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Abstract. Fourier-Motzkin elimination is a classical method for solving linear inequalities in
which one variable is eliminated in each iteration. This method is considered here as a matrix
operation and properties of this operation are established. In particular, the focus is on situations
where this matrix operation preserves combinatorial matrices (defined here as (0, 1,−1)-matrices).
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1. Introduction. Fourier-Motzkin elimination is a computational method that
may be seen as a generalization of Gaussian elimination. The method is used for
finding one, or even all, solutions to a given linear system of inequalities

Ax ≤ b

where A ∈ R
m,n and b ∈ R

m. Here vector inequality is to be interpreted component-
wise. The solution set of the system Ax ≤ b is a polyhedron which we denote by P ,
i.e., P = {x ∈ R

n : Ax ≤ b}. The method also finds the projection of P into certain
coordinate subspaces. The idea is to eliminate one variable at the time and rewrite
the system accordingly (see Section 2). The method was introduced by Fourier in
1827 [3] and his work was motivated by problems in mechanics, least squares etc. A
more systematic study of the method was given in Dines [2]. The method was de-
scribed in the Ph.D. thesis of T.S. Motzkin [5] and the connection to polyhedra was
investigated. Kuhn [4] also described the method and used it to give a proof of Farkas’
lemma. A presentation of Fourier-Motzkin elimination and its role in computations
involving polyhedra (for conversions between different representations of polyhedra)
is found in Ziegler [8]. For historical notes and references on linear inequalities and
Fourier-Motzkin elimination we refer to Schrijver [7].

In this paper we view Fourier-Motzkin elimination as a matrix operation that
transforms the given coefficient matrix into a new one, and our goal is to investigate
this operation. The focus is on combinatorial aspects of the operation. This casts light
on the operation of projection of polyhedra into coordinate subspaces. In Section 2
Fourier-Motzkin elimination is described and in Section 3 we introduce the mentioned
matrix operation, denoted the FM operation. This operation is investigated for
incidence matrices in Section 4 and for network matrices and related matrices in
Section 5.

We now describe some of the notation used in this paper. If A and B are matrices
of the same size, then A ≥ B means that the inequality holds componentwise. An all

∗Received by the editors 10 March 2005. Accepted for publication 23 September 2007. Handling
Editor: Bryan L. Shader.

†Centre of Mathematics for Applications, and Dept. of Informatics, University of Oslo, P.O. Box
1053 Blindern, NO-0316 Oslo, NORWAY (geird@math.uio.no).

334

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 334-346, October 2007



ELA

Combinatorial Properties of Fourier-Motzkin Elimination 335

zeros matrix (of suitable size) is denoted by O. If A ∈ R
m,n and I ⊆ {1, 2, . . . ,m}

and J ⊆ {1, 2, . . . , n}, then A(I, J) is the submatrix of A formed by the rows in I
and columns in J . If I = {1, 2, . . . ,m} we simply write A(:, J). The jth column of A
is denoted by A(:, j). The transpose of a matrix A is denoted by AT . The jth unit
vector (in R

n) is denoted by ej .

2. Fourier-Motzkin elimination. We briefly review the Fourier-Motzkin elim-
ination method. Consider again a linear system Ax ≤ b where A ∈ R

m,n, b ∈ R
m and

let I := {1, 2, . . . ,m}. We write the system in component form

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2
...

am1x1 + am2x2 + · · · + amnxn ≤ bm.

(2.1)

Say that we want to eliminate x1 from the system (2.1). For each i where ai1 �= 0
we multiply the i’th inequality

∑n
j=1 aijxj ≤ bi by 1/|ai1|. This gives an equivalent

system

x1 + a′i2x2 + · · · + a′inxn ≤ b′i (i ∈ I+)
ai2x2 + · · · + ainxn ≤ bi (i ∈ I0)

−x1 + a′i2x2 + · · · + a′inxn ≤ b′i (i ∈ I−)
(2.2)

where I+ = {i : ai1 > 0}, I0 = {i : ai1 = 0}, I− = {i : ai1 < 0}, a′ij = aij/|ai1| and
b′i = bi/|ai1|. Thus, the row index set I = {1, 2, . . . ,m} is partitioned into subsets I+,
I0 and I−, some of which may be empty. It follows that x1, x2, . . . , xn is a solution
of the original system (2.1) if and only if x2, x3, . . . , xn satisfy

