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A NEW EQUIVALENT CONDITION OF THE REVERSE ORDER
LAW FOR G-INVERSES OF MULTIPLE MATRIX PRODUCTS*

BING ZHENG! AND ZHIPING XIONGT

Abstract. In 1999, Wei [M.Wei, Reverse order laws for generalized inverse of multiple matrix
products, Linear Algebra Appl., 293 (1999), pp. 273-288] studied reverse order laws for generalized
inverses of multiple matrix products and derived some necessary and sufficient conditions for

An{1}An_1{1}--- A1 {1} C (A1 42 --- An){1}

by using P-SVD (Product Singular Value Decomposition). In this paper, using the maximal rank of
the generalized Schur complement, a new simpler equivalent condition is obtained in terms of only
the ranks of the known matrices for this inclusion.
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1. Introduction. Let A be an m X n matrix over the complex field. A* and
r(A) denote the conjugate transpose and the rank of the matrix A, respectively. We
recall that an n x m matrix G satisfying the equation AGA = A is called a {1}-inverse
or a g-inverse of A and is denoted by A(). The set of all {1}-inverses of A is denoted
by A{1}. We refer the reader to [1, 2] for basic results on the g-inverse.

The reverse order law for the generalized inverses of the multiple matrix products
yields a class of interesting problems that are fundamental in the theory of generalized
inverses of matrices and statistics. They have attracted considerable attention since
the middle 1960s, and many interesting results have been obtained; see 3, 4, 5, 6, 7, 8].

In this paper, by applying the maximal rank of the generalized Schur complement
[9], we derive a new and simple necessary and sufficient condition for the validity of
the inclusion

(1.1) An{1}Ap {1} A{l} C (A1 A - - An){1}.

Compared with the conditions given in [6], our condition can be easily checked and
the proof is very simple.
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The following two lemmas play a key role in this paper:

LEMMA 1.1. [9] Let A € C™*", B € C™*!, C € Ck*™ and D € C**!. Then

(12)  max (D= CAVB) = min{r(C. D)1 ( v ) o ( ‘é v ) ()}

Before presenting the next lemma, we first state the well-known Frobenius’ in-
equality: If A, B, C are matrices such that ABC is defined, then

(1.3) r(AB) + r(BC) < r(B) + r(ABC).

LEMMA 1.2. [8] Let A; € Clixli+1 j =1,2 ... n. Then
(1.4) lo+ls+ -+l +r(A1As - Ap) > (A1) +r(A2) + - + 7r(4y).

Proof. Taking A = AjAs---A;—1, B =1, and C = A4; in (1.3), where i =
2,3,---,n, we obtain

(15) T(AlAQ e AiflAi) — T(AlAQ e Aifl) Z T(Al) — li.
So we have
(1.6) r(A1Ay - Ay) 2> r(A) = 1O

i=1 =2

2. Main result. Define the following matrix function

(2.1) Say,Aga, (X1, Xo, -+, X))
:A1A2"'An_A1A2'.'AnX’nX’nfl"'XlAlAQ"'An,

where X1, X5,--+,X,, are any matrices of appropriate sizes. In order to present
the new necessary and sufficient condition for the inclusion (1.1), we first give the
maximum rank of matrix Sa, 4,,....a, (X1, X2, -+, X,,) when each X; (i =1,2,---,n)
varies over the set A;{1} of all g-inverses of the matrix A;.

THEOREM 2.1. Let A; € CH*livt i =1, n, and Sa, a,,..A, (X1, Xo, -, Xp)
be as in (2.1). Then
22) o, 0ax (84 40,4, (X1, X2, 005 X))

n



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 17, pp. 1-8, January 2008

The Reverse-order Law for g-inverses 3
where X; varies over A; {1} fori=1,2,--- n.

Proof. For 2<i<n-—1and X; € A;{1}, j=14,i+1,---,n, we first prove

(23) H}?X T(AlAQ N ~Ai,1 - A1A2 R ~AanXn,1 s Xl)
= min{r(AlAg s 'Aifl) y T(AlAQ R Az - A1A2 s 'AanXn,1 R ~Xi+1)
+1; — (A}

By Lemma 1.1 (Wlth A= Ai7 B = Il” D= A1 . "Ai—h C = A1 s Aan 'Xi-l—l);
we have

II}(E}X T(AlAQ e Ai,1 — A1A2 e AanXn,1 s Xl)

i

1,
AAy---Aia )

) - ra)

