PRODUCTS OF M-MATRICES AND NESTED SEQUENCES OF PRINCIPAL MINORS*

D.A. GRUNDY ${ }^{\dagger}$, C.R. JOHNSON \ddagger, D.D OLESKY§, AND P. VAN DEN DRIESSCHE ${ }^{\dagger}$

Abstract

The question of whether or not the product of two nonsingular n-by- $n M$-matrices has a nested sequence of positive principal minors (abbreviated to a nest) is considered. For $n=2,3,4$ such a product always has a nest, and this is conjectured for $n=5$. For general n, examples of products of two M-matrices with specified structure are identified as having a leading or trailing nest. For $n=4$, it is shown that the cube of an M-matrix need not have a nest.

Key words. M-matrix, Nested sequence of principal minors, P-matrix.
AMS subject classifications. 15A15.

1. Introduction. For C an n-by- n matrix and $\alpha, \beta \subseteq\{1,2, \ldots, n\}$, we denote by $C[\alpha, \beta]$ the submatrix of C in rows α and columns β. The principal submatrix $C[\alpha, \alpha]$ is abbreviated $C[\alpha] ; \operatorname{det} C[\alpha]$ is a principal minor. The order of such a principal submatrix or minor is $|\alpha|$, the cardinality of α. By a nested sequence of principal submatrices (minors) in C, we mean those corresponding to a nested sequence of distinct subsets $\alpha_{1} \subseteq \alpha_{2} \subseteq \ldots \subseteq \alpha_{n}=\{1, \ldots, n\}$, in which $\left|\alpha_{k}\right|=k$. As each subset in the nest brings in an additional index, we identify a nest via the sequence of indices $i_{1}, i_{2}, \ldots, i_{n}$ where $\alpha_{k}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. By a leading (trailing) nest, we mean the sequence $1,2, \ldots, n(n, n-1, \ldots, 1)$. We say that a real n-by- n matrix C has a nested sequence of positive principal minors (a nest, for short) if there is a nested sequence $i_{1}, i_{2}, \ldots, i_{n}$ such that $\operatorname{det} C\left[\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}\right]>0$ for $k=1, \ldots, n$. Note that $C\left[i_{1}, i_{2}, \ldots, i_{k}\right]$ is the principal submatrix of C with its rows and columns in the same order as they occur in C. A nest clearly requires that $\operatorname{det} C$ be positive.

A matrix with nonpositive off-diagonal entries is called a Z-matrix. An M-matrix is a square Z-matrix that has a nest. Furthermore, an M-matrix is a P-matrix, i.e., all of its principal minors are positive; see $[2,5]$ for this and many other equivalent characterizations of M-matrices. We are mainly interested here in products of two nonsingular M-matrices and whether such a product necessarily has a nest. For $n=4$, such a product need not be a P-matrix [8, Example 3], but a nest is not ruled out by the example there. It has been shown that the product of a nonsingular M-matrix and an inverse M-matrix does have a nest [9, Theorem 4.6], even though such a product also need not be a P-matrix. (This is so for either order of the factors in such a product and one order follows from the other by transposition, not by inversion as stated in [9, proof of Theorem 4.6].) A similar question may be asked for a product

[^0]of two positive definite matrices, but the answer is negative as we show by example later (Example 6.1).

The question of the existence of a nest in the product of two M-matrices is quite different from that of an M-matrix and an inverse M-matrix, and it seems generally quite subtle. Here, our purpose is to popularize this question and to give quite a number of particular results about nests in general, principal minors in the product of two M-matrices and special situations in which a product of two M-matrices does have a nest. In the process, some interesting questions arise. A number of informative examples are also given.

Part of the motivation for our questions about a nest lies in the fact, due to Fisher and Fuller [3] and Ballantine [1], that if C has a nest, then there is a positive diagonal matrix D so that $D C$ is positive stable. For applications of this fact to negative stability, see [6].
2. Nest Preserving Transformations. If an n-by- n matrix C has the nest $i_{1}, i_{2}, \ldots, i_{n}$, then this nest is preserved under transposition and positive diagonal equivalence. In addition, by Jacobi's theorem, C^{-1} has the nest $i_{n}, i_{n-1}, \ldots, i_{1}$, and the permutation similarity $P^{T} C P$ has a nest as determined by the permutation matrix P.