∑n
j=2 a

′
kjxj − b′k ≤ b′i −

∑n
j=2 a

′
ijxj (i ∈ I+, k ∈ I−)∑n

j=2 aijxj ≤ bi (i ∈ I0)
(2.3)

and x1 satisfies

max
k∈I−

(
n∑

j=2

a′kjxj − b′k) ≤ x1 ≤ min
i∈I+

(b′i −
n∑

j=2

a′ijxj).(2.4)

If I−(resp. I+) is empty, the first set of constraints in (2.3) vanishes and the
maximum (resp. minimum) in (2.4) is interpreted as ∞ (resp. −∞). If I0 is empty
and either I− or I+ is empty too, then we terminate: the general solution of Ax ≤ b
is obtained by choosing x2, x3, . . . , xn arbitrarily and choosing x1 according to (2.4).

The constraint in (2.4) says that x1 lies in a certain interval which is determined
by x2, x3, . . . , xn. The polyhedron defined by (2.3) is the projection of P along the
x1-axis, i.e., into the space of the variables x2, x3, . . . , xn. One may then proceed
similarly and eliminate x2, x3 etc. Eventually one obtains a system l ≤ xn ≤ u.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 334-346, October 2007



ELA

336 Geir Dahl

If l > u one concludes that Ax ≤ b has no solution, otherwise one may choose
xn ∈ [l, u], and then choose xn−1 in an interval which depends on xn etc. This back
substitution procedure produces a solution x = (x1, x2, . . . , xn) to Ax ≤ b. Moreover,
every solution of Ax ≤ b may be produced in this way. (If the system is inconsistent,
this might possibly be discovered at an early stage and one terminates.)

The number of constraints may grow exponentially fast as variables are eliminated
using Fourier-Motzkin elimination. Actually, a main problem in practice is that the
number of inequalities becomes “too large” during the elimination process, even when
redundant inequalities are removed. It is therefore of interest to know situations where
the projected linear systems are not very large or, at least, have some interesting
structure. These questions are discussed in the remaining part of the paper. We refer
to [7] and [8] for a further discussion of Fourier-Motzkin elimination and a collection
of references on this method.

3. The FM operation. Fourier-Motzkin elimination is a process that works on
linear systems (of inequalities). However, it may also be viewed as an operation on
matrices from which a given coefficient matrix A produces another matrix B.

Consider again a linear system (2.1) and its coefficient matrix A ∈ R
m,n. Let B be

the coefficient matrix of the new linear system (2.3), still viewed as a system in all the
variables x1, x2, . . . , xn. B is a real m′ ×n matrix with m′ = |I+| · |I−|+ |I0| ≤ m2/4
rows. Thus, using the notation introduced in the previous section, B has a row
(0, ai2, ai3, . . . , ain) for each i ∈ I0 and a row (0, a′i2+a

′
k2, a

′
i3+a

′
k3, . . . , a

′
in+a

′
kn) for

each pair i, k with i ∈ I+, k ∈ I−. Such a row is simply the vector sum A′(i, :)+A′(k, :)
where A′ is the coefficient matrix of the system (2.2). If the first column of A contains
only positive entries, or only negative entries, or if A has no rows, then B becomes an
empty matrix (no rows). This gives rise to a mapping, denoted by FM , which maps
A into B, i.e.,

B = FM(A).

We also get the mapping FM0 which maps A into the matrix B0 = B(:, {2, 3, . . . , n}),
i.e., B0 is obtained from B by deleting the first column (which is the zero vector).
Thus, B0 is the coefficient matrix of the new linear system (2.3) in the variables
x2, x3, . . . , xn.

To be mathematically concise, we should consider FM and FM0 as mappings on
the equivalence classes of matrices under row permutations. Permutations of the rows
of A or B do not play any role here; this is motivated by the fact that permutation
of the inequalities of the underlying linear systems does not change the solution set.