= min{r(AlAg e AanXn—l . 'Xi+17 A1A2 e Ai—l); T (

AAg - A Xy X1 Xiyn A1As-- Ay
. 1.
=min{r(A1 s A, X Xpo1 -+ X1, A1Ao---Aia),r <A1A2 l Aia > 7

T(AlAQ e A,L' - A1A2 T AanXn—l A X7;+1) + lz - T(Az)}
= min{r(AlAg e Ai—l); ’I“(AlAQ T Az - A1A2 e AanXn—l N -X7;+1)
+li — (A},

i.e., (2.3) holds, where the second equality holds as
r ( A'L' Il'i, )
AgAg - Ap X X1 Xy ArAag-- A
SIOVRP NS
ArAg - A X X1 Xy — A1de - A O
and the last equality holds as
P(ALA - A X X1 Xig1, Ar-o A1) =r(Ar - Aiq)

and

When ¢ = n, again by Lemma 1.1 with A = A,, B=1;,, D = AjAy--- A1
and C = A1 Ay -+ A, we have

(24) max T(AlAQ T An—l - A1A2 T Aan)

n
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=min{r(AjAy - A,, A1Ay---A )r< L, >
= 1412 ") 1412 n—1), A1A2---An_1 )
An Il
n _ An
T<Aﬂr“&1Aﬁm“An1) r(An)}
= min{T(AlAg ce An—1)7 ln — T(An)}
in which the last equality holds since
1,
P A Ay Ay =) S ) <t =r (o )
n—

and

- An Il" - Il,,
AjAy-- Ay MAy Ay ) \ A1y A )

We now prove (2.2). According to Lemma 1.1 with A = A;, B = AjAs--- Ay,
C= A1A2 cee AanXn,1X2 and D = A1A2 s 'An, we have

H)l(aX T(SA17A27"'1A7L (Xla X, Xn))

:mln{’l“(AlAQ'"AanXn—l"'X27 A1A2"'An)ar< AiAzAn )7

. Ay Avdg- A
AjAg- AnXp Xy 1o Xo AjAy--- A, '
=min{r(4;4s---A,), (41 — A1As - A, X, Xpo1 - Xo) + (4142 -+ Ay) — (A1)}

where the last equality holds as

r(A1Ag - Ap X Xn_1 - Xo, A1Ag--Ap) =r(A1Ag- - Ay) —7"( Ardz - Ay )

A Ay --- A,
and

’I“( A1 AlAQAn )
AAy - A X X Xo AjAy--- Ay
= ’I“(Al — A1A2 e AanXn—l . XQ) + T(AlAQ e An)

Obviously (41 — A1 As - A X Xpo1 -+ Xo) < 1(A41), so
(2.5) max r(Say, 40,4, (X1, X2, -+, Xp))

=r(A; — A1Ay- - Ap X X1 - Xa) +1(A1As - - Ay) — r(4y).
Combining (2.3) and (2.5), we have

)1(121%;((1 T(SA11A2:"'7AH (leXQa e 7Xn))
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= min{r(4;) +r(4142--- 4,) —r(41),
r(A1Ag - Ap) +1r(A1As — A1Ag - - Ap X X1 - X3) + 1o — 1(A2) — (A1)}
=min{r(A1As---A,), (A1 Ay~ A,) +7(A1Ag — Ay Ag - A, X, X -+ X3)
+lo —r(Az) — (A1)}
We contend that, for 2 <i<n—1,

(2.6) < max ¥ T(SA17A27...7A” (Xl, Xa, - ,Xn))

i Xio1,0,

=min{r(4;4s--- A,),r(A1 Az A,)

+7”(A1A2~'~Ai—A1A2~'~AanXn71 1+1 + Z Im Z )}
m=1
We proceed by induction on ¢. For i = 2, the equality relation (2.6) has been proved.
Assume that (2.6) is true for ¢ — 1 (i > 3), that is,

BT B Tt (K Koy, X))

=min{r(4;4z--- A,),r(A1 Az - A,)

i—1

+r(AAg - Ay — Ay Ay A X Xy - Z_: = (A}
m=2 m=1
We now prove that (2.6) is also true for ¢. By (2.3) and (2.7), we have
X,ﬂ,,XIE??Fu,Xl (5S4, 45,4, (X1, X2, -+, Xp))
= min{r(4;4s--- A,),

i—1

r(A1Ag---Ap) +r(A1Az- - Air) + Zl Z m)s

r(A1As - Ay) +r(A1Ag -+ A; — A1A2 - An)?n)zn,l - Xir1)

+l; —r(A4;) + i Ly — Zzi r(Am)}.

