorem 4. A minimally potentially stable sign pattern of order 3 is either sign stable, requires S3, or

requires H3. Moreover, if a minimally potentially stable sign pattern of order 3 requires S3 (respectively, H3),

then every superpattern allows S3 (respectively, H3).

Proof. Up to equivalence, there are five minimally potentially stable sign patterns of order 3 (see, e.g.,

[16] and page 53 of [18]):

C3,1 =

[
− + 0

− 0 +

0 − 0

]
, C3,2 =

[
+ + 0

− − +

0 + 0

]
, C3,3 =

[
− + 0

0 − +

− 0 0

]
,

C3,4 =

[
− + 0

− 0 +

− 0 0

]
, C3,5 =

[
− + 0

0 0 +

+ − 0

]
.

Pattern C3,1 is sign stable, whereas C3,2, C3,3, C3,4 require H3 (see Section 3 of [10]) and C3,5 requires

S3 (see Example 1.1 of [3]). The following realizations of C3,2, C3,3, and C3,4 (respectively) achieve refined

inertia (0, 1, 0, 2):

C3,2 =

[
1 1 0

−4 −2 1

0 1 0

]
, C3,3 =

[
−1 1 0

0 −2 1

−6 0 0

]
, C3,4 =

[
−1 1 0

−1 0 1

−1 0 0

]
.

Each of these realizations allows a Jacobian of full rank, and thus, every superpattern of C3,2, C3,3, C3,4 allows

H3 by Theorem 1. The following realization of C3,5 achieves inertia (0, 2, 1):

C3,5 =

[
−1 1 0

0 0 1

1 −1 0

]
.

Since C3,5 allows a Jacobian of full rank, the superpatterns of C3,5 allow S3.

Theorem 5. A tree (path) sign pattern of order 3 is potentially stable if and only if it is sign stable,

allows S3, or allows H3. Moreover, if a tree sign pattern of order 3 allows S3 (respectively, H3), then every

superpattern allows S3 (respectively, H3).
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Proof. Clearly, a sign pattern that is sign stable or allows S3 or H3 is potentially stable. Without loss

of generality, a path sign pattern of order 3 can be specified as

a1 + 0

b2 a2 +

0 b3 a3

 with bi 6= 0. We denote such

a pattern by the sequence of signs a1a2a3/b2b3.

The 18 potentially stable path sign patterns of order 3 (up to equivalence) are listed in Figure 2 of [12].

Four of these sign patterns are sign stable, namely 		−/−−, where 	 denotes 0 or −. We then consider

the following six sign patterns:

Path sign pattern Result Realization(s)

+−0/−+ requires H3 (see sign pattern C3,2 above) 1,−2, 0 / −4, 1

0+−/−− requires H3 (see 3.1 in [10]) 0, 1,−2 / −2,−4

+0−/−− allows S3 and H3 (see Appendix B(12a) in [17]) 1, 0,−2 / −1,−2

1, 0,−4 / −4,−4

−0−/+− allows S3 and H3 (see Appendix B(11a) in [17])) −1, 0,−2 / 1,−2

−2, 0,−1 / 5,−4

0−−/−+ requires H3 (see 3.1 in [10]) 0,−1,−1 / −2, 2

−−−/++ requires S3 (see Appendix B(10a) in [17])) −1,−2,−1 / 1, 1

For the six sign patterns above that require or allow S3 or H3, the realizations given have every super-

diagonal entry equal to 1 and inertia (0, 2, 1) or refined inertia (0, 1, 0, 2), respectively, that allow a Jacobian

of full rank. The remaining eight potentially stable path sign patterns in [12] are superpatterns of these

six, and thus allow S3 or H3 by Theorem 1, and the first result follows. The second result also follows from

Theorem 1.

There are other potentially stable (non-tree) sign patterns of order 3 that are not included in Theorems

4 or 5. For example,

− + 0

0 − +

+ 0 −

 requires S3 and the realization

−1 1 0

0 −2 1

2 0 −1

 has inertia (0, 2, 1) and

allows a Jacobian of full rank; thus, every superpattern of this sign pattern allows S3.