Remark 3.1. Assume that A ≥ O and let B = FM(A). Then B is obtained
from A by simply deleting the rows in A corresponding to positive entries in the first
column. Moreover, in (2.4) one only gets an upper bound on the variable x1. A
similar observation holds for nonpositive matrices (and one only gets a lower bound
on x1).

In order to see the full effect of Fourier-Motzkin elimination on the linear system
Ax ≤ b we may consider the FM0 operation applied to the augmented matrix [A b].
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The resulting matrix is [B b′] where B = FM0(A) and where Bx ≤ b′ is the linear
system (2.3).

The FM and FM0 operations may be iterated several times.
Definition 3.2. The matrix operations FMk

0 and FM
k are defined by

FM0
0 (A) = FM0(A) = A

and for k = 1, 2, . . . , n− 1

FMk
0 (A) = FM0(FMk−1

0 (A))
FMk(A) =

[
Ok FMk

0 (A)
]

where Ok denotes a zero matrix with k columns.

Thus, FMk
0 is the coefficient matrix of the projected linear system obtained from

Ax ≤ b after eliminating variables x1, x2, . . . , xk. The matrix FMk(A) has n columns
while FMk

0 (A) has n− k columns.
We shall focus on the FM operation for matrices with all entries being 0, −1 or 1;

such matrices will be called combinatorial matrices. These matrices frequently arise
in applications, and the corresponding linear systems consist of linear inequalities of
the form

∑
j∈Si

xj ≤ bi +
∑
j∈Ti

xj

where Si and Ti are disjoint index sets in {1, 2, . . . , n}. In some applications, one may
be looking for integral or (0, 1)-vectors satisfying such combinatorial inequalities. This
is a frequent theme in the area of polyhedral combinatorics.

Definition 3.3. A matrix A is called FM-combinatorial if FMk(A) is combina-
torial for k = 0, 1, 2, . . . , n− 1.

By Remark 3.1 it is clear that a combinatorial matrix A with entrywise positive
or negative first column is trivially FM-combinatorial (since FM(A) is empty).

The following result is an immediate consequence of Definition 3.3 and the men-
tioned projection property associated with Fourier-Motzkin elimination.

Proposition 3.4. If A is FM -combinatorial and b is integral, then the projection
of the polyhedron {x ∈ R

n : Ax ≤ b} into the space of the variables xt, xt+1, . . . , xn

is defined by linear inequalities with (0, 1,−1)-coefficients and integral right-hand-side
(1 ≤ t ≤ n).

This observation is a motivation for investigating classes of FM -combinatorial
matrices. Actually, in polyhedral combinatorics, a very useful method is the projection
technique where the combinatorial objects of interest are described using a linear
system in some higher-dimensional space, i.e., by using additional variables. One is
then interested in the structure of the linear system obtained by projecting away these
additional variables. In this connection linear inequalities with (0, 1,−1)-coefficients
have a combinatorial interpretation and this explains our interest in the notion of
FM -combinatorial matrices.
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The converse of the statement in Proposition 3.4 may not hold; the reason is
that Fourier-Motzkin elimination may produce redundant inequalities with coefficients
different from 0, ±1. Note also that every (0, 1)-matrix and every (0,−1)-matrix is
trivially FM -combinatorial; this follows from Remark 3.1. Thus, interesting FM -
combinatorial matrices contain both positive and negative entries.

The obvious way of checking whether a given matrix A is FM -combinatorial is
to use Fourier-Motzkin elimination and calculate FMk(A) (1 ≤ k ≤ n− 1).

Example 3.5. Let

A =


 1 0 0

−1 −1 1
0 1 1


 .

Then

FM0(A) =
[ −1 1

1 1

]
and FM2

0 (A) = [2].

So A is not FM -combinatorial.

The following result is easy to establish directly from the definition of a FM -
combinatorial matrix.

Proposition 3.6. The set of FM -combinatorial matrices is closed under the
following operations

• deletion of rows
• duplication of rows
• appending a row of zeros.

Example 3.7. Consider the matrices

A1 =


 −1 1 1

−1 −1 1
−1 0 0


 , A2 =


 −1 1 1

−1 −1 1
1 0 0


 .