m=2 m=1

From Lemma 1.2 we know
lo+1l3 4 +lio1 +r(A1Ag - Aj1) 2 7(Ar) +7r(A2) + - +7r(Aim1);
thus

Xi,XI,E??F--,Xl T(SA11A2:"'7AH (leXQa T Xn))

=min{r(4;4s--- A,),
(A A2 R A ) + r(AlAQ R Az - A1A2 e AanXn_l AR X’L+1)

+Zz Z m)}-

m=1
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In particular, when ¢ = n — 1, we have

(28) Xn*ly%i)gy“';xl T(SAhAQ"“’A" (Xl’ Xo, oo 7X7L))
= min{T(AlAg cee An)7 r(A1A2 - An)
n—1 n—1
(A Ay Ayt — Ay A X))+ S b= S (A}
m=2 m=1

On account of (2.4) and (2.8), it is seen that

X,L,Xr,,?i},(m,Xl T(SA11A2:"':A7L (Xla X, 7Xn))

= min{r(4;4s -+ A,),

n—1 n—1
r(A1Ay - Ap) + (A1 Ay Ap )+ )l — > 1(Am),
m=2 m=1
n—1 n—1
r(A1Ay - Ap) +ln = 7(An) + >l — Y r(Am)}
m=2 m=1
Noting that
n—1 n—1
r(A1Ag--- Ay) + Z b > 7(Am),
m=2 m=1
we finally have
max T(Say,Ag, 4, (X1, Xo, -+, X))
Xn7Xn_17...7X1
= min{r(A1Ag - Ap), 7 (A1 Ay Ap) + > ln = Y 7(Am)}. O
m=2 m=1

Since the inclusion (1.1) holds if and only if

X,,L,XI,ILl,al},(---,Xl T(SA17A27"':A7L (Xla X, Xn)) =0,

by Theorem 2.1 we can immediately obtain the following result:

THEOREM 2.2. Let A; € Clixli+1 j =12 ... n. Then the inclusion (1.1) holds
if and only if

n n
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that is,
Ay Ay =0
or
r(A1Ag - Ap) + > b = Y 1(Ap) =0.
m=2 m=1

To end this paper, we now recover the equivalent condition established in [6] (by
applying the multiple P-SVD [10], Product Singular Value Decomposition) for the
inclusion (1.1).

THEOREM 2.3. Let A; € Clixlit1 =12, ... n. Then the following statements
are equivalent.

(1) Ap {1} A, {1} A {1} C (A1 As - A){1};

(2) [6] (2a)) A1As---A, =0 or (20) r(A1Az---A,) >0
and for i=1,2,---,n—1,
r(A1Ag - Ay) + (A1) = ligr + (A1 Ag - Aj);

(3) (2a) A1Az---Ap, =0 or (2b) r(A1As---Ap)+ > lm— > r(An) =0.
m=2 m=1
Proof. Tt suffices to prove that (2b) is equivalent to (2b). The implication (2b') =
(2b) is easy. Now we show (2b) = (2b).

We first prove by induction (on i) the following identities:

(2.9) r(A1Ay - Ap i) = > r(Am) = Y ln o i=0,1,2,--,n—2.
m=1 m=2

When i = 0, it reduces to identity (2b). Assume that the identity (2.9) holds for i —1,
1<i<n—2ie,

i
M+
lH

S
i
|
]
5=

(210) ’I“(AlAQ T An—i+1) =

m=1 m=2
We now prove that the identity (2.9) is also true for i. Based on Lemma 1.2, we know
(2.11) r(A1Ag - Ap—ig1) Fln—ivr > 1r(A1As- - Api) +1(Ap—it1).
Hence from (2.10) and (2.11), we have

n—i+1 n—i+1
lnfiJrl + Z r(Am) - Z lm 2 T(A1A2 e Anfz) + T(AnfiJrl);
m=1

m=2
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that is,
n—i n—i
(2.12) P(Am) =l + (A1 Ay Ay ).
m=1 m=2
On the other hand, by Lemma 1.2 again, we know
n—i n—i
(2.13) S r(An) <Yl (A1 Ay Any).
m=1 m=2
Thus from (2.12) and (2.13), we get
n—i n—i
P(Am) = b+ (A1 Any).
m=1 m=2

This implies that the identity in (2.9) holds for ¢ = 0,1,---,n — 2. From (2.9) it is
easy to check that the identity

r(A1Ag - Ap) +r(Aipr) = L + (A1 -+ Aiyr)
holds for: =1,2,---,n—1.0
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