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ON THE CHARACTERISTIC POLYNOMIAL OF MATRICES WITH

PRESCRIBED COLUMNS AND THE STABILIZATION AND

OBSERVABILITY OF LINEAR SYSTEMS�

SUSANA FURTADOy AND FERNANDO C. SILVAz

Abstract. Let A 2 F
n�n, B 2 F

n�t, where F is an arbitrary �eld. In this paper, the possible
characteristic polynomials of [A B ], when some of its columns are prescribed and the other columns
vary, are described. The characteristic polynomial of [A B ] is de�ned as the largest determinantal
divisor (or the product of the invariant factors) of [xIn � A � B ]. This result generalizes a
previous theorem by H. Wimmer which studies the same problem when t = 0. As a consequence,
it is extended to arbitrary �elds a result, already proved for in�nite �elds, that describes all the
possible characteristic polynomials of a square matrix when an arbitrary submatrix is �xed and the
other entries vary. Finally, applications to the stabilization and observability of linear