A1 is (trivially) FM -combinatorial while A2 is not FM -combinatorial. This shows
that the set of FM -combinatorial matrices is not closed under any of the following
operations: (i) multiplying a row by −1, (ii) appending a row which is a unit vector,
(iii) appending a row which is the negative of some existing row, (iv) deleting a
column.

Moreover, the set of FM -combinatorial matrices is not closed under column per-
mutations.

A natural problem is to find interesting classes of FM -combinatorial matrices.
Another problem is to investigate when the columns of a matrix may be permuted
so as to get a FM -combinatorial matrix. The remainder of the paper is focused on
these two problems. In particular, we study incidence matrices and network matrices
and interpret Fourier-Motzkin elimination combinatorially for these matrix classes.
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4. Incidence matrices. Consider a digraph D = (V,E) with vertex set V and
arc set E. For notational simplicity we assume that V = {1, 2, . . . ,m}. Let A be the
incidence matrix of D. The rows (columns) of A correspond to the vertices (arcs) of
D: the column corresponding to the arc (i, j) has a 1 in row i, a −1 in row j, and
zeros in the remaining rows. For i ∈ V we define δ+(i) (δ−(i)) as the set of arcs in
E that leaves (enters) vertex i. More generally, δ+(S) (δ−(S)) is the set of arcs (i, j)
where i ∈ S and j �∈ S (i �∈ S, j ∈ S). A basic operation in a digraph is contraction of
an arc: it creates a new graph by deleting an arc (and its parallel arcs) and identifying
the two end vertices of that arc. We let χS denote the incidence vector of a set S ⊆ E,
so χS

e = 1 if e ∈ S and χS
e = 0 otherwise.

The following theorem says that the FM operation on an incidence matrix cor-
responds to contraction in the digraph.

Theorem 4.1. Let A be the incidence matrix of a digraph D and let e be the arc
corresponding to the first column of A. Let B = FM(A). Then every column of B
corresponding to e or its parallel arcs is the zero vector, and the submatrix consisting
of the remaining columns of B is the incidence matrix of the digraph D′ obtained from
D by contracting e.

Proof. The rows of A correspond to the vertex set V : the row corresponding to
vertex k is χδ+(k) −χδ−(k). Let e = (i, j) be the arc corresponding to the first column
of A. Consider B = FM(A). Each row in A corresponding to a vertex k �∈ {i, j}
satisfies ak1 = 0 and it gives rise to a similar row of B. The matrix B has only one
more row, and it is obtained by summing the two rows in A corresponding to i and
j (as ai1 = 1 and aj1 = −1). This row becomes

(χδ+(i) − χδ−(i)) + (χδ+(j) − χδ−(j)) = χδ+({i,j}) − χδ−({i,j})

and this vector has component zero for e and its parallel arcs. This shows that B is
the incidence matrix of the digraph D′.

A direct consequence of the previous theorem is that incidence matrices form a
FM -combinatorial matrix class.

Corollary 4.2. Incidence matrices of directed graphs are FM -combinatorial.
A larger matrix class, containing the incidence matrices, is discussed next. Con-

sider a (0,±1)-matrix A of size m× n whose row index set I may be partitioned into
two sets I1 and I2 so that each column equals one of the vectors

1. O,

2. ±ei where i ∈ I,

3. ei + ek where i ∈ I1, k ∈ I2,

4. ei − ej where i, j are distinct and both lie in I1 or in I2.

(4.1)

Let M be the class of all such matrices. It is known that every matrix A ∈ M is
totally unimodular (TU), i.e., every minor is −1, 0 or 1, see [1]. One may view A ∈ M
as the incidence matrix of a “mixed graph” D. Here a mixed graph consists of vertices
and arcs, but it may have both directed and undirected arcs, and even arcs with only
one end, or a zero arc with no end! The matrix A corresponds to a mixed graph D:
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the rows of A correspond to the vertices and the columns to the arcs. There are four
types of arcs corresponding to the four column types in (4.1): a zero arc (type 1) with
no end vertices, a semi-arc (type 2) with a single end vertex, an undirected arc (type
3) and, finally, a directed arc (type 4). We say that a semi-arc corresponding to the
column ei (−ei) leaves (enters) vertex i. Figure 4.1 shows a mixed graph with two
directed arcs, two semi-arcs (to the right in the figure) and one undirected arc. (Zero
arcs cannot be visualized, but they may be counted.)