Note that if $C_{1} C_{2}$ has a nest, then it is not in general true that $C_{2} C_{1}$ has a nest. This is illustrated by the products

$$
\begin{aligned}
& C_{1} C_{2}=\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 1
\end{array}\right], \\
& C_{2} C_{1}=\left[\begin{array}{ll}
3 & -2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-1 & -2 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

in which $C_{1} C_{2}$ has the nest 2,1 but $C_{2} C_{1}$ has no nest.
The following result shows that if a matrix has a nest, then so does its product with a triangular matrix having positive diagonal entries.

Lemma 2.1. Let L and U be lower and upper triangular matrices, respectively, with all diagonal entries positive. If C has a leading nest, then $L C$ and $C U$ have leading nests, whereas $U C$ and $C L$ have trailing nests.

Proof. The first statement can be seen by partitioning the matrices so that

$$
L C=\left[\begin{array}{cc}
L_{11} & 0 \\
l_{21}^{T} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
C_{11} & c_{12} \\
c_{21}^{T} & c_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} C_{11} & L_{11} c_{12} \\
l_{21}^{T} C_{11}+l_{22} c_{21}^{T} & l_{21}^{T} c_{12}+l_{22} c_{22}
\end{array}\right]
$$

and using induction. The other statements follow by transposition and/or permutation similarity with the backward identity permutation matrix.
3. Principal Minors in the Product of Two M-matrices. Let A and B be nonsingular n-by- $n M$-matrices. Since the sign of every principal minor is preserved by positive diagonal equivalence, in considering the question of whether or not the product $A B$ of two M-matrices has a nest, without loss of generality it can be assumed
that all of the main diagonal entries of A and B are one. By the remark in Section 2 that inversion preserves a nest, this question is equivalent to the existence of a nest in the product of two inverse M-matrices.

If A is an M-matrix, then there exist positive diagonal matrices D_{1}, D_{2} such that $D_{1} A$ is column diagonally dominant and $A D_{2}$ is row diagonally dominant. Thus, for positive diagonal matrices D_{i}, the product $\left(D_{1} A D_{2}^{-1}\right)\left(D_{2} B D_{3}\right)$ shows that without loss of generality the M-matrix A can be assumed to be both row and column diagonally dominant and the M-matrix B row diagonally dominant. Since every M-matrix has an $L U$ factorization in which both the lower and upper triangular factors are M matrices, it follows that $A B=L_{A} U_{A} L_{B} U_{B}$, where these four triangular factors are all M-matrices. Furthermore, if A is both row and column diagonally dominant and B is row diagonally dominant, then L_{A} is column dominant and both of U_{A} and U_{B} are row dominant. Consequently, if $U_{A} L_{B}$ has a leading nest, then by Lemma 2.1 so does $A B$. It should be noted that although there is no certainty as to whether a nest exists in $A B=L_{A} U_{A} B$ or to the sequence of indices in such a nest, by Lemma 2.1 there does exist a trailing nest in $U_{A} B L_{A}$, which is triangularly similar to $A B$.

If the graphs associated with the matrices A and B are restricted, then some sufficient conditions for $A B$ to be a P-matrix are given in $[7,8]$. The following result identifies some minors that are positive in the product of two arbitrary M-matrices.

Proposition 3.1. If A, B are nonsingular n-by-n M-matrices, then all principal minors of orders $1, n-1$ and n of $A B$ are positive.

Proof. The Z-matrix sign pattern combined with the positivity of the diagonal entries of A and B shows that all order 1 principal minors of $A B$ are positive. As $\operatorname{det} A$ and $\operatorname{det} B$ are both positive, it follows that the order n principal minor of $A B$ is positive. Lastly, by the positivity of the diagonal entries in $(A B)^{-1}$ and the positivity of $\operatorname{det} A B$, it follows that all order $n-1$ principal minors in $A B$ are positive.

Corollary 3.2. If $n \leq 3$ then the product $A B$ of two nonsingular n-by-n M matrices is a P-matrix.

For $n=2$, the product $A B$ is in fact an M-matrix. For $n=4$, it is not necessarily true that $A B$ is a P-matrix; see [8, Example 3] in which one minor of order 2 is negative.

We now consider order 2 principal minors in the product for general n, and first prove two lemmas that are of independent interest. In the first lemma the inequality is entrywise.

