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STRONGLY SELF-INVERSE WEIGHTED GRAPHS∗

A. BERMAN† , N. SHAKED-MONDERER‡ , AND S.K. PANDA§

Abstract. Let G be a connected, bipartite graph. Let Gw denote the weighted graph obtained from G by assigning weights

to its edges using the positive weight function w : E(G) → (0,∞). In this article, a class Hnmc of bipartite graphs with unique

perfect matchings and the family WG of weight functions with weight 1 on the matching edges are considered. Then all pairs

G in Hnmc and w in WG such that Gw is strongly self-inverse are characterized.
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1. Introduction. Throughout this article, we consider finite bipartite weighted graphs. Without loss

of generality, we may assume that the graphs are connected. A perfect matching in a graph G is a spanning

forest whose components are paths on two vertices. If G has a unique perfect matching, we denote the

matching by M. We use v and v′ to denote matching mates (the end vertices of a matching edge).

Example 1.1. The paths P2 and P4 are bipartite graphs with a unique perfect matching. The path P3

does not have a perfect matching, and the cycle C4 is a bipartite graph with more than one perfect matching.

We denote by H the class of connected bipartite graphs with unique perfect matchings.

Let G ∈ H. A weight function w is a function from E(G), the set of edges of G, to (0,∞). We denote by

Gw the weighted graph obtained from G by assigning weights to its edges using the weight function w. The

graph G may be viewed as a weighted graph where each edge has weight 1. The adjacency matrix A(Gw) of

Gw is the square symmetric matrix whose (i, j)th entry aij is w([i, j]) if i is adjacent to j and 0 otherwise.

A weighted graph is called nonsingular if A(Gw) is nonsingular. Furthermore, each weighted bipartite graph

with a unique perfect matching is nonsingular, see [4].

A signature matrix is a diagonal matrix with diagonal entries from {1,−1}. Note that for any signature

matrix S, we have S−1 = S. Let G ∈ H. The weighted graph Gw is said to have an inverse if there is a

signature matrix S such that SA(Gw)−1S is nonnegative. The weighted graph associated with SA(Gw)−1S

is called the inverse graph of Gw, and it is denoted by G+
w . The inverse of a graph was first introduced by

Godsil [1]. The weighted version was introduced in [6].

In [13], the authors characterized all bipartite graphs (unweighted) with unique perfect matchings whose

adjacency matrices have inverses diagonally similar to non-negative matrices, which settles an open problem

of Godsil on inverses of bipartite graphs in [1]. However, the problem is still open for weighted bipartite

graphs with unique perfect matchings. For more details about the graph inverse of weighted bipartite graphs
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with unique perfect matchings, see [6, 9, 10]. The graph inverse is an interesting topic and has also been

studied in [3, 5, 7, 9, 11, 12, 13, 14]

Let G ∈ H, and let M be the unique perfect matching in G. We use PM to denote the symmetric

permutation matrix P = [pij ] given by the matching, where pij = 1 if [i, j] ∈M and pij = 0, otherwise. We

use fM to denote the corresponding permutation mapping on the set of vertices of G.

Definition 1.2. A weighted graph Gw is said to be self-inverse if there is a permutation matrix P such

that P−1A(G+
w)P = A(Gw). If P = PM, then the graph Gw is called strongly self-inverse. That is, Gw is

strongly self-inverse if fM is an isomorphism between Gw and G+
w .

Characterizing the self-inverse bipartite graphs with unique perfect matchings is also an interesting

problem which was posed by Godsil in [1]. The notion of a strongly self-inverse graph was introduced in

[12]. In this article, we further study such graphs.

The following example shows that weight does matter in deciding whether a weighted graph is strongly

self-inverse or not.

Example 1.3. Consider the graph G shown in Figure 1 whereM = {[1, 1′], [2, 2′], [3, 3′]}(the solid edges

are the matching edges). Consider the weight function w such that w([i, i′]) = 1 for i = 1, 2, 3, w([i′, i+1]) = 1

for i = 1, 2 and w([1′, 3]) = 1/2. Take the signature matrix S such that S11 = S1′1′=1, S22 = S2′2′ = −1 and

S33 = S3′3′ = 1. Then P−1M SA(Gw)−1SPM = A(Gw). Hence, Gw is strongly self-inverse. If we consider the

weight function w ≡ 11 (assigning 1 to each edge), then G+ is a tree. Therefore, G is not strongly self-inverse.
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Figure 1. Here, the solid edges are the matching edges.