Fig. 4.1. A mixed graph.

Let S ⊆ I be a vertex subset in D. The operation of deleting S from the mixed
graph D produces a new mixed graph with vertex set I \ S and with arcs obtained
from those of D by removing the end vertices in S. Thus, this operation may produce
semi-arcs or even zero arcs. The following theorem shows that the incidence matrix
of every mixed graph and its transpose both are FM -combinatorial. Moreover, the
proof contains a combinatorial interpretation of the elimination of an arc or a vertex
as certain operations on the mixed graph.

Theorem 4.3. Let A ∈ M. Then both A and AT are FM -combinatorial.
Proof. Let A ∈ M and let B = FM0(A). We show that B ∈ M by finding a new

mixed graph D′ with B as its incidence matrix. Consider the first column of A, and
its corresponding arc e, and distinguish between the four possible cases in (4.1).

1. A(:, 1) = O. Then B is the incidence matrix of the mixed graph obtained
from D by deleting the zero arc e.

2. A(:, 1) = ±ei. Then B is the incidence matrix of the mixed graph obtained
from D by deleting the arc e and the vertex i.

3. A(:, 1) = ei + ek where i ∈ I1, k ∈ I2. Then B is the incidence matrix of the
mixed graph obtained from D by deleting the arc e the vertices i and j.

4. A(:, 1) = ei−ek where i, j are distinct and both lie in I1. (The case when both
lie in I2 is treated similarly.) Then B is the incidence matrix of D′ obtained
from D by deleting e and contracting the vertices i and j into a new single
vertex. Each arc parallel to e becomes a zero arc and arcs with exactly one
vertex among i and j arc incident to the new vertex (with similar direction).
Since both i and j lie in I1, the matrix B satisfies all properties of (4.1).

Thus, B = FM(A) ∈ M and it follows by induction that A is FM -combinatorial.
Next, consider C = AT where A ∈ M and let v be the vertex (of the mixed graph)

corresponding to the first column of C. Let B = FM0(C). Then B is the incidence
matrix of the mixed graph D′ obtained from D by deleting v and its incident arcs
and adding some new arcs. These new arcs are described in Figure 4.2: a new arc is
indicated in italic for each combination of two old arcs with opposite signs incident
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to v. Note that parallel arcs may arise.

undirected arc [v, w] directed arc (v, w) semi-arc leaving v
semi-arc entering v semi-arc leaving w semi-arc entering w zero arc
directed arc (u, v) new undirected arc [u, w] directed arc (u, w) semi-arc leaving u

Fig. 4.2. New arcs in the elimination of v.

Again, by induction, it follows that AT is FM -combinatorial.
In particular, if A is the incidence matrix of a directed graph and we apply

Fourier-Motzkin elimination to AT , then elimination of the vertex v corresponds to
deleting v and incident arcs from the digraph D and adding an arc (u,w) whenever
(u, v) and (v, w) are arcs in D, see Figure 4.3. Thus, FM0(AT ) is the transpose of
the incidence matrix of this new digraph.

v

Fig. 4.3. Elimination of v.

Corollary 4.4. Let A be the incidence matrix of a digraph D. Then the matrix[
A

−A
]

is FM -combinatorial.

Proof. Let B = FM(A) so B has the form described in Theorem 4.1. Then we
see that

FM(
[

A
−A

]
) =


 B

−B
O




where the zero matrix has two rows. The result now follows by induction.

5. Network matrices and extensions. In this section we consider the FM op-
eration in connection with network matrices and some related matrices. In particular
we are concerned with the role that column permutations play for the FM operation.
We refer to Brualdi and Ryser [1] or Schrijver [7] for a discussion of network matrices.
Note that every matrix in the class M (see Section 4) is a network matrix.