Lemma 3.3. If A, B are M-matrices, then $A B[\alpha] \geq A[\alpha] B[\alpha]$.
Proof. Without loss of generality let $\alpha=1,2, \ldots, k$. Let

$$
A=\left[\begin{array}{rr}
A_{11} & -A_{12} \\
-A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{rr}
B_{11} & -B_{12} \\
-B_{21} & B_{22}
\end{array}\right]
$$

where A_{11}, B_{11} are M-matrices of order k and $A_{12}, A_{21}, B_{12}, B_{21} \geq 0$. Then the leading principal submatrix of order k in $A B$ is $A B[\alpha]=A_{11} B_{11}+A_{12} B_{21} \geq$ $A_{11} B_{11}=A[\alpha] B[\alpha]$.

Lemma 3.4. If A, B are nonsingular M-matrices and $A B[\alpha]$ is a Z-matrix, then $A B[\alpha]$ is a nonsingular M-matrix.

Proof. By Lemma 3.3, $A B[\alpha] \geq A[\alpha] B[\alpha]$. Thus if $A B[\alpha]$ is a Z-matrix, then the product $A[\alpha] B[\alpha]$ must also be a Z-matrix. However, since $A[\alpha]$ and $B[\alpha]$ are both nonsingular M-matrices, they are inverse nonnegative and thus $A[\alpha] B[\alpha]$ is a nonsingular M-matrix. By [5, Theorem 2.5.4(a)], it follows that $A B[\alpha]$ is a nonsingular M-matrix. \square

Theorem 3.5. Let $n \geq 2$ and A, B be nonsingular M-matrices. Then the product $A B$ has at least $\left\lceil\frac{n}{2}\right\rceil$ positive principal minors of order 2.

Proof. Every principal submatrix of order 2 in $A B$ has one of the following forms:

$$
\left[\begin{array}{ll}
+ & 0 \\
* & +
\end{array}\right],\left[\begin{array}{ll}
+ & * \\
0 & +
\end{array}\right],\left[\begin{array}{ll}
+ & - \\
+ & +
\end{array}\right],\left[\begin{array}{cc}
+ & + \\
- & +
\end{array}\right],\left[\begin{array}{ll}
+ & + \\
+ & +
\end{array}\right] \text { or }\left[\begin{array}{cc}
+ & - \\
- & +
\end{array}\right]
$$

where $*$ denotes an arbitrary entry. The determinant of a matrix of any of the first four forms is positive. Not all of the principal submatrices of order 2 can be of the fifth form since $A B$ cannot have all entries positive (as $(A B)^{-1}$ has every entry nonnegative). As the last form is a Z-matrix, by Lemma 3.4 it must be a nonsingular M-matrix and therefore has a positive determinant. Thus $A B$ has at least one positive minor of order 2. The lower bound on the number of positive principal minors of order 2 occurs when A or B is irreducible (in which case $(A B)^{-1}$ has every entry positive and thus every row and column of $A B$ has at least one negative entry) and all principal submatrices of order 2 that contain a negative entry in fact contain two negative entries. Thus $A B$ has at least $\left\lceil\frac{n}{2}\right\rceil$ positive principal minors of order $2 . \square$

From numerical evidence, the above lower bound of $\left\lceil\frac{n}{2}\right\rceil$ is very conservative. For example, if $n=5$, we know of no such product $A B$ with fewer than eight positive principal minors of order 2 .

Corollary 3.6. If A, B are nonsingular M-matrices of order 4, then $A B$ has a nest.

Proof. Theorem 3.5 shows that there is at least one positive principal minor of order 2 in the product $A B$. By Proposition 3.1, all principal minors of orders 1, 3 and 4 are positive in $A B$. Therefore $A B$ has a nest. [

In fact, by Theorem 3.5, since for $n=4$ such a product $A B$ must have at least two positive principal minors of order 2 , in this case $A B$ must have at least eight nests. Lemma 3.4 also gives the following result.

Theorem 3.7. If A, B are nonsingular M-matrices and $A B[\alpha]$ is a Z-matrix with $|\alpha|=n-2$, then $A B$ has a nest.

Proof. By Lemma 3.4, $A B[\alpha]$ is an M-matrix. The positivity of all principal minors of order $n-1$ and the determinant of $A B$ complete a nest with the first $n-2$ indices from α.