Convention: Let G ∈ H. We use WG to denote the set of all weight functions w such that w(e) = 1

for each matching edge in G.

We proceed in the following way. In Section 3, we present a new subclass of graphs, generalized boxminus

corona (GBC). This subclass of graphs inH is properly contained inHnmc and properly contains the bipartite

corona graphs. For every G in GBC we completely characterize all the weight functions w in WG, for which

Gw is strongly self-inverse. This result advances knowledge in the area of graph inverse.

In Section 4, we show that the graphs in GBC are the only graphs G in Hnmc such that Gw is strongly

self-inverse for some w ∈ WG.

A weighted graph Gw is said to have the strong reciprocal eigenvalue property (property SR) if 1/λ ∈
σ(Gw) whenever λ ∈ σ(Gw) and both have the same multiplicity. A weighted graph Gw is said to have the

reciprocal eigenvalue property (property R) if 1/λ ∈ σ(Gw) whenever λ ∈ σ(Gw). In Section 5, we relate

these properties with the property of being strongly self-inverse.
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2. Preliminaries. In this section, we recall some necessary definitions and results from the literature.

In particular, we shall introduce the graph class Hnmc.

Definition 2.1. [7] Consider a graph G with a unique perfect matchingM. A path P = [u1, u2, . . . , u2k]

is called an alternating path if the edges on P are alternately matching and nonmatching edges, that is, for

each i, if [ui, ui+1] is a matching (resp., nonmatching) edge and [ui+1, ui+2] ∈ E(G), then [ui+1, ui+2] is

a nonmatching (resp., matching) edge. Let P = [u1, u2, . . . , u2k] be an alternating path. We say P is an

mm-alternating path (matching-matching-alternating path) if [u1, u2], [u2k−1, u2k] ∈ M. We say P is an

nn-alternating path (nonmatching-nonmatching-alternating path) if [u1, u2], [u2k−1, u2k] /∈M.

Definition 2.2. [7] Let G be a connected graph with a unique perfect matching M, and let [u, v] be a

nonmatching edge in G. An extension at [u, v] is an nn-alternating u-v-path other than [u, v]. An extension

at [u, v] is called even type (resp., odd type) if the number of nonmatching edges on that extension is even

(resp., odd).

The following definition classifies the nonmatching edges of a graph in H.

Definition 2.3. [7] Let G ∈ H, and let [u, v] be a nonmatching edge in G. The nonmatching edge [u, v]

is said to be an odd type edge if either there are no extensions at [u, v] or each extension at [u, v] is odd type.

We say [u, v] is an even type edge if each extension at [u, v] is even type. We say [u, v] is mixed type if it has

an even type extension and an odd type extension. Let E be the set of all even type edges in G.

Definition 2.4. [7] We denote by Hnmc the class of graphs G in H such that

i) G has no mixed type edges,

ii) G satisfies the condition ‘C: the extensions at two distinct even type edges never have an odd type edge

in common’.

Here ‘nmc’ is an abbreviation of ‘no mixed type edges and condition C’.

Example 2.5. The following is an example of a graph in Hnmc. Since all the extensions in G are even

type, there are no mixed type edges. The graph G has exactly two even type edges which are e and f . The

extensions at e and f never have an odd type edge in common. So, G ∈ Hnmc.
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Figure 1: Example of a graph in Hnmc.

1
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Figure 2. Here, the solid edges are the matching edges.

To proceed further we need the following definition.

Definition 2.6. [10] For a path P in Gw, the weight w(P ) of P is the number w(P ) =
∏

e∈E(P )

w(e). Let

G ∈ H, w ∈ WG, and let e be a nonmatching edge in G. We define W (e) =
∑
Q(e)

w(Q(e)), where the sum is
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taken over all extensions Q(e) at e. That is, W (e) is the sum of the weights of all extensions at e.

To proceed further we need the following known result.

Theorem 2.7. [10, Theorem 2.14] Let G ∈ Hnmc and w ∈ WG. Then the inverse G+
w exists if and only

if (G− E)/M is (connected) bipartite and w(e) ≤W (e) for each e ∈ E.

