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PRODUCTS OF M-MATRICES AND NESTED SEQUENCES OF
PRINCIPAL MINORS∗
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Abstract. The question of whether or not the product of two nonsingular n-by-n M -matrices has
a nested sequence of positive principal minors (abbreviated to a nest) is considered. For n = 2, 3, 4
such a product always has a nest, and this is conjectured for n = 5. For general n, examples of
products of two M -matrices with specified structure are identified as having a leading or trailing
nest. For n = 4, it is shown that the cube of an M -matrix need not have a nest.
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1. Introduction. For C an n-by-nmatrix and α, β ⊆ {1, 2, . . . , n}, we denote by
C[α, β] the submatrix of C in rows α and columns β. The principal submatrix C[α, α]
is abbreviated C[α]; detC[α] is a principal minor. The order of such a principal
submatrix or minor is | α |, the cardinality of α. By a nested sequence of principal
submatrices (minors) in C, we mean those corresponding to a nested sequence of
distinct subsets α1 ⊆ α2 ⊆ . . . ⊆ αn = {1, . . . , n}, in which | αk |= k. As each
subset in the nest brings in an additional index, we identify a nest via the sequence of
indices i1, i2, . . . , in where αk = {i1, i2, . . . , ik}. By a leading (trailing) nest, we mean
the sequence 1, 2, . . . , n (n, n − 1, . . . , 1). We say that a real n-by-n matrix C has
a nested sequence of positive principal minors (a nest, for short) if there is a nested
sequence i1, i2, . . . , in such that detC[{i1, i2, . . . , ik}] > 0 for k = 1, . . . , n. Note that
C[i1, i2, . . . , ik] is the principal submatrix of C with its rows and columns in the same
order as they occur in C. A nest clearly requires that detC be positive.

A matrix with nonpositive off-diagonal entries is called a Z-matrix. AnM -matrix
is a square Z-matrix that has a nest. Furthermore, an M -matrix is a P -matrix, i.e.,
all of its principal minors are positive; see [2, 5] for this and many other equivalent
characterizations of M -matrices. We are mainly interested here in products of two
nonsingularM -matrices and whether such a product necessarily has a nest. For n = 4,
such a product need not be a P -matrix [8, Example 3], but a nest is not ruled out by
the example there. It has been shown that the product of a nonsingularM -matrix and
an inverse M -matrix does have a nest [9, Theorem 4.6], even though such a product
also need not be a P -matrix. (This is so for either order of the factors in such a
product and one order follows from the other by transposition, not by inversion as
stated in [9, proof of Theorem 4.6].) A similar question may be asked for a product
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of two positive definite matrices, but the answer is negative as we show by example
later (Example 6.1).

The question of the existence of a nest in the product of two M -matrices is quite
different from that of an M -matrix and an inverse M -matrix, and it seems generally
quite subtle. Here, our purpose is to popularize this question and to give quite a
number of particular results about nests in general, principal minors in the product
of two M -matrices and special situations in which a product of two M -matrices does
have a nest. In the process, some interesting questions arise. A number of informative
examples are also given.

Part of the motivation for our questions about a nest lies in the fact, due to Fisher
and Fuller [3] and Ballantine [1], that if C has a nest, then there is a positive diagonal
matrix D so that DC is positive stable. For applications of this fact to negative
stability, see [6].

2. Nest Preserving Transformations. If an n-by-n matrix C has the nest
i1, i2, . . . , in, then this nest is preserved under transposition and positive diagonal
equivalence. In addition, by Jacobi’s theorem, C−1 has the nest in, in−1, . . . , i1, and
the permutation similarity PTCP has a nest as determined by the permutation matrix
P .