Example 3.8 . Let A and B be the 5 -by- 5 matrices

$$
A=\left[\begin{array}{ccccc}
1 & -0.1 & -0.1 & -0.1 & -0.1 \\
-0.1 & 1 & -0.1 & -0.1 & -2 \\
-0.1 & -0.1 & 1 & -1 & -0.1 \\
-0.1 & -0.1 & -0.1 & 1 & -0.1 \\
-0.1 & -0.1 & -0.1 & -0.1 & 1
\end{array}\right]
$$

$$
B=\left[\begin{array}{ccccc}
1 & -0.1 & -0.1 & -0.1 & -0.1 \\
-0.1 & 1 & -0.1 & -0.1 & -0.1 \\
-0.1 & -0.1 & 1 & -0.1 & -0.1 \\
-0.1 & -1 & -0.1 & 1 & -0.1 \\
-0.1 & -0.1 & -2 & -0.1 & 1
\end{array}\right]
$$

Then A and B are both nonsingular M-matrices and

$$
A B=\left[\begin{array}{rrrrr}
1.04 & -0.08 & 0.02 & -0.17 & -0.17 \\
0.02 & 1.32 & 3.82 & 0.02 & -2.07 \\
-0.08 & 0.82 & 1.32 & -1.07 & -0.08 \\
-0.17 & -1.07 & 0.02 & 1.04 & -0.17 \\
-0.17 & -0.08 & -2.07 & -0.17 & 1.04
\end{array}\right]
$$

Since $A B[145]$ is a Z-matrix of order 3, by Theorem $3.7 A B$ has a nest. In particular $A B$ has the nest $1,4,5,2,3$. Note that $\operatorname{det} A B[2,3]<0$, so $A B$ is not a P-matrix.
4. Nests in Products of Two M-Matrices with a Specified Structure.

We now prove that a nest in the product of two M-matrices is guaranteed if one of the factors is a Hessenberg matrix.

Theorem 4.1. Let A, F, G be nonsingular M-matrices where F is a lower Hessenberg matrix and G is an upper Hessenberg matrix. Then $F A$ and $A G$ contain a leading nest and $G A$ and $A F$ contain a trailing nest.

Proof. Let

$$
A=\left[\begin{array}{rr}
A_{11} & -A_{12} \\
-A_{21} & A_{22}
\end{array}\right], \quad F=\left[\begin{array}{rr}
F_{11} & -F_{12} \\
-F_{21} & F_{22}
\end{array}\right], \quad G=\left[\begin{array}{rr}
G_{11} & -G_{12} \\
-G_{21} & G_{22}
\end{array}\right]
$$

where $A_{12}, A_{21}, F_{12}, F_{21}, G_{12}, G_{21} \geq 0 ; A_{11}, F_{11}, G_{11}$ are M-matrices of order $k ; A_{22}, F_{22}, G_{22}$ are M-matrices of order $n-k$ and $2 \leq k \leq n-2$. As well F_{12} is k-by- $(n-k)$ and G_{21} is $(n-k)$-by- k with

$$
F_{12}=\left[\begin{array}{cccc}
0 & \cdots & & 0 \\
\vdots & & . & \vdots \\
0 & 0 & & \\
f & 0 & \cdots & 0
\end{array}\right], \quad G_{21}=\left[\begin{array}{cccc}
0 & \cdots & 0 & g \\
\vdots & & 0 & 0 \\
& . & & \vdots \\
0 & \cdots & & 0
\end{array}\right]
$$

where $f, g \geq 0$. Therefore, the leading principal submatrix of order k in $F A$ is $F_{11} A_{11}$ $+F_{12} A_{21}$. The structure of F_{12} ensures that $F_{12} A_{21}$ is a rank one matrix that can be written as $x y^{T}$, where x is the first column of F_{12}, y^{T} is the first row of A_{21} and $x, y \geq 0$. Therefore, by a well known fact for a rank one perturbation of a matrix,

$$
\operatorname{det}\left(F_{11} A_{11}+F_{12} A_{21}\right)=\operatorname{det}\left(F_{11} A_{11}+x y^{T}\right)=\operatorname{det} F_{11} A_{11}\left(1+y^{T}\left[F_{11} A_{11}\right]^{-1} x\right)
$$