Theorem 6. An irreducible sign pattern of order 3 is potentially stable if and only if it is sign stable,

allows S3, or allows H3.

Proof. Since the converse is clear, assume that A3 is a potentially stable irreducible sign pattern of order

3. The result is true for minimally potentially stable sign patterns (Theorem 4), tree sign patterns (Theorem

5), as well as all of their superpatterns.

Berliner et al. (see Figure 2 and Appendices A and B of [1]) give all 200 nonequivalent sign patterns

of order 3 for which any realization has at least two nonzero terms in its determinant expansion. We have

determined that each of these sign patterns is a superpattern of a sign pattern previously identified in this

section as being sign stable, allowing S3, or allowing H3, or either is not potentially stable as checked by the

Routh-Hurwitz criteria (see, e.g., [4]).

We are left to consider irreducible potentially stable non-tree sign patterns A3 with exactly one nonzero

term in the determinant expansion of any realization. Thus, without loss of generality, for any A ∈ Q(A3),

this nonzero term is a12a23a31. Since A3 is potentially stable, a12a23a31 must be negative. If aijaji = 0 for

all i, j where i 6= j, then A must have exactly two negative diagonal entries in order to achieve stability,

giving a sign pattern equivalent to C3,3. If aijaji 6= 0 for some i, j where i 6= j, we may assume without loss

of generality that a12a21 6= 0. If a12a21 < 0, then in addition, at least one diagonal entry must be negative,
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and the two possibilities are a11 or a22. These choices are equivalent, and the overall result is equivalent to

a superpattern of C3,4. On the other hand, if a12a21 > 0, then a33 = 0. Then either both or one of a11 and

a22 are negative. In the first case, A3 is equivalent to a superpattern of C3,3. If only a11 < 0, then a13 > 0

and A3 is equivalent to a superpattern of C3,4. If only a22 < 0, then a32 < 0 and A3 is equivalent to a

superpattern of C3,4. From Theorem 4, both C3,3 and C3,4 and their superpatterns allow H3.

4. Potentially stable sign patterns of order 4. If A is a tree sign pattern of order 4, then its

associated graph is either a star or a path. We consider each case separately below. For these sign patterns,

we have determined exactly those that allow S4 and/or H4 or require S4 or H4. Note that Gao et al. ([5, 6])

have classified all star sign patterns that require Hn.

Theorem 7. A star sign pattern of order 4 is potentially stable if and only if it is sign stable, allows S4,

or allows H4. Moreover, if a star sign pattern of order 4 allows S4 (respectively, H4), then every superpattern

allows S4 (respectively, H4).

Proof. Without loss of generality, a star sign pattern of order 4 can be specified as


a1 + + +

b2 a2 0 0

b3 0 a3 0

b4 0 0 a4


with bi 6= 0. We denote such a pattern by the sequence of signs a1a2a3a4/b2b3b4. Note that rows and

columns 2, 3, 4 can be simultaneously permuted to give an equivalent sign pattern.

Since the converse is clear, assume that the sign pattern is potentially stable. A full list of potentially

stable star sign patterns of order 4 is given in Table 1 of [12]. Four of these patterns are sign stable, namely

		−−/−−−. Ten more sign patterns that allow or require S4 or H4 are given below. Either Theorem 2 is

used with a sign pattern of order 3 that is equivalent to one of the path sign patterns in the proof of Theorem

5, or there is a star sign pattern realization given with every off-diagonal entry in the first row equal to 1

and inertia (0, 3, 1) or refined inertia (0, 2, 0, 2), respectively, that allows a Jacobian of full rank.

