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Abstract. The problem of finding the smallest order of a p-group of a given derived length has
a long history. Nilpotent Lie algebra versions of this and related problems are considered. Thus,
the smallest order of a p-group is replaced by the smallest dimension of a nilpotent Lie algebra. For
each length t, an upper bound for this smallest dimension is found. Also, it is shown that for each
t ≥ 5 there is a two generated Lie algebra of nilpotent class d = 21(2t−5) whose derived length is t.
For two generated Lie algebras, this result is best possible. Results for small t are also found. The
results are obtained by constructing Lie algebras of strictly upper triangular matrices.
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1. Introduction. Glasby in [4] considered the solvable length of subgroups of
unipotent matrices U = U(n) of size n. In particular, given an integer t, what is
the smallest matrix size, n, which supports a subgroup of U of length t. Clearly for
U(n) itself, n = 2t−1 + 1. Glasby then studies the problem when one restricts the
number, r, of generators. When r = 3 or more, the same bound is found and it is best
possible. The r = 2 case is also solved. There are similar kinds of problems which
have long been investigated. A problem dating back to Burnside [1, 2] is to find the
order of the smallest p-group which has length t. Substantial contributions to this
and many more problems are found in [5]. Recent results and an excellent summary
can be found in [3]. One also can seek the smallest nilpotent class for p-groups of
fixed length t. Generally, the answer is 2t−1 with U(n) providing an example. As
above, this question can be posed with restrictions on the number of generators. In
this work we discuss Lie algebra analogues to these problems. In some cases, stronger
results no doubt exist.

2. Length in Two Generated Lie Algebras. Let L = F [x, y] be the free
Lie algebra on two generators x and y. Let L, L(1), ..., L(n) be the derived series and
L, L2, ..., Ln be the lower central series for L. Recall that L has class n if the product
of n+ 1 elements is always 0 but there is a product of n elements which is not 0. L
has length t if t is the smallest integer such that L(t) = 0. By a word in L of width n
we mean a monic monomial in x and y with n factors. Ln is all linear combinations
of words of width n and greater. For each length t, let nt be the width of the shortest
word in L(t−1). Then the words in L(t) have width greater than or equal to 2nt.
Since 2nt ≥ nt + 1, L(t) is contained in Lnt+1 Then L/Lnt+1 has class nt and length
t. When t = 2, n2= 2 and the word is w2 = [x, y]. Therefore L/L3 has length 2 and
class 2. Both w3 = [[x, y],x] and w′

3 = [[x, y],y] are also in L(1). Then w5 = [w2, w3]
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and w′
5 = [w2, w

′
3] are in L(2). Hence n3 = 5, L/L6 has class 5 and length 3 and

w6 = [w3, w
′
3] ∈ L(2). Then n4 = 10 with w10 = [w5, w

′
5] ∈ L(3) and w10 is the only

monomial of width 10 in L(3). Also w11 = [w5, w6] and w′
11 = [w5, w

′
6] are in L(3).

Then w21 = [w10, w11], w′
21 = [w10, w

′
11] and w22 = [w11, w

′
11] ∈ L(4), hence n5 = 21.

We claim that nt ≥ 21(2t−5) when t ≥ 5 Assume the result for t. The smallest width
of a word in L(t+1) is at least 2(2t−5). Therefore nt+1 ≥ 2t+1−5. It remains to show
that these inequalities are equalities.

The results shown thus far are collected as
Lemma 2.1. Let L = F[x, y] be the free Lie algebra on two generators x and y.

Then for t, the lower bound m such that L/Lm has length t is given in the following
table. L/Lm has class nt = m − 1 which is a lower bound for the class. Hence for
L/Lm to have length t, m ≥ 21(2(t−5))+1, when t ≥ 5.

length = t class = nt m
2 2 3
3 5 6
4 10 11

t ≥ 5 21(2t−5) 21(2t−5) + 1

We will show that the values in the second column in the table are met and,
therefore, the smallest possible class for any 2-generated Lie algebra of length t appears
in the second column of the above table.

Let A and B be matrices in T = T (n), the strictly upper triangular n by n
matrices. If w(x, y) is a word of width k in F[x, y], then w(A, B) is computed in the
associative envelope, T ∗, of T . Suppose that both A and B are the sum of elementary
matrices, Ei,i+1, where each Ei,i+1 occurs in A or B but not both. Each monomial in
the expansion of w(A, B) is either 0 or the product of consecutive elementary matrices
in which case the product is Ei,i+k. Now suppose that k = n. Then w(A, B) = 0. If
k = n− 1, then w(A, B) �= 0 implies that the term E1,2E2,3...En−1,n = E1,n appears.
Such a product only exists if the number of times x appears in w(x, y) coincides with
the number of the Ei,i+1 which appear in A and likewise for y and B.