Since F_{11}, A_{11} are nonsingular M-matrices, it follows that $\operatorname{det} F_{11}$, $\operatorname{det} A_{11}>0$ and therefore $\operatorname{det} F_{11} A_{11}>0$. As well $\left[F_{11} A_{11}\right]^{-1} \geq 0$. Thus $\left(1+y^{T}\left[F_{11} A_{11}\right]^{-1} x\right)>0$ and consequently $\operatorname{det}\left(F_{11} A_{11}+F_{12} A_{21}\right)>0$. As this is true for all k and by Proposition
3.1 all principal minors of orders $1, n-1$ and n of $F A$ are positive, it follows that $F A$ contains a leading nest. The other statements follow by transposition and/or permutation similarity with the backward identity permutation matrix.

The following example shows that a product $F A$ (as in Theorem 4.1) need not be a P-matrix.

Example 4.2 .

$$
F=\left[\begin{array}{cccc}
1 & -0.1 & 0 & 0 \\
-0.1 & 1 & -0.1 & 0 \\
-0.1 & -2 & 1 & -0.1 \\
-2 & -0.1 & -0.1 & 1
\end{array}\right], \quad A=\left[\begin{array}{cccc}
1 & -0.1 & -2 & -0.1 \\
-0.1 & 1 & -0.1 & -2 \\
-0.1 & -0.1 & 1 & -0.1 \\
-0.1 & -0.1 & -0.1 & 1
\end{array}\right]
$$

are both M-matrices, but

$$
F A=\left[\begin{array}{rrcc}
1.01 & -0.2 & -1.99 & 0.1 \\
-0.19 & 1.02 & 0 & -1.98 \\
0.01 & -2.08 & 1.41 & 3.81 \\
-2.08 & 0.01 & 3.81 & 1.41
\end{array}\right]
$$

is not a P-matrix as $\operatorname{det} F A[3,4]<0$.
Corollary 3.2 and induction are now used to identify another M-matrix product $F G$ that has a nest. The matrix F is lower Hessenberg with an extra diagonal immediately above the superdiagonal and G is upper Hessenberg with an extra diagonal immediately below the subdiagonal. Such a product $F G$ includes the product of two pentadiagonal M-matrices.

Theorem 4.3. Let $n \geq 3$ and $F=\left[f_{i j}\right], G=\left[g_{i j}\right]$ be nonsingular n-by-n M matrices such that $f_{i j}=0$ if $j-i \geq 3$ and $g_{i j}=0$ if $i-j \geq 3$. Then $F G$ contains a leading nest and GF contains a trailing nest.

Proof. We use a proof by induction to show that $F G$ contains a leading nest. By Corollary 3.2 , when $n=3, F G$ is a P-matrix, and thus contains a leading nest.

Now suppose $k \geq 4$ and the statement is true for all $m \in \mathbb{Z}^{+}$such that $3 \leq m<k$. For $n=k$, we know that the order $k-1$ principal minors of $F G$ are positive and $\operatorname{det} F G>0$. We can partition F and G as follows:

$$
F=\left[\begin{array}{cc}
F_{k-1} & -a \\
-b^{T} & f_{k k}
\end{array}\right], \quad G=\left[\begin{array}{cc}
G_{k-1} & -c \\
-d^{T} & g_{k k}
\end{array}\right]
$$

where $a, d \geq 0, a^{T}=\left[0,0, \ldots, a_{k-2}, a_{k-1}\right]$ and $d^{T}=\left[0,0, \ldots, d_{k-2}, d_{k-1}\right]$. Therefore the leading principal minor of order $k-1$ in $F G$ is $F_{k-1} G_{k-1}+a d^{T}$ and

$$
a d^{T}=\left[\begin{array}{cccc}
0 & \cdots & & 0 \\
\vdots & \ddots & & \vdots \\
& & a_{k-2} d_{k-2} & a_{k-2} d_{k-1} \\
0 & \cdots & a_{k-1} d_{k-2} & a_{k-1} d_{k-1}
\end{array}\right]
$$