Star sign pattern Result Reason/Realization

−−−−/+++ requires S4 Theorem 12 in Section 5

−−−0/++− requires H4 (see S2 in [9]) Theorem 2 with path 0−−/−+

−−+0/−−+ allows H4 (see S6 in [9]) Theorem 2 with path +−0/−+

−−+0/+−+ requires H4 (see S4 in [9]) Theorem 2 with path +−0/−+

−++0/+−− allows H4 (see S7 in [9]) −1, 0.125, 0.25, 0 / 8.125,−8.5,−1

0−−−/−++ allows S4 and H4 Theorem 2 with path −0−/+−
00−−/−+− requires H4 (see S3 in [9]) 0, 0,−1,−1 / −1, 1,−1

0+−−/−−− allows S4 and H4 Theorem 2 with path +0−/−−
00+−/+−− allows H4 (see S8 in [9]) 0, 0, 0.5,−1 / 1.5,−2,−2

+0−−/−−− requires H4 (see S5 in [9]) Theorem 2 with path 0+−/−−

The remaining potentially stable star sign patterns in [12] are superpatterns of one of the ten sign

patterns above. Thus, by Theorem 1, each sign pattern and their superpatterns allow S4 or H4.

Theorem 8. A path sign pattern of order 4 is potentially stable if and only if it is sign stable, allows S4,

or allows H4. Moreover, if a path sign pattern of order 4 allows S4 (respectively, H4), then every superpattern

allows S4 (respectively, H4).
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Proof. Without loss of generality, a path sign pattern of order 4 can be specified as


a1 + 0 0

b2 a2 + 0

0 b3 a3 +

0 0 b4 a4


with bi 6= 0. We denote such a pattern by the sequence of signs a1a2a3a4/b2b3b4. Note that rows and columns

1, 4 and rows and columns 2, 3 can be simultaneously interchanged to give an equivalent sign pattern.

Since the converse is clear, assume that the sign pattern is potentially stable. Order 4 potentially

stable path sign patterns were specified in [12], and this list was completed with four additional patterns

A4,8,A4,9,A4,10,A4,11 in [14]. We start with the sign patterns given by 			−/−−− and 0−	0/−−−,

which are sign stable. The remaining potentially stable path sign patterns are either in the following list or

are superpatterns of these. If a numerical realization is given, it has each superdiagonal entry equal to 1,

achieves inertia (0, 3, 1) or refined inertia (0, 2, 0, 2), and allows a Jacobian of full rank. Otherwise, Theorem

2 is used with a sign pattern of order 3 that is equivalent to one of the path sign patterns in the proof of

Theorem 5.

Path sign pattern Result Reason/Realization

00+−/−−− allows H4 0, 0, 0.5,−1 / −0.5,−0.25,−1

+00−/−−− allows S4 and allows H4 1, 0, 0,−2 / −2,−3,−3

1, 0, 0,−2 / −1.5,−1,−3

0+0−/−−− allows H4 (see P6 in [9]) 0, 1, 0,−2 / −0.25,−1.25,−2

+−0−/−++ allows S4 and allows H4 1,−2, 0,−2 / −3, 0.5, 1

Theorem 2 with path +−0/−+

−00−/+−− allows S4 and allows H4 −1, 0, 0,−2 / 1,−1,−2

−1, 0, 0,−2 / 2,−2,−1

−00−/−+− allows S4 and allows H4 −4, 0, 0,−0.5 / −1, 0.5,−1

−1, 0, 0,−1 / −1.5, 1.25,−3

0−0−/−+− requires H4 (see P1 in [7, 9]) 0,−1, 0,−2 / −3, 2,−1

0−0−/+−+ requires H4 (see P2 in [7, 9]) 0,−1, 0,−1 / 2,−5, 1

00−−/−−+ allows S4 0, 0,−1,−1 / −1,−1, 1

00−−/+−+ allows S4 and allows H4 0, 0,−1,−2 / 1,−2, 2

0, 0,−1,−1 / 1,−4, 2

−0−−/−++ allows S4 and H4 Theorem 2 with path −0−/+−
0−−−/−++ allows S4 and allows H4 0,−1,−1,−1 / −1, 1, 1