In the following we enlarge matrices by the process now described. Suppose that
A and A1 are as in the last paragraph. Concatenate A and A1 by enlarging A to a
2n− 1 by 2n− 1 matrix by adding n− 1 rows and columns of 0’s to the bottom and
right borders and enlarging A1 by adding n − 1 columns of 0’s to the top and left
borders. Add these new matrices to get A

′
. Thus an n by n Ei,i+1 occurs in A if and

only if a 2n − 1 by 2n − 1 Ei,i+1 occurs in A
′
and an n by n Ei,i+1 occurs in A1 if

and only if a 2n − 1 by 2n − 1 Ei+n−1,i+n occurs in A
′
. Construct B

′
from B and

B1 in the same way. The (1, n) position in w(A, B) agrees with the (1, n) position in
w(A

′
, B

′
) for they both depend solely on the appearance of E1,2E2,3...En−1,n = E1,n

in the expansion of w(A, B).
Lemma 2.2. E1,n has the same coefficient in the expansion of w(A, B) as does

(the 2n − 1 by 2n − 1 matrix) E1,n in w(A
′
, B

′
). This coefficient is 0 unless the

number of times x occurs in w(x, y) is the same as the number of Ei,i+1 in A and
likewise for y and B.
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Similarly,
Lemma 2.3. E1,n has the same coefficient in the expansion of w(A1, B1) as does

(the 2n − 1 by 2n − 1 matrix) En,2n−1 in w(A
′
, B

′
). This coefficient is 0 unless the

number of times x occurs in w(x, y) is the same as the number of Ei,i+1 in A1 and
likewise for y and B1.

Lemma 2.4. If w(x, y) and w1(x, y) have the same width and a different number
of x’s, then either the (1, n) and (n, 2n− 1) positions for w(A

′
, B

′
) or the (1, n) and

(n, 2n− 1) positions w1(A
′
, B

′
) are 0.

Let T be the Lie algebra generated by A and B, two strictly upper triangular
matrices of size n. Then T is the homomorphic image of L = F [x, y] where w(x, y)
goes to w(A, B). Hence the inequalities in 2.1 hold in T as well. We construct
examples of T that show that these are equalities. Thus they are equalities in L
and we have equalities for the smallest class for a 2- generated Lie algebra that will
support a given solvable length. These are given in 2.1 with the replacement of the
inequalities by equalities.

Theorem 2.5. For each t, there is a 2-generated Lie algebra of nilpotent class
d whose derived length is t as in the following table. An example can be found in
T (d+ 1) and this is the smallest size possible. Also, d is the smallest possible.

length = t class = d
2 2
3 5
4 10

t ≥ 5 21(2t−5)

Proof. For t = 3. In T (6), let A = E1,2 + E2,3 + E4,5 and B = E3,4 + E5.6. Let
w5((x, y)) = [[[y, x], x], [y, x]]. Then w5(A, B) = E1,6. Therefore for t = 3, d = 5 and
the smallest matrix size is n = 6.

For t = 4. In T (11), let A = E3,4 + E4,5 + E6,7 + E7,8 + E10,11 and B =
E1,2 + E2,3 + E5,6 + E8,9 + E9,10. Let w10(x, y) = [[[[y, x], y], [y, x]], [[[y, x], x], [y, x]]]
Then w10(A, B) = E1,11. Therefore, t = 4, d = 10 and n = 11.

For t = 5. In T (22), let A1 = E4,5+E5,6+E7,8+E8,9+E11,12+E14,15+E15,16+
E17,18+E18,19+E21,22 and B1 = E1,2+E2,3+E3,4+E6,7+E9,10+E10,11+E12,13+
E13,14 + E16,17 + E19,20 + E20,21. Set t1 = [[[[y, x]y]y], [y, x]], t2 = [[[y, x], x], [y, x]] ,
t3 = [[[y, x], x], [y, x]] and w1

21 = [[t1, t2], [t3, t2]]. Then w1
21A1, B1) = E1,22. Hence

t = 5, d = 21 and n = 22.
For further use, two more examples are needed at this level. Let A2 = E1,2 +

E2,3 + E6,7 + E7,8 + E8,9 + E11,12 + E14,15 + E15,16 + E17,18 + E18,19 + E21,22 and
B2 = E3,4 +E4,5 +E5,6 +E9,10 +E10,11 +E12,13 +E13,14 +E16,17 +E19,20 +E20,21.
Set t4 = [[[[y, x], x], y], [y, x]] and w2

21 = [[t4, t2], [t3, t2]]. Then w2
21(A2, B2) = E1,22.