Note that if C1C2 has a nest, then it is not in general true that C2C1 has a nest.
This is illustrated by the products

C1C2 =
[ −1 0

−1 1

] [
3 −2
0 −1

]
=

[ −3 2
−3 1

]
,

C2C1 =
[
3 −2
0 −1

] [ −1 0
−1 1

]
=

[ −1 −2
0 −1

]

in which C1C2 has the nest 2,1 but C2C1 has no nest.
The following result shows that if a matrix has a nest, then so does its product

with a triangular matrix having positive diagonal entries.
Lemma 2.1. Let L and U be lower and upper triangular matrices, respectively,

with all diagonal entries positive. If C has a leading nest, then LC and CU have
leading nests, whereas UC and CL have trailing nests.

Proof. The first statement can be seen by partitioning the matrices so that

LC =
[

L11 0
lT21 l22

] [
C11 c12
cT
21 c22

]
=

[
L11C11 L11c12

lT21C11 + l22c
T
21 lT21c12 + l22c22

]

and using induction. The other statements follow by transposition and/or permuta-
tion similarity with the backward identity permutation matrix.

3. Principal Minors in the Product of Two M-matrices. Let A and B be
nonsingular n-by-n M -matrices. Since the sign of every principal minor is preserved
by positive diagonal equivalence, in considering the question of whether or not the
product AB of twoM -matrices has a nest, without loss of generality it can be assumed
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that all of the main diagonal entries of A and B are one. By the remark in Section 2
that inversion preserves a nest, this question is equivalent to the existence of a nest
in the product of two inverse M -matrices.

If A is anM -matrix, then there exist positive diagonal matrices D1, D2 such that
D1A is column diagonally dominant and AD2 is row diagonally dominant. Thus, for
positive diagonal matrices Di, the product (D1AD−1

2 )(D2BD3) shows that without
loss of generality the M -matrix A can be assumed to be both row and column diago-
nally dominant and theM -matrix B row diagonally dominant. Since everyM -matrix
has an LU factorization in which both the lower and upper triangular factors are M -
matrices, it follows that AB = LAUALBUB, where these four triangular factors are
all M -matrices. Furthermore, if A is both row and column diagonally dominant and
B is row diagonally dominant, then LA is column dominant and both of UA and UB

are row dominant. Consequently, if UALB has a leading nest, then by Lemma 2.1 so
does AB. It should be noted that although there is no certainty as to whether a nest
exists in AB = LAUAB or to the sequence of indices in such a nest, by Lemma 2.1
there does exist a trailing nest in UABLA, which is triangularly similar to AB.

If the graphs associated with the matrices A and B are restricted, then some
sufficient conditions for AB to be a P -matrix are given in [7, 8]. The following result
identifies some minors that are positive in the product of two arbitrary M -matrices.

Proposition 3.1. If A,B are nonsingular n-by-n M -matrices, then all principal
minors of orders 1, n− 1 and n of AB are positive.

Proof. The Z-matrix sign pattern combined with the positivity of the diagonal
entries of A and B shows that all order 1 principal minors of AB are positive. As
detA and detB are both positive, it follows that the order n principal minor of AB is
positive. Lastly, by the positivity of the diagonal entries in (AB)−1 and the positivity
of detAB, it follows that all order n− 1 principal minors in AB are positive.

Corollary 3.2. If n ≤ 3 then the product AB of two nonsingular n-by-n M -
matrices is a P -matrix.

For n = 2, the product AB is in fact anM -matrix. For n = 4, it is not necessarily
true that AB is a P -matrix; see [8, Example 3] in which one minor of order 2 is
negative.

We now consider order 2 principal minors in the product for general n, and first
prove two lemmas that are of independent interest. In the first lemma the inequality
is entrywise.

Lemma 3.3. If A,B are M -matrices, then AB[α] ≥ A[α]B[α].
Proof. Without loss of generality let α = 1,2,...,k. Let

A =
[

A11 −A12

−A21 A22

]
, B =

[
B11 −B12

−B21 B22

]

where A11, B11 are M -matrices of order k and A12, A21, B12, B21 ≥ 0. Then
the leading principal submatrix of order k in AB is AB[α] = A11B11 + A12 B21 ≥
A11B11 = A[α]B[α].