Let T = (V,E) be a directed tree, i.e., a directed graph where the corresponding
undirected graph is a tree. Moreover, let D = (V, F ) be a directed graph on the same
vertex set V . For each arc (u, v) ∈ F we let Pu,v denote (the arc set of) the unique
path in T from u to v. Moreover, P+

u,v (P−
u,v) consists of the arcs in Pu,v that are

directed from u to v (from v to u). The following network matrix A is associated with
the pair (D,T ). The rows and columns of A are associated with F and E, respectively.
The row corresponding to the arc (u, v) ∈ F has a 1 in each column corresponding
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to an arc e ∈ P+
u,v, a −1 in each column corresponding to an arc e ∈ P−

u,v, and it

contains zeros elsewhere. Thus, this row equals χP+
u,v − χP−

u,v which we consider as
the signed incidence vector of the path Pu,v.

Consider a pair (D,T ) as above and the associated network matrix A. Let v be
a leaf of T (i.e., it has degree 1) and let e be the incident arc. The digraph obtained
from T by deleting v (and e) is denoted by T ′ = (V ′, E′), so V ′ = V \ {v} and
E′ = E \ {e}. Moreover, define D′ = (V ′, F ′) where

F ′ = (F \ (δ+D(v) ∪ δ−D(v))) ∪ {(u,w) : (u, v), (v, w) ∈ F}.
Thus, D′ is obtained from D by deleting v and incident arcs and introducing new
arcs of the form (u,w) for each pair (u, v), (v, w) ∈ F . We say that the pair (T ′, D′)
is obtained from (D,T ) by elimination of v.

Theorem 5.1. Consider a directed tree T = (V,E) and a digraph D = (V, F )
as above with associated network matrix A. Let v be a leaf of T and assume that the
incident arc e corresponds to the first column of A. Let (T ′, D′) be obtained from
(D,T ) by elimination of v. Then B = FM0(A) is the network matrix of (T ′, D′)
(using the same ordering of arcs in T ′ as in T ).

Proof. Let as usual D = (V, F ). The nonzeros in the first column of A are in
those rows corresponding to arcs of the form (u, v) or (v, w) in F . Moreover, the first
column contains entries 1 and −1 in a pair of rows that correspond to a pair (u, v),
(v, w) with (u, v), (v, w) ∈ F . Such a pair gives rise to a row R in B = FM0(A)
which is the sum of the corresponding rows in A. These two rows in A are the signed
incidence vectors of the two paths Pu,v and Pv,w in the tree T . But then there is
a vertex s such that Pu,v = Pu,s ∪ Ps,v and Pv,w = Pv,s ∪ Ps,w; this is due to the
fact that T is a tree. It follows that the row R is the signed incidence vector of the
(u,w)-path Pu,s ∪Ps,w . The remaining rows of the matrix B are the signed incidence
vectors of paths Pu,w where (u,w) ∈ F and u,w �= v. Therefore B is the network
matrix of (T ′, D′).

If we delete a leaf from a tree T we obtain a new tree where we can delete a new
leaf etc. until we are left with a single vertex. This induces an ordering of the arcs of
T , namely the order in which they are deleted. We call such an ordering of the arcs in
T an arc elimination ordering in T . Every nontrivial tree has several arc elimination
orderings.

Corollary 5.2. Let A be a network matrix associated with (D,T ) where the
columns of A correspond to an arc elimination ordering in the tree T . Then A is
FM -combinatorial.

Proof. Since the columns ofA are ordered according to an arc elimination ordering
in T , Theorem 5.1 gives that FM(A) is the network matrix associated with (T ′, D′),
FM2(A) is the network matrix associated with ((T ′)′, (D′)′) etc. So, by induction, A
is FM -combinatorial.

The following example illustrates what can happen if the columns of a network
matrix do not correspond to an arc elimination ordering in T .

Example 5.3. Consider the tree T in Figure 5.1, and let the arcs inD be (v1, v6),
(v5, v2), (v2, v6), (v5, v1). Let A be the network matrix where rows correspond to the
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arcs in D ordered as above and columns correspond to e1, e2, . . . , e6 (in this order),
so

A =




1 0 1 0 −1
−1 −1 0 −1 0
1 1 0 0 −1

−1 0 −1 −1 0


 .

Then

FM0(A) =




−1 1 −1 −1
0 0 −1 −1
0 0 −1 −1
1 −1 −1 −1


 and FM2

0 (A) =


 0 −2 −2
0 −1 −1
0 −1 −1


 .