Finally, let A3 = E1,2 +E2,3 + E3,4 +E6,7 +E7,8 + E8,9 +E11,12 +E14,15 +E15,16 +
E17,18 + E18,19 + E21,22 and B3 = E4,5 + E5,6 + E9,10 + E10,11 + E12,13 + E13,14 +
E16,17+E19,20+E20,21. Set t5 = [[[[y, x], x], x], [y, x]] and w3

21 = [[t5, t2], [t3, t2]]. Then
w3

21(A3, B3) = E1,22. Note that the exponent of each w is congruent mod 3 to the
number of x’s in that w.
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For t = 6. We use the A’s, B’s and w’s from the t = 5 case. As explained above,
concatenate A1 and A2 forming A

′
3 and B1 and B2 forming B

′
3. Let w3

42(x, y) =
[w1

21(x, y), w2
21(x, y)]. Then

w3
42(A

′
3, B

′
3) = w1

21(A
′
3, B

′
3)w

2
21(A

′
3, B

′
3)− w2

21(A
′
3, B

′
3)w

1
21(A

′
3, B

′
3).

Since A
′
3 and B

′
3 are strictly upper triangular matrices entering in a product with 42

terms, the only possible non-zero position is (1, 43). From the t = 5 case, w1
21(A

′
3, B

′
3)

has a 1 in the (1, 43) position and w2
21(A

′
3, B

′
3) = 0 since w2

21 and w1
21 have a different

number of x’s. In the (22, 43) position, w2
21(A

′
3, B

′
3) is 1 from the t = 5 case while

w1
21(A

′
3, B

′
3) = 0. Therefore w3

42(A
′
3, B

′
3) = E1,43.

The number of x’s in w3
42(x, y) is equal to the sum of the number of x’s in w1

21(x, y)
and the number of x’s in w2

21(x, y). Therefore each of these numbers is congruent mod
3 to the exponent of the w from which it comes. In fact, this is the reason for the
choice of exponent in the last term.

There are two other cases giving rise to w1
42(x, y) = [w1

21(x, y), w3
21(x, y)] with

A
′
1 the concatenation of A1 and A3 and B

′
1 the concatenation of B1 and B3 and

w2
42(x, y) = [w2

21(x, y), w3
21(x, y)] with A

′
2 the concatenation of A2 and A3 and B

′
2 the

concatenation of B2 and B3 with corresponding results as in the last paragraph. In
particular, the (1, 43) position in w1

42(A
′
1, B

′
1) is 1 or -1 as is the (1, 43) position in

w2
42(A

′
2, B

′
2). Hence for t = 6, d = 42 and n = 43. The process is set up to continue

with d = 21(2t−5) and n = 21(2t−5) + 1.

3. On The Minimal Dimension For a Given Length. Let dj be the jth

super diagonal of T = T (n). Then T = d1+d2+ . . .+dn−1 and T (k) = d2k + . . . dn−1.
Now T (k−1) �= 0 if and only if 2k−1 ≤ n− 1. Hence the least n such that T has length
t is n = 2t−1+1 and dim T = (n+1)n

2 . We will reduce this dimension by taking a three
generated subalgeba of T .

Let Fi,j =
∑j+3k≤n

k=0 Ei+3k,j+3k where i = 1, 2, 3, . . . and j > i. Let L be the
Lie algebra generated by F1,2, F2,3 and F3,4. Clearly Fi,i+pFj,j+q = Fi,p+q+i if p+ i
is congruent to j mod 3 and is 0 otherwise. For notational convenience set A =
Fi,i+pFj,j+q and B = Fj,j+qFi,i+p and s = p+ q.

Lemma 3.1. If A and B are not both 0, then s is congruent to 0 mod 3 and
A − B ∈ ds.

Proof. Since 3 divides p+ i−j and q+j− i, it also divides s = p+q. Furthermore
A − B = Fi,i+s − Fj,j+s ∈ ds.

Lemma 3.2. If s is congruent to 0 mod 3, then either both A and B are 0 or both
are not 0.

Proof. Assume that A �= 0. Then s divides p+ i− j = s− (q+ j− i) and q+ j− i.
Hence B �= 0.