Let G ∈ H, and suppose that u and v are two distinct vertices in G. An mm-alternating u-v-path is a

minimal path, if it does not contain any even type extensions (of any nonmatching edge in G), see [7].

Lemma 2.8. [7] Let G ∈ Hnmc. Let P (i, j) be an mm-alternating i-j-path. Then there exists a unique

minimal i-j-path Pm(i, j) and a set F of even type edges on Pm(i, j) such that P (i, j) is obtained from

Pm(i, j) by replacing each edge f ∈ F with an even type extension Qf at f .

Remark 2.9. In particular, if G ∈ Hnmc and [u, v] is an even type edge in G, then [u′, u, v, v′] is the

only minimal u′-v′-path in G, since every other u′-v′-path contains an even type extension at [u, v].

The proof of the following important observation is a part of the proof of Theorem 2.14 in [10].

Theorem 2.10. Let G ∈ Hnmc. Then

A(Gw)−1ij =
∑

P (i,j)∈PM (i,j)

(−1)‖O(P (i,j))‖w(P (i, j))
∏

e∈E(P (i,j))

[
W (e)

w(e)
− 1

]
,

where PM (i, j) is the set of minimal i-j-paths in G, E(P (i, j)) and O(P (i, j)) are the set of even type and

odd type edges in P (i, j), respectively and ‖O(P (i, j))‖ denotes the number of edges in P (i, j).

3. A class of strongly self-inverse weighted graphs. In this section, we define a class of graphs

G ∈ Hnmc and then characterize for these graphs the weight functions w ∈ WG such that Gw is strongly

self-inverse. Our class includes the boxminus corona graphs defined in [8].

A graph G is called a corona graph, if it is obtained from some other graph H by adding a new pendent

vertex at each vertex of H, and we denote it by G = H ◦ K1, see [2]. A corona graph G is said to be a

bipartite corona graph if H is bipartite. For example, the path P4 is a corona tree as it can be obtained

from P2 by adding a new pendent vertex at each vertex of P2. Let R2n(u, v) denote the graph on 2n (n ≥ 2)

vertices consisting of n− 1 rectangles with a common base [u, v]. For an example see Figure 3.
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Figure 1: R8
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Figure 3. R8.

Definition 3.1. [8] Let H ◦K1 be a corona graph where H is a bipartite graph. Let S be a subset of

nonmatching edges of H ◦K1 such that each cycle in H has an even number of edges from S. Let G be the

graph created from H ◦K1 by replacing each [u, v] ∈ S with an R2k graph. We call G a generalized boxminus

corona graph. If we replace each [u, v] ∈ S with a copy of R6 we get boxminus corona graph, for boxminus

corona graph, see [8, Definition 27]. In Figure 4, S = {[1, 2], [3, 4], [5, 6]}.
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Figure 1: Example of a generalized boxminus corona graph.

1

Figure 4. Example of a generalized boxminus corona graph.

Let Hg = {G ∈ H| G/M is bipartite}, where G/M is the graph obtained from G by contracting the

matching edges, see [8]. The following example says that the class GBC neither contains the class Hg nor is

contained in the class Hg.

Remark 3.2. 1. Let G be a generalized boxminus corona graph. It is clear from Definition 3.1 that

G has a perfect matchingM consisting of the pendent edges and the middle edge of each extension

of the edges in S. Thus, each edge in S is an even type edge of G. Moreover, these are the only

even type edges in G, since in the corona graph H ◦K1, the pendent edges are the unique perfect

matching edges, and hence, no nonmatching edge has an extension in H ◦K1. So there is no odd

type extension in G and the extensions at two distinct even type edges never have an odd type edge

in common. Clearly then G ∈ Hnmc.

2. Since each matching edge in G is either a pendent edge or an internal edge of an even type extension,

there is no minimal path in G of length at least 5.

To proceed further we need the following known result.

Lemma 3.3. [7] Let G ∈ Hnmc, and let [u, v] be a nonmatching edge in G. Let Q(u, v) be an extension

at [u, v]. Then each nonmatching edge on Q(u, v) is odd type.

Lemma 3.4. Let G ∈ Hnmc and w ∈ WG. Let e = [u, v] be a nonmatching edge in G. Then

A(Gw)−1u′,v′ =

{
W (e)− w(e) if [u, v] is even type,

−W (e)− w(e) if [u, v] is odd type.