Since $F_{k-1} G_{k-1}$ contains a leading nest by the induction hypothesis, all leading principal minors of orders 1 to $k-3$ in $F_{k-1} G_{k-1}+a d^{T}$ and consequently in $F G$ are
positive. As well, since $F_{k-1} G_{k-1}+a d^{T}$ is an order $k-1$ principal submatrix of $F G$, its determinant is positive. It is thus only the leading principal minor of order $k-2$ in $F G$ that must be considered, namely $\operatorname{det} F G[1, \ldots, k-2]$. The only change from the order $k-2$ leading principal submatrix of $F_{k-1} G_{k-1}$ to obtain the order $k-2$ leading principal submatrix of $F_{k-1} G_{k-1}+a d^{T}$ is the nonnegative addition of $a_{k-2} d_{k-2}$ to the last main diagonal entry of the order $k-2$ leading principal submatrix in $F_{k-1} G_{k-1}$. By the induction hypothesis it follows that the complementary minor of this diagonal entry in the leading principal submatrix of order $k-2$ in $F_{k-1} G_{k-1}$ must be positive since it is a leading principal minor of order $k-3$ in $F G$. Similarly, the induction hypothesis ensures that the leading principal minor of order $k-2$ in $F_{k-1} G_{k-1}$ is positive because it is a leading principal minor of order less than k. By linearity of the determinant, the nonnegative addition to the diagonal entry leaves the sign of the order $k-2$ minor in $F_{k-1} G_{k-1}+a d^{T}$ positive. Therefore, $F G$ contains a leading nest for $n=k$. Thus by induction, $F G$ contains a leading nest for $n \geq 3$. The other statement follows by permutation similarity with the backward identity permutation matrix. \quad]

The next example shows that if the structure of G is slightly more general than that of Theorem 4.3, then $F G$ need not have a leading nest.

Example 4.4. Consider the 4 -by- $4 M$-matrices

$$
F=\left[\begin{array}{cccc}
1 & -0.1 & -2 & 0 \\
-0.1 & 1 & -0.1 & -2 \\
-0.1 & -0.1 & 1 & -0.1 \\
-0.1 & -0.1 & -0.1 & 1
\end{array}\right], \quad G=\left[\begin{array}{cccc}
1 & -0.1 & -0.1 & -0.1 \\
-0.1 & 1 & -0.1 & -0.1 \\
-0.1 & -2 & 1 & -0.1 \\
-2 & -0.1 & -0.1 & 1
\end{array}\right]
$$

Then

$$
F G=\left[\begin{array}{rrrr}
1.21 & 3.8 & -2.09 & 0.11 \\
3.81 & 1.41 & 0.01 & -2.08 \\
0.01 & -2.08 & 1.03 & -0.18 \\
-2.08 & 0.01 & -0.18 & 1.03
\end{array}\right]
$$

does not contain a leading nest as $F G[1,2]<0$. This example does, however, have a trailing nest.
5. Products of More than Two M-Matrices. The previous two sections discuss nests in the product of two M-matrices, and we now consider more general products. If A_{i} are 2-by-2 nonsingular M-matrices, then $\prod_{i=1}^{k} A_{i}$ is a nonsingular M matrix (and hence has a nest) for all positive integers k. We have a more restrictive result for 3 -by- 3 matrix products.

Theorem 5.1. If A is a 3-by-3 nonsingular M-matrix, then A^{3} has a nest.
Proof. Since $\operatorname{det} A^{3}>0$ and $\left(A^{3}\right)^{-1}$ has positive diagonal entries, all order 2 and order 3 principal minors of A^{3} are positive. It remains to show that A^{3} has at least one positive diagonal entry, which is certainly true if trace A^{3} is positive. This is now proved by considering eigenvalues. Since A is a nonsingular M-matrix, it has eigenvalues a, b, c or $a, b e^{ \pm i \theta}$ where $a, b, c>0$, and $0<\theta<\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}$ [5, Theorem 2.5.9(b)]. In the first case, A^{3} has eigenvalues a^{3}, b^{3}, c^{3}; thus trace
$A^{3}=a^{3}+b^{3}+c^{3}>0$. In the second case, A^{3} has eigenvalues $a^{3}, b^{3} e^{ \pm 3 i \theta}$, giving trace $A^{3}=a^{3}+2 b^{3} \cos 3 \theta$. By the bounds on $\theta, 0<3 \theta<\frac{\pi}{2}$, thus $\cos 3 \theta>0$ and trace $A^{3}>0$.

However, if A is as in Theorem 5.1, then A^{3} need not be a P-matrix [8, Example 2]. In fact, the following example shows that A^{3} may have two negative diagonal entries.