Let now A′ be obtained from A by permuting columns so that the first column in A
is the last one in A′. Then

A′ =




0 1 0 −1 1
−1 0 −1 0 −1
1 0 0 −1 1
0 −1 −1 0 −1


 .

and

FM0(A′) =


 1 0 −1 1

0 −1 −1 0
−1 −1 0 −1


 , FM2

0 (A
′) =

[ −1 −1 0
−1 −1 0

]
.

1

2

3 4

5

6

2 5

3

4
1

e

e

e

v

v

v

v

e

e

v

v

Fig. 5.1. The tree T .

When Fourier-Motzkin elimination is used to calculate projections of polyhedra
into coordinate subspaces, one often has the freedom to choose the order in which the
variables are eliminated. Motivated by this we say that a matrix A is permuted FM-
combinatorial if the columns of A may be permuted to obtain an FM-combinatorial
matrix. If a matrix A is permuted FM-combinatorial, then one would also like to find
a permutation matrix P so that AP is FM-combinatorial.
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We now study a large class of permuted FM-combinatorial matrices related to
network matrices. Consider a partitioned matrix A of the following form

A =




A11 A12 A13 · · · A1p

O A22 A23 · · · A2p

O O A33 · · · A3p

...
...

. . .
...

O O · · · App




(5.1)

where (i) all matrices Aij are (0, 1,−1)-matrices, (ii) the first column in Aii is either
e or −e where e is an all ones vector (i ≤ p− 1), (iii) Aij is arbitrary (1 ≤ i < j ≤ p),
(iv) App is a network matrix. We call B a generalized network matrix if its rows and
columns may be permuted to obtain a matrix of the specified from in (5.1), i.e., if
A = PBQ has the form (5.1) for suitable permutation matrices P and Q.

The following algorithm may be used to test if a matrix is a generalized network
matrix.
Algorithm 1.

Input: a (0, 1,−1)-matrix A.
1. Start with the matrix A and perform the following operation recursively:

test if the matrix contains a nonnegative or nonpositive column. If so, delete
this column and the rows in which it contains its nonzeros.

2. Test if the remaining matrix is a network matrix.

We refer to [6] for a detailed description of an efficient (polynomial time) algorithm
for recognizing a network matrix.

Theorem 5.4. Each generalized network matrix is a permuted FM-combinatorial
matrix. Moreover, Algorithm 1 decides in polynomial time whether a given matrix A is
a generalized network matrix. The algorithm also finds the desired column permutation
that takes A into an FM-combinatorial matrix.

Proof. Assume that B is a generalized network matrix, so A = PBQ has the
form (5.1) for suitable permutation matrices P and Q. We may here assume that
the columns corresponding to the network matrix App are ordered according to an
arc elimination ordering in the associated tree T . We now apply Fourier-Motzkin
elimination to the matrix A. Since the first column of A11 is either e or −e, the
resulting matrix A′ = FM0(A) is obtained from A by deleting the first block row and
the first column. Then A′ contains k − 1 leading columns that are equal to the zero
vector, where k is the number of columns in A11. The FM0 operation simply deletes
these k− 1 zero columns so the resulting matrix is the same as the one obtained from
A by deleting the first block row and the first block column. We proceed similarly
with the block A22, and after p− 1 iterations, we are left with the matrix App. Then,
by Corollary 5.2, it follows that A is FM-combinatorial. This proves that B is a
permuted FM-combinatorial matrix.

We now prove that Algorithm 1 correctly determines whether a given matrix A
is a generalized network matrix. Let C denote the matrix obtained by Algorithm 1
after completion of Step 1.
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Claim: this matrix C is unique in the sense that it does not depend on the order
in which the columns were deleted in Step 1 of the algorithm.