Proof. We first assume that [u, v] is even type. Then there is exactly one minimal u′-v′-path in Gw,

which is P = [u′, u, v, v′] and this path has exactly one even type edge which is [u, v] and no odd type edges.

Thus, w(P ) = w(e). By Theorem 2.10,

A(Gw)−1u′,v′ = w(P )

[
W (e)

w(e)
− 1

]
= W (e)− w(e).

We now assume that [u, v] is odd type. Let Q1(u, v), Q2(u, v), . . . , Qk(u, v) be the odd type extensions at

[u, v]. By using Lemma 3.3, each nonmatching edge in Qi(u, v) is odd type for i = 1, . . . , k. Then the paths

Pi = [u′, Qi(u, v), v′] for i = 1, . . . , k and Q = [u′, u, v, v′] are the only mm-alternating u′-v′-paths which
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are minimal u′-v′-paths. Since Qi(u, v) contains an odd number of odd type edges, each minimal u′-v′-path

contains an odd number odd type edges. By using Theorem 2.10,

A(Gw)−1u′,v′ =
∑

P (u′,v′)∈PM (u′,v′)

−w(P )

= −
k∑

i=1

w(Pi)− w(Q)

= −W (e)− w(e).

The proof is complete.

Lemma 3.5. Let G ∈ Hnmc and w ∈ WG. Assume that Gw is strongly self-inverse. Then w(e) = W (e)
2

for each even type edge e in G.

Proof. Since Gw is strongly self-inverse, fM is an isomorphism from Gw to G+
w . Let e = [u, v] be an even

type edge in Gw. Then [fM(u), fM(v)] = [u′, v′] is an edge in G+
w and the weights of the edges e = [u, v] in

Gw and [u′, v′] in G+
w are same. That is,

w([u, v]) = w([u′, v′]) = A(G+
w)u′,v′ = |A(Gw)−1u′,v′ |. (3.1)

By Lemma 3.4 and Theorem 2.7,

A(Gw)−1u′,v′ = W (e)− w(e) ≥ 0. (3.2)

Combining (3.1) and (3.2), we get w(e) = W (e)− w(e). So, w(e) = W (e)
2 .

Let G ∈ Hnmc, and let E be the set of all even type edges. Then by (G − E)/M denotes the graph

obtained by deleting all the even type edges and then contracting each matching edge to a single vertex, see

[7].

Theorem 3.6. Let G be a generalized boxminus corona graph, and let w ∈ WG. Then Gw is strongly

self-inverse if and only if w(e) = W (e)
2 for each even type edge e in G.

Proof. We first assume that Gw is strongly self-inverse. Since G ∈ Hnmc, by Lemma 3.5, w(e) = W (e)
2

for each even type edge e in G.

We now prove the converse. Since w(e) = W (e)
2 ≤ W (e), for all e ∈ E , to show that G+

w exists, it is

enough to show that (G− E)/M is bipartite, by Theorem 2.7. Towards that, note that E = S and suppose

that (G−S)/M is not bipartite. Then it has an odd cycle, say, Γ. Notice that each R2k(u, v) is reduced to a

K2,k−1 in (G−S)/M and Γ contains either exactly 2 consecutive edges or no edges at all from each K2,k−1.

Since Γ is an odd cycle, it follows that Γ contains an odd number of edges apart from the edges from the

K2,k−1’s. Consider the cycle Γ′ obtained from Γ by doing the following. For each pair of consecutive edges

that Γ contains from a K2,k−1 corresponding to an edge [u, v] ∈ S, replace these two edges by [u, v]. Then

Γ′ is a cycle in H. By the definition of G, Γ′ has an even number of edges from S and does not contain any

matching edges. So Γ has an even number of even type edges and an odd number of odd type edges. Hence,

the length of Γ′ is odd, contradicting the bipartiteness of H. Hence, G+
w exists.

We now show that fM is an isomorphism from Gw to G+
w . Let [u, u′] be a matching edge in Gw. There

is exactly one minimal u-u′-path in Gw, which is [u, u′]. By using Theorem 2.10, A(G+
w)u,u′ = w([u, u′]) = 1.