Lemma 3.4. If A,B are nonsingular M -matrices and AB[α] is a Z-matrix, then
AB[α] is a nonsingular M -matrix.
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Proof. By Lemma 3.3, AB[α] ≥ A[α]B[α]. Thus if AB[α] is a Z-matrix, then the
product A[α]B[α] must also be a Z-matrix. However, since A[α] and B[α] are both
nonsingular M -matrices, they are inverse nonnegative and thus A[α]B[α] is a non-
singular M -matrix. By [5, Theorem 2.5.4(a)], it follows that AB[α] is a nonsingular
M -matrix.

Theorem 3.5. Let n ≥ 2 and A,B be nonsingular M -matrices. Then the product
AB has at least �n

2 	 positive principal minors of order 2.
Proof. Every principal submatrix of order 2 in AB has one of the following forms:

[
+ 0
∗ +

]
,

[
+ ∗
0 +

]
,

[
+ −
+ +

]
,

[
+ +
− +

]
,

[
+ +
+ +

]
or

[
+ −
− +

]

where ∗ denotes an arbitrary entry. The determinant of a matrix of any of the first four
forms is positive. Not all of the principal submatrices of order 2 can be of the fifth form
since AB cannot have all entries positive (as (AB)−1 has every entry nonnegative).
As the last form is a Z-matrix, by Lemma 3.4 it must be a nonsingular M -matrix
and therefore has a positive determinant. Thus AB has at least one positive minor
of order 2. The lower bound on the number of positive principal minors of order 2
occurs when A or B is irreducible (in which case (AB)−1 has every entry positive and
thus every row and column of AB has at least one negative entry) and all principal
submatrices of order 2 that contain a negative entry in fact contain two negative
entries. Thus AB has at least �n

2 	 positive principal minors of order 2.
From numerical evidence, the above lower bound of �n

2 	 is very conservative. For
example, if n = 5, we know of no such product AB with fewer than eight positive
principal minors of order 2.

Corollary 3.6. If A,B are nonsingular M -matrices of order 4, then AB has a
nest.

Proof. Theorem 3.5 shows that there is at least one positive principal minor of
order 2 in the product AB. By Proposition 3.1, all principal minors of orders 1, 3
and 4 are positive in AB. Therefore AB has a nest.

In fact, by Theorem 3.5, since for n = 4 such a product AB must have at least
two positive principal minors of order 2, in this case AB must have at least eight
nests. Lemma 3.4 also gives the following result.

Theorem 3.7. If A,B are nonsingular M -matrices and AB[α] is a Z-matrix
with | α |= n− 2, then AB has a nest.

Proof. By Lemma 3.4, AB[α] is an M -matrix. The positivity of all principal
minors of order n− 1 and the determinant of AB complete a nest with the first n− 2
indices from α.

Example 3.8. Let A and B be the 5-by-5 matrices

A =




1 −0.1 −0.1 −0.1 −0.1
−0.1 1 −0.1 −0.1 −2
−0.1 −0.1 1 −1 −0.1
−0.1 −0.1 −0.1 1 −0.1
−0.1 −0.1 −0.1 −0.1 1


 ,
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B =




1 −0.1 −0.1 −0.1 −0.1
−0.1 1 −0.1 −0.1 −0.1
−0.1 −0.1 1 −0.1 −0.1
−0.1 −1 −0.1 1 −0.1
−0.1 −0.1 −2 −0.1 1


 .

Then A and B are both nonsingular M -matrices and

AB =




1.04 −0.08 0.02 −0.17 −0.17
0.02 1.32 3.82 0.02 −2.07

−0.08 0.82 1.32 −1.07 −0.08
−0.17 −1.07 0.02 1.04 −0.17
−0.17 −0.08 −2.07 −0.17 1.04


 .