Theorem 2 with path 0−−/−+

−−−−/+++ allows S4 Theorem 2 with path −−−/++

00−+/−−− allows S4 and allows H4 0, 0,−1, 0.5 / −2,−1,−0.5

0, 0,−1, 0.5 / −2,−1,−2.5

00−+/−+− allows H4 0, 0,−1, 0.5 / −0.5, 0.5,−2.5

+0−0/−−− allows H4 (see P8 in [9]) 1, 0,−2, 0 / −2,−2,−1

0+−0/−−− allows H4 (see P10 in [9]) 0, 1,−2, 0 / −1.5,−2.5,−2

−+−0/−−+ allows S4 and allows H4 −1, 1,−3, 0 / −1,−2, 1

Theorem 2 with path +−0/−+

0−−0/−+− requires H4 (see P4 in [7, 9]) 0,−1,−2, 0 / −1, 2,−1

00+−/−+− allows S4 and allows H4 0, 0, 1,−3 / −2, 1,−3

0, 0, 0.5,−1 / −2, 0.5,−1

+00−/+−+ allows S4 and allows H4 1, 0, 0,−1.6 / 6.4,−12.8, 3.2

1, 0, 0,−2 / 9,− 202
13

, 45
13

0+−0/+−+ allows H4 (see P11 in [9]) 0, 1,−2, 0 / 1,−10, 3

0−−+/++− allows S4 and allows H4 0,−1,−2, 1 / 0.25, 0.5,−2

0,−1,−9, 2 / 1
11

, 53
11

,−17

By Theorem 1, each sign pattern above and their superpatterns allow S4 or H4.
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Note that the three path sign patterns that require H4 are given in [7]; they list exactly five sign patterns

that require H4, but two are superpatterns of others. Combining Theorems 7 and 8, we obtain the following

result.

Theorem 9. A tree sign pattern of order 4 is potentially stable if and only if it is sign stable, allows S4,

or allows H4. Moreover, if a tree sign pattern of order 4 allows S4 (respectively, H4), then every superpattern

allows S4 (respectively, H4).

5. Potentially stable sign patterns of arbitrary order. Whereas the previous sections focused on

sign patterns of order n ≤ 4, here some families of potentially stable sign patterns of arbitrary order are

considered, and it is shown that these sign patterns allow either Sn or Hn. We also give a family of sign

patterns that require Sn for n ≥ 2.

Example 10. Consider the star sign pattern X4 and the realization X4 given by

X4 =

0 + + +

+ 0 0 0

− 0 + 0

− 0 0 −

 and X4 =

 0 1 1 1

1.5 0 0 0

−2 0 0.5 0

−2 0 0 −1

 .
Sign pattern X4 is potentially stable (denoted by 00+−/+−− in the proof of Theorem 7) and allows H4.

The realization X4 allows a Jacobian of full rank for which ri(X4) = (0, 2, 0, 2), and thus, by Theorem 2,

there is a realization X5 of

X5 =


0 + + + +

+ 0 0 0 0

− 0 + 0 0

− 0 0 − 0

± 0 0 0 −


allowing a Jacobian of full rank for which ri(X5) = (0, 3, 0, 2). Thus, X5 allows H5.

Theorem 2 can be repeatedly applied to X5 (and all subsequent derived sign patterns) in the same way,

to obtain a family of sign patterns of all orders n ≥ 4,

Xn =



0 + + + + · · · + +

+ 0 0 0 0 · · · 0 0

− 0 + 0 0 · · · 0 0

− 0 0 − 0 · · · 0 0

± 0 0 0 −
. . .

...
...

...
...

. . .
. . .

...

± 0 0 0 0 · · · − 0

± 0 0 0 0 · · · 0 −


.

Note that the potential stability of Xn follows from Theorem 4.2 in [8]. By Theorem 2, each Xn has a

realization Xn that allows a Jacobian of full rank for which ri(Xn) = (0, n − 2, 0, 2), and so Xn allows Hn.