Lemma 3.3. Fj,2s+j ∈ L(s) for j = 1, 2, 3, . . . while 2s + j ≤ n.
Proof. Note that Fj,2s+j ∈ d2s . When s = 1, [F1,2, F2,3] = F1,3, [F1,2, F3,4] =

−F3,5 and [F2,3, F3,4] = F2,4 are all in L(1). Assume that Fj,j+2k ∈ L(k) for j =
1, 2, 3, . . .. For 1 ≤ i < j ≤ 3, [Fi,2k+i, Fj,2k+j ] = Fi,2k+iFj,2k+j − Fj,2k+jFi,2k+i ∈
L(k+1). Both terms on the right hand side of this expression will be non-zero exactly
when i is congruent to j + 2k mod 3 and j is congruent to i+ 2k+1 mod 3. If these
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congruences both hold, then three divides 2k+1 which is a contradiction. Now i − j
is congruent to 1 or 2 mod 3; that is, either i − j or j − i is congruent to 2k mod
3. Thus the above commutator equals one of the terms on the right hand side. By
considering the possibilities for i and j, the lemma holds.

Lemma 3.4. L =< F1,2, F2,3, F3,4 > in T (n) has length t if 2t−1+1 ≤ n < 2t+1.
Therefore n = 2t−1 +1 is the smallest n such that L has length t for any 3-generated
subalgebra of T (n).

Proof. The smallest possible n is n = 2t−1 + 1 for any subalgebra of T (n). If
n ≥ 2t + 1, then L(t−1) �= 0 since F1,2t−1+1 ∈ L(t−1).

We now find dim L. L =
∑n−1

j=1 d
′
j where d

′
j = dj ∩ L.

Lemma 3.5. The following hold
1. dim d

′
s = 3 if s is not congruent to 0 mod 3, s �= n − 2, n − 1 ;

2. dim d
′
s = 2 if s is congruent to 0 mod 3, s �= n − 1;

3. dim d
′
n−2 = 2;

4. dim d
′
n−1 = 1.

Proof. Suppose that s is not congruent to 0 mod 3. d
′
s is obtained from terms

[Fi,p+i, Fj,q+j ] where s = p + q. Since 3 does not divide s, this commutator equals
either Fi,s+i or −Fj,q+j , depending on 1 ≤ i < j ≤ 3. Hence

d
′
s =< F1,s+1, F2,s+2, F3,s+3 > .

Suppose that s is congruent to 0 mod 3. As in the last paragraph, d
′
s consists of

commutators but of the form Fi,s+i −Fj,s+j . In particular we obtain F1,s+1 −F2,s+2,
F2,s+2 − F3,s+3 and F1,s+1 − F3,s+3. Since the last term is the sum of the first two,
d

′
s has dimension 2. The final two cases are clear.

Lemma 3.6. The dimension of L is
1. 8(k − 1) + 3 when n = 3k;
2. 8(k − 1) + 6 when n = 3k + 1;
3. 8(k − 1) + 9 when n = 3k + 2.

Proof. Dim L = 3+3+2+3+3+2+ . . .+2+1 where there are n−1 terms in this
expression. In all cases, the first 3(k−1) terms can be grouped in threes, each having
a sum of 8. If n = 3k, there remain 2+ 1 in the sum, giving a total of 8(k− 1)+ 3. If
n = 3k+ 1, there remain 3 + 2+ 1 in the sum, giving a total of 8(k − 1) + 6. Finally,
if n = 3k + 2, there remain 3 + 3 + 2 + 1 in the sum, giving a total of 8(k − 1) + 9.

Theorem 3.7. There is a three generated Lie algebra L of strictly upper trian-
gular matrices of size n = 2t−1 + 1 and length t and dimension

1. (2t+2 − 7)/3 when t is even;
2. (2t+2 − 5)/3 when t is odd.

Proof. We have seen that for L to have length t, the minimum matrix size is
n = 2t−1 + 1. If t is even, then n is congruent to 0 mod 3 and if t is odd, then n is
congruent to 2 mod 3. Therefore, if t is even then n = 3k and dim L = 8(k−1)+3 =
8(n/3−1)+3 = 8((2t−1+1)/3−1)+3 = (2t+2−7)/3. If t is odd, then n = 3k+2 and
dim L = 8(k−1)+9 = 8((n−2)/3−1)+9 = 8((2t−1−1)/3−1)+9 = (2t+2−5)/3.
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