Since AB[145] is a Z-matrix of order 3, by Theorem 3.7 AB has a nest. In particular
AB has the nest 1,4,5,2,3. Note that detAB[2, 3] < 0, so AB is not a P -matrix.

4. Nests in Products of Two M-Matrices with a Specified Structure.
We now prove that a nest in the product of two M -matrices is guaranteed if one of
the factors is a Hessenberg matrix.

Theorem 4.1. Let A,F,G be nonsingular M -matrices where F is a lower Hes-
senberg matrix and G is an upper Hessenberg matrix. Then FA and AG contain a
leading nest and GA and AF contain a trailing nest.

Proof. Let

A =
[

A11 −A12

−A21 A22

]
, F =

[
F11 −F12

−F21 F22

]
, G =

[
G11 −G12

−G21 G22

]

where A12, A21, F12, F21, G12, G21 ≥ 0; A11, F11, G11 are M -matrices of order
k; A22, F22, G22 are M -matrices of order n − k and 2 ≤ k ≤ n − 2. As well F12 is
k-by-(n− k) and G21 is (n− k)-by-k with

F12 =



0 · · · 0
... ···

...
0 0
f 0 · · · 0


 , G21 =




0 · · · 0 g
... 0 0

···
...

0 · · · 0




where f, g ≥ 0. Therefore, the leading principal submatrix of order k in FA is F11A11

+F12A21. The structure of F12 ensures that F12A21 is a rank one matrix that can
be written as xyT , where x is the first column of F12, yT is the first row of A21 and
x, y ≥ 0. Therefore, by a well known fact for a rank one perturbation of a matrix,

det(F11A11 + F12A21) = det(F11A11 + xyT ) = detF11A11(1 + yT [F11A11]−1x).

Since F11, A11 are nonsingular M -matrices, it follows that detF11, detA11 > 0 and
therefore detF11A11 > 0. As well [F11A11]−1 ≥ 0. Thus (1+yT [F11A11]−1x) > 0 and
consequently det(F11A11 + F12A21) > 0. As this is true for all k and by Proposition
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3.1 all principal minors of orders 1, n − 1 and n of FA are positive, it follows that
FA contains a leading nest. The other statements follow by transposition and/or
permutation similarity with the backward identity permutation matrix.

The following example shows that a product FA (as in Theorem 4.1) need not
be a P -matrix.

Example 4.2.

F =




1 −0.1 0 0
−0.1 1 −0.1 0
−0.1 −2 1 −0.1
−2 −0.1 −0.1 1


 , A =




1 −0.1 −2 −0.1
−0.1 1 −0.1 −2
−0.1 −0.1 1 −0.1
−0.1 −0.1 −0.1 1




are both M -matrices, but

FA =




1.01 −0.2 −1.99 0.1
−0.19 1.02 0 −1.98
0.01 −2.08 1.41 3.81

−2.08 0.01 3.81 1.41




is not a P -matrix as detFA[3, 4] < 0.
Corollary 3.2 and induction are now used to identify another M -matrix product

FG that has a nest. The matrix F is lower Hessenberg with an extra diagonal imme-
diately above the superdiagonal and G is upper Hessenberg with an extra diagonal
immediately below the subdiagonal. Such a product FG includes the product of two
pentadiagonal M -matrices.

Theorem 4.3. Let n ≥ 3 and F = [fij ], G = [gij ] be nonsingular n-by-n M -
matrices such that fij = 0 if j − i ≥ 3 and gij = 0 if i− j ≥ 3. Then FG contains a
leading nest and GF contains a trailing nest.

Proof. We use a proof by induction to show that FG contains a leading nest. By
Corollary 3.2, when n = 3, FG is a P -matrix, and thus contains a leading nest.

Now suppose k ≥ 4 and the statement is true for allm ∈ Z
+ such that 3 ≤ m < k.