Example 5.2.

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right], \quad A^{3}=\left[\begin{array}{rrr}
-1 & 10 & -3 \\
-13 & 25 & 5 \\
10 & -26 & -1
\end{array}\right]
$$

The next example shows that the result of Theorem 5.1 need not be true if A is a 4-by-4 M-matrix.

Example 5.3. Consider the 4 -by- 4 circulant M-matrix

$$
A=\left[\begin{array}{cccc}
1 & -0.9 & 0 & 0 \\
0 & 1 & -0.9 & 0 \\
0 & 0 & 1 & -0.9 \\
-0.9 & 0 & 0 & 1
\end{array}\right]
$$

Then

$$
A^{3}=\left[\begin{array}{cccc}
1 & -2.7 & 2.43 & -0.729 \\
-0.729 & 1 & -2.7 & 2.43 \\
2.43 & -0.729 & 1 & -2.7 \\
-2.7 & 2.43 & -0.729 & 1
\end{array}\right]
$$

does not contain a nest as all the principal minors of order 2 in A^{3} are negative. If A is a symmetric or tridiagonal M-matrix, then A^{k} is a P-matrix for all positive integers k [8, Theorem 1 and Lemma 2].
6. Discussion. As stated in Corollary 3.2, the product of two nonsingular 3-by$3 M$-matrices is a P-matrix (and thus has a nest). In contrast, the following example shows that the product of two 3 -by- 3 positive definite matrices may not even have a nest.

Example 6.1. The matrix

$$
C=\left[\begin{array}{rrr}
6 & -1 & 0 \\
0 & 0 & -1 \\
-60 & 11 & 0
\end{array}\right]
$$

has three distinct positive eigenvalues, namely $\{1,2,3\}$, and thus is the product of two positive definite matrices (see, e.g., [4, Problem 9, p. 468]). Note that C does not have a nest.

The product of two nonsingular 4-by-4 M-matrices has a nest (Corollary 3.6) but is not necessarily a P-matrix. Extensive numerical calculations on the product of two 5-by-5 nonsingular M-matrices lead us to conjecture that such a product has a nest.

However, we do not know how to ensure the existence of a positive 3-by-3 minor, nor how to determine the positions of the positive 2 -by- 2 principal minors in the product of the two M-matrices.

As mentioned in the Introduction, if a matrix has a nest then it can be stabilized by premultiplication with a positive diagonal matrix. Our results thus give products of certain M-matrices that can be stabilized in this way. Example 4.2 illustrates this, as $F A$ has two eigenvalues with negative real parts. However, since $F A$ has a leading nest, there exists a positive diagonal matrix D so that $D F A$ is positive stable.

Acknowledgment. The research of D.D. Olesky and P. van den Driessche was partially supported by NSERC Discovery grants.

REFERENCES

[1] C.S. Ballantine. Stabilization by a diagonal matrix. Proceedings of the American Mathematical Society, 25:728-734, 1970.
[2] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, 1994.
[3] M.E. Fisher and A.T. Fuller. On the stabilization of matrices and the convergence of linear iterative processes. Mathematical Proceedings of the Cambridge Philosophical Society, 54:417-425, 1958.
[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[5] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[6] C.R. Johnson, J.S. Maybee, D.D. Olesky, and P. van den Driessche. Nested sequences of principal minors and potential stability. Linear Algebra and its Applications, 262:243-257, 1997.
[7] C.R. Johnson, D.D. Olesky, B. Robertson, and P. van den Driessche. Sign determinancy of M-matrix minors. Linear Algebra and its Applications, 91:133-141, 1987.
[8] C.R. Johnson, D.D. Olesky, and P. van den Driessche. M-matrix products having positive principal minors. Linear Multilinear Algebra, 16:29-38, 1984.
[9] C.R. Johnson, D.D. Olesky, P. van den Driessche. Matrix classes that generate all matrices with positive determinant. SIAM Journal on Matrix Analysis and Applications, 25:285-294, 2003.

[^0]: *Received by the editors 28 May 2007. Accepted for publication 4 November 2007. Handling Editor: Daniel Hershkowitz.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4 (pvdd@math.uvic.ca).
 ${ }^{\ddagger}$ Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA (crjohnso@math.wm.edu).
 ${ }^{\S}$ Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 (dolesky@cs.uvic.ca).