Furthermore, by Theorem 1, every superpattern of Xn also allows Hn. Note that Xn does not require Hn by

Theorem 1.1 in [6] and does not allow Sn since the determinant of any realization is nonzero.

Example 11. The potentially stable sign pattern

Y3 =

[
− + 0

0 − +

+ 0 −

]
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requires S3 (see Section 3). More generally, for n ≥ 3, each sign pattern

Yn =



− + 0 0 · · · 0

0 − + 0 · · · 0

...
. . .

. . .
. . .

...

...
. . .

. . .
...

0 0 · · · · · · − +

+ 0 · · · · · · 0 −


is potentially stable. The inertia of the realization Yn of Yn with all nonzero entries having magnitude 1 is

(0, n− 1, 1), since the eigenvalues of Yn are {λi − 1 | λni = 1}. The remaining two inertias in Sn are obtained

by realizations Yn ± εIn (for sufficiently small ε). Thus, Yn allows Sn. In fact, it can be shown that Y4
requires S4. However Yn does not require Sn for n ≥ 5, since the realization of Yn with all positive entries

equal to 1 and diagonal entries sufficiently small in magnitude has at least three eigenvalues with positive

real parts. Note that Yn does not allow Hn since Yn is irreducible with all off-diagonal entries nonnegative,

implying that (by Perron-Frobenius) the eigenvalue with maximum real part of any realization is real and

simple, thus precluding the refined inertia (0, n− 2, 0, 2).

Theorem 12. If An is a star sign pattern of order n with each diagonal entry negative and all non-zero

off-diagonal entries positive, then An requires Sn.

Proof. Without loss of generality, A ∈ Q(An) is equivalent to

A =


−a11 a12 · · · a1n
a12 −a22 0 0
... 0

. . .
...

a1n 0 · · · −ann

 ,

with specified aij > 0. The (n − 1) × (n − 1) principal submatrix on rows and columns α = {2, . . . , n} is

nonsingular and has n − 1 negative eigenvalues. Thus, by Haynsworth’s theorem [11], every such A has at

least n − 1 negative eigenvalues. The Schur complement formula gives det(A) = det(A [α]) det(A/A [α]),

where det(A/A [α]) = −a11 +

n∑
k=2

a21k
akk

. This can be positive, negative, or zero for different choices of aij ,

implying that A can have only the inertias (0, n, 0), (0, n− 1, 1), and (1, n− 1, 0). Thus, An requires Sn.

6. Concluding remarks. From our results in Section 3, we have proved the statement that all irre-

ducible potentially stable sign patterns of orders 2 and 3 are either sign stable, allow S3, or allow H3. The

converse of this statement is clearly true. In Section 4, we have proven the corresponding statement for all

tree sign patterns of order 4 (and the superpatterns of those that allow S4 or H4). The case of potentially

stable non-tree sign patterns of order 4 remains open, as these sign patterns have not been characterized.

The corresponding statement is not true for n ≥ 5 (even for tree sign patterns), since, for example,

with n = 5 the path sign pattern 00−00/−−−− is sign semi-stable (i.e., the eigenvalues of all realizations

have non-positive real parts). It is shown in Proposition 4.2 of [9] that realizations of this sign pattern may

only have refined inertia (0, 5, 0, 0) or (0, 3, 0, 2). For n ≥ 6, a family of sign patterns associated with spider

digraphs is sign semi-stable, thus potentially stable, but does not allow Sn or Hn; see [2, Section 5]. From

our results, it is impossible for a sign pattern of order n ∈ {2, 3} and a tree sign pattern of order n = 4 to

have refined inertia {(0, n, 0, 0), (0, n− 2, 0, 2)} or inertia {(0, n, 0), (0, n− 1, 1)}. If, in the statement, sign
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stable is replaced by sign semi-stable, then the converse is false as shown by a skew-symmetric tree sign

pattern.
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