Proof of claim: Consider two possible sequences of column deletions, say π =
(π1, π2, . . . , πr) and π′ = (π′

1, π
′
2, . . . , π

′
s). This means that, in the first (second)

sequence, column πi (π′
i) is deleted in the ith step. We prove that r = s and that π′ is

a permutation of π. If π = π′, we are done. Otherwise, let i be smallest possible such
that π′

i �= πi. This means that, in the ith step in the π′ sequence, it would be feasible
to delete column πi, although we decided to delete π′

i instead. This possibility of
deleting column πi (in connection with the π′ sequence) remains, and therefore there
exists a j > i such that π′

j = πi. By iterating this argument we see that π′ must
contain all the numbers πi, πi+1, . . . , πr (it is possible to delete these columns in this
order). Similarly, we also see that π must contain all the numbers π′

i, π
′
i+1, . . . , π

′
s. It

follows that r = s and that π′ is a permutation of π.
So, all possible column deletions are permutations of each other. Finally, the set

of rows deleted clearly does not depend on the order in which the columns are deleted,
but only on which set of columns that is deleted. This shows the uniqueness of C,
and the claim follows.

By the claim the matrix C after Step 1 is unique. Moreover, A is a generalized
network matrix if and only if C is a network matrix, and this is determined in Step 2
of the algorithm (using the polynomial time algorithm described in [6]). This proves
the theorem.

We now turn our attention to a class of (0, 1,−1)-matrices associated with paths
in directed graphs. A path incidence matrix is a matrix where each row is the signed
incidence vector of a path in an underlying fixed digraph D. So each such path
consists of an arc sequence connecting the initial vertex to the terminal vertex, and
the incidence vector contains a +1 or a −1 for all these arcs where the sign depends
on the direction in which the arc is traversed.

Every network matrix is a path incidence matrix (where the underlying digraph
D is a tree), and by Corollary 5.2, these matrices are permuted FM-combinatorial.
Moreover, it is possible to construct examples of path incidence matrices that are not
permuted FM-combinatorial, see below. This property (permuted FM-combinatorial)
seems to reflect a complicated interplay between the selection of paths and the struc-
ture of the underlying digraph D.

Our final result characterizes the digraphsD for which all path incidence matrices
are permuted FM-combinatorial.

Theorem 5.5. Consider a digraph D and the corresponding undirected graph G.
Then every path incidence matrix associated with D is permuted FM-combinatorial if
and only if G is acyclic.

Proof. Let A be a path incidence matrix in a digraph D where the correspond-
ing undirected graph G is acyclic. Then G decomposes into a set of disjoint trees
T1, T2, . . . , Tk. By suitable permutations of the rows and columns of A we obtain
a matrix which is the direct sum of path incidence matrices corresponding to the
trees T1, T2, . . . , Tk. Furthermore, we may order the columns of this matrix according
to an arc elimination ordering in each Ti. It now follows from Corollary 5.2 that
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this permuted matrix A is FM-combinatorial, so the original matrix A is permuted
FM-combinatorial.

Assume next that G (the undirected graph associated with D) contains a cycle.
Let e1, e2, . . . , ek be the arcs in this cycle (ordered consecutively). For simplicity of
presentation we assume that all arcs in the cycle have the same direction (so the
tail of ei is the head of ei+1 for each i); the general case where the directions vary
can be treated similarly. For each i ≤ k consider the three paths P 1

i = (ei−1, ei),
P 2

i = (ei, ei+1), and P 3
i = (ei−1, ei, ei+1), as well as the three paths that are the

opposite of P 1
i , P

2
i and P

3
i (e.g., the opposite path of P

1
i is (ei, ei−1). Let A be the

path incidence matrix corresponding to these 6k paths. This matrix may contain some
columns that are equal to the zero vector; they correspond to arcs outside C. Consider
a arbitrary ordering of the columns of A and apply Fourier-Motzkin elimination based
on this ordering. Whenever we meet a column which is the zero vector, that column
will simply be deleted. Eventually we come to the first column corresponding to an
arc in C, say this is ei. Let B be the matrix obtained after eliminating ei. Then
B contains the following submatrix corresponding to the columns ei−1 and ei+1 and
suitable rows

B∗ =


 1 −1

1 1
−1 −1


 .

The entries in the remaining columns of B in these rows are all zero. Therefore,
eventually we have to eliminate either ei−1 or ei+1 and, in either case, we see from
B∗ that we will get an entry which is equal to 2 or −2. This proves that the original
matrix A is not permuted FM-combinatorial.
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