For n = k, we know that the order k − 1 principal minors of FG are positive and
detFG > 0. We can partition F and G as follows:

F =
[

Fk−1 −a
−bT fkk

]
, G =

[
Gk−1 −c
−dT gkk

]

where a, d ≥ 0, aT = [0, 0, . . . , ak−2, ak−1] and dT = [0, 0, . . . , dk−2, dk−1]. Therefore
the leading principal minor of order k − 1 in FG is Fk−1Gk−1 + adT and

adT =



0 · · · 0
...

. . .
...

ak−2dk−2 ak−2dk−1

0 · · · ak−1dk−2 ak−1dk−1


 .

Since Fk−1Gk−1 contains a leading nest by the induction hypothesis, all leading prin-
cipal minors of orders 1 to k − 3 in Fk−1Gk−1 + adT and consequently in FG are
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positive. As well, since Fk−1Gk−1+ adT is an order k− 1 principal submatrix of FG,
its determinant is positive. It is thus only the leading principal minor of order k−2 in
FG that must be considered, namely detFG[1, . . . , k− 2]. The only change from the
order k−2 leading principal submatrix of Fk−1Gk−1 to obtain the order k−2 leading
principal submatrix of Fk−1Gk−1+adT is the nonnegative addition of ak−2dk−2 to the
last main diagonal entry of the order k− 2 leading principal submatrix in Fk−1Gk−1.
By the induction hypothesis it follows that the complementary minor of this diagonal
entry in the leading principal submatrix of order k− 2 in Fk−1Gk−1 must be positive
since it is a leading principal minor of order k − 3 in FG. Similarly, the induction
hypothesis ensures that the leading principal minor of order k − 2 in Fk−1Gk−1 is
positive because it is a leading principal minor of order less than k. By linearity of
the determinant, the nonnegative addition to the diagonal entry leaves the sign of
the order k− 2 minor in Fk−1Gk−1 + adT positive. Therefore, FG contains a leading
nest for n = k. Thus by induction, FG contains a leading nest for n ≥ 3. The other
statement follows by permutation similarity with the backward identity permutation
matrix.

The next example shows that if the structure of G is slightly more general than
that of Theorem 4.3, then FG need not have a leading nest.

Example 4.4. Consider the 4-by-4 M -matrices

F =




1 −0.1 −2 0
−0.1 1 −0.1 −2
−0.1 −0.1 1 −0.1
−0.1 −0.1 −0.1 1


 , G =




1 −0.1 −0.1 −0.1
−0.1 1 −0.1 −0.1
−0.1 −2 1 −0.1
−2 −0.1 −0.1 1


 .

Then

FG =




1.21 3.8 −2.09 0.11
3.81 1.41 0.01 −2.08
0.01 −2.08 1.03 −0.18

−2.08 0.01 −0.18 1.03




does not contain a leading nest as FG[1, 2] < 0. This example does, however, have a
trailing nest.

5. Products of More than Two M-Matrices. The previous two sections
discuss nests in the product of two M -matrices, and we now consider more general
products. If Ai are 2-by-2 nonsingularM -matrices, then

∏k
i=1 Ai is a nonsingularM -

matrix (and hence has a nest) for all positive integers k. We have a more restrictive
result for 3-by-3 matrix products.

Theorem 5.1. If A is a 3-by-3 nonsingular M -matrix, then A3 has a nest.
Proof. Since detA3 > 0 and (A3)−1 has positive diagonal entries, all order 2

and order 3 principal minors of A3 are positive. It remains to show that A3 has
at least one positive diagonal entry, which is certainly true if trace A3 is positive.
This is now proved by considering eigenvalues. Since A is a nonsingular M -matrix,
it has eigenvalues a, b, c or a, be±iθ where a, b, c > 0, and 0 < θ < π

2− π
3 = π

6
[5, Theorem 2.5.9(b)]. In the first case, A3 has eigenvalues a3, b3, c3; thus trace
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A3 = a3 + b3 + c3 > 0. In the second case, A3 has eigenvalues a3, b3e±3iθ, giving
trace A3 = a3 + 2b3 cos 3θ. By the bounds on θ, 0 < 3θ < π

2 , thus cos 3θ > 0 and
trace A3 > 0.