Hence, [u, u′] is an edge in G+
w with weight 1.
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Let e = [u, v] be a nonmatching edge in Gw. Since there are no odd type extensions in Gw, the path

[u′, u, v, v′] is the only minimal u′-v′-path in Gw. By Lemma 3.4, A(G+
w)u′,v′ = |A(Gw)−1u′,v′ | = w(e) if [u, v]

is an odd type edge (since there are no odd type extensions, W (e) = 0) and A(G+
w)u′,v′ = |A(Gw)−1u′,v′ | =

W (e)−w(e) if e is an even type edge. Combined with the assumption that w(e) = W (e)
2 for each even type

edge e in Gw we get A(G+
w)u′,v′ = W (e)

2 = w(e) if e = [u, v] is an even type edge in Gw. That is, for each

edge [u, v] in Gw there is an edge [u′, v′] in G+
w and its weight in G+

w is w([u, v]). Hence, Gw is isomorphic

to a subgraph of G+
w via fM.

Suppose that Gw is not isomorphic to G+
w via fM. Then we have an edge [x, y] in G+

w such that

[f−1M (x), f−1M (y)] = [x′, y′] is not in Gw. By Theorem 2.10, there is a minimal x-y-path in Gw, say P (x, y).

The length of this minimal path P (x, y) is at least 5, otherwise P (x, y) = [x, x′, y′, y] and the edge [x′, y′] is

in Gw. By Remark 3.2, Gw does not have a minimal path of length 5. Hence, Gw is strongly self-inverse.

Remark 3.7. There are generalized boxminus corona graphs which are self-inverse for some weight

functions but not strongly self-inverse. For example consider the graph G shown in Figure 5 with the weight

function w such that w([1, 3]) = 1/3, w([4, 6]) = 2/3 and the rest of the edges weight are equal to 1. By

Theorem 2.10, we get the inverse graph G+
w where w([1′, 3′]) = 2/3, w([4′.6′]) = 1/3 and the rest of the

edges weight are equal to 1. The underlying graph G′ of G+
w is shown in Figure 5. One can easily check

that the following function f : V (Gw) −→ V (G+
w) defined by f(1) = 6′, f(2) = 5, f(3) = 4′, f(4) = 3′, f(5) =

2, f(6) = 1′, f(1′) = 6, f(2′) = 5′, f(3′) = 4, f(4′) = 3, f(5′) = 2′ and f(6′) = 1 is an isomorphism from Gw

to G+
w . Hence, the graph Gw is self-inverse. By Theorem 3.6, Gw is not strongly self-inverse.
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1

Figure 5.

This suggests the following open problem.

Problem 3.8. Let G be a generalized boxminus corona graph. Characterize all weight functions w such

that Gw is a self-inverse graph.

4. Strongly self-inverse graphs in Hnmc. In this section, we show that generalized boxminus corona

graphs are the only graphs in Hnmc that are strongly self-inverse for some weight w ∈ WG. The following is

a necessary condition for a weighted graph in Hnmc to be strongly self-inverse. To proceed further we need

the following known result.

Lemma 4.1. [7, Lemma 27] Let G ∈ Hnmc, and let (G − E)/M be bipartite. Then, if one path from a

vertex u to a vertex v contains an odd number of odd type edges, then each path from u to v must contain

an odd number of odd type edges.

Lemma 4.2. Let G ∈ Hnmc and w ∈ WG. If Gw is strongly self-inverse, then G has no minimal path of
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length 5.

Proof. Suppose that G has a minimal path of length 5, say, [1, 1′, 2, 2′, 3, 3′]. By using Lemma 3.5 and

Theorem 2.10, we have

A(Gw)−11,3′ =
∑

P (1,3′)∈PM (1,3′)

(−1)‖O(P (1,3′))‖w(P (1, 3′)).

Since Gw is strongly self-inverse, by Theorem 2.7, (G − E)/M is bipartite. Then by using Lemma

4.1, each 1-3′-minimal path has an even number of odd type edges. Hence, A(G+
w)1,3′ > 0. Therefore,

[1, 3′] ∈ E(G+
w). Since fM is an isomorphism from Gw to G+

w , we have [1′, 3] ∈ E(Gw). Then [1′, 2, 2′, 3] is

an even type extension at [1′, 3] which contradicts the assumption that [1, 1′, 2, 2′, 3, 3′] is a minimal path.

The following example shows that the converse of the above lemma is not true.

Example 4.3. Consider the graph G shown in Figure 5. The graph G is generalized boxminus corona

and it has no minimal path of length 5. The graph G has exactly two even type edges [1, 3] and [4, 6].