However, if A is as in Theorem 5.1, then A3 need not be a P -matrix [8, Example
2]. In fact, the following example shows that A3 may have two negative diagonal
entries.

Example 5.2.

A =


 1 0 −1

−1 3 0
0 −2 1


 , A3 =


 −1 10 −3

−13 25 5
10 −26 −1


 .

The next example shows that the result of Theorem 5.1 need not be true if A is a
4-by-4 M -matrix.

Example 5.3. Consider the 4-by-4 circulant M -matrix

A =




1 −0.9 0 0
0 1 −0.9 0
0 0 1 −0.9

−0.9 0 0 1


 .

Then

A3 =




1 −2.7 2.43 −0.729
−0.729 1 −2.7 2.43
2.43 −0.729 1 −2.7

−2.7 2.43 −0.729 1




does not contain a nest as all the principal minors of order 2 in A3 are negative. If A
is a symmetric or tridiagonalM -matrix, then Ak is a P -matrix for all positive integers
k [8, Theorem 1 and Lemma 2].

6. Discussion. As stated in Corollary 3.2, the product of two nonsingular 3-by-
3 M -matrices is a P -matrix (and thus has a nest). In contrast, the following example
shows that the product of two 3-by-3 positive definite matrices may not even have a
nest.

Example 6.1. The matrix

C =


 6 −1 0

0 0 −1
−60 11 0




has three distinct positive eigenvalues, namely {1, 2, 3}, and thus is the product of
two positive definite matrices (see, e.g., [4, Problem 9, p. 468]). Note that C does
not have a nest.

The product of two nonsingular 4-by-4M -matrices has a nest (Corollary 3.6) but
is not necessarily a P -matrix. Extensive numerical calculations on the product of two
5-by-5 nonsingular M -matrices lead us to conjecture that such a product has a nest.
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However, we do not know how to ensure the existence of a positive 3-by-3 minor, nor
how to determine the positions of the positive 2-by-2 principal minors in the product
of the two M -matrices.

As mentioned in the Introduction, if a matrix has a nest then it can be stabilized
by premultiplication with a positive diagonal matrix. Our results thus give products
of certainM -matrices that can be stabilized in this way. Example 4.2 illustrates this,
as FA has two eigenvalues with negative real parts. However, since FA has a leading
nest, there exists a positive diagonal matrix D so that DFA is positive stable.
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partially supported by NSERC Discovery grants.

REFERENCES

[1] C.S. Ballantine. Stabilization by a diagonal matrix. Proceedings of the American Mathematical
Society, 25:728–734, 1970.

[2] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM,
Philadelphia, PA, 1994.

[3] M.E. Fisher and A.T. Fuller. On the stabilization of matrices and the convergence of lin-
ear iterative processes. Mathematical Proceedings of the Cambridge Philosophical Society,
54:417–425, 1958.

[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[5] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cam-

bridge, 1991.
[6] C.R. Johnson, J.S. Maybee, D.D. Olesky, and P. van den Driessche. Nested sequences of principal

minors and potential stability. Linear Algebra and its Applications, 262:243–257, 1997.
[7] C.R. Johnson, D.D. Olesky, B. Robertson, and P. van den Driessche. Sign determinancy of

M -matrix minors. Linear Algebra and its Applications, 91:133–141, 1987.
[8] C.R. Johnson, D.D. Olesky, and P. van den Driessche. M -matrix products having positive

principal minors. Linear Multilinear Algebra, 16:29–38, 1984.
[9] C.R. Johnson, D.D. Olesky, P. van den Driessche. Matrix classes that generate all matrices with

positive determinant. SIAM Journal on Matrix Analysis and Applications, 25:285–294,
2003.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 380-388, December 2007