Consider the weight function w such that w([1, 3]) = 1/3, w([4, 6]) = 1/3 and the rest of the edges weight are

equal to 1. It is clear that w([1, 3]) 6= W ([1,3])
2 and w([4, 6]) 6= W ([4,6])

2 . By Theorem 3.6, Gw is not strongly

self-inverse.

Lemma 4.4. Let G ∈ Hnmc and w ∈ WG. Assume that Gw is strongly self-inverse. Then the following

are true.

1. There are no odd type extensions in G.

2. The length of each even type extension in G is 3.

3. The degree of each internal vertex of an extension is 2.

Proof. The proof is similar to the proof of Lemmas 17, 23 and 24 in [8] .

Lemma 4.5. Let G ∈ Hnmc and w ∈ WG. Assume that Gw is strongly self-inverse, and let G′ be the

graph obtained from G by deleting all the even type extensions while keeping the endvertices of the extensions.

Then G′ is a corona graph of a bipartite graph and each cycle in G′ has an even number of even type edges

in G.

Proof. Let us assume that G′ is not a corona graph. Then there is a matching edge [v, v′] in G′ which

is not a leaf, that is, dG′(v), dG′(v′) ≥ 2. So, we can find a path [u, v, v′, w] in G′, and hence, the path

[u′, u, v, v′, w, w′] is an mm-alternating u′-w′-path of length 5 in G. By Lemma 4.2, this path is not minimal.

Hence, the path [u, v, v′, w] is an even type extension at [u,w]. But this is impossible, as G′ was obtained

by deleting all the even type extensions, so [v, v′] is a leaf in G′. Hence, G′ must be a corona graph.

Let Γ be a cycle in G′. Since G′ is a bipartite corona graph, Γ has an even number of edges. By

construction of G′, all the edges of Γ are odd type, but some of them may be even type edges in G. By

Theorem 2.7, the cycle Γ in G has an even number of odd type edges. Since G is bipartite, the number of

even type edges in Γ should also be even.

The following is our main theorem of this article.

Theorem 4.6. Let G ∈ Hnmc and w ∈ WG. Then the following are equivalent.

1. Gw is strongly self-inverse.

2. G is a generalized boxminus corona graph and w(e) = W (e)
2 for each even type edge e in G.
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Proof. [2 ⇒ 1] It follows by Theorem 3.6.

[1 ⇒ 2] By Lemma 4.4, there is no odd type extension, each even type extension has length 3, and its

internal vertices have degree 2 in G. By Lemma 4.5, G is obtained by adding even type extensions to a set

S of edges in a bipartite corona graph. Thus, G is a generalized boxminus corona graph, and by Theorem

3.6 w(e) = W (e)
2 for each even type edge e.

5. Application. In this section, we supply a result as an application of Theorem 4.6. This result is also

a generalization of two known theorems. The spectrum σ(Gw) of Gw is defined as the multiset of eigenvalues

of A(Gw). The largest eigenvalue of Gw is called the spectral radius of Gw and it is denoted by ρ.

In [6], the authors proved the following theorem.

Theorem 5.1. Let G ∈ H such that G/M is bipartite, and let w ∈ WG. Then the following are

equivalent.

1. 1/ρ is the smallest positive eigenvalue of Gw.

2. Gw is strongly self-inverse.

3. Gw has property R.

4. Gw has property SR.

5. G is a bipartite corona graph.

In [8], the authors proved the following theorem.

Theorem 5.2. Let G ∈ Hnmc, and let each even type edge be strict. Assume that G+ exists. Then the

following are equivalent.

1. 1/ρ is the smallest positive eigenvalue of G.

2. G is strongly self-inverse.

3. G has property R.

4. G has property SR.

5. G is a boxminus corona graph.

The following theorem is a generalization of Theorems 5.1 and 5.2.

Theorem 5.3. Let G ∈ Hnmc and let w ∈ WG such that w(e) ≤ W (e)
2 for each e ∈ E. Assume that G+

w

exists. Then the following are equivalent.

1. 1/ρ is the smallest positive eigenvalue of Gw.

2. Gw is strongly self-inverse.

3. Gw has property SR.

4. Gw has property R.

5. G is a generalized boxminus corona graph and w(e) = W (e)
2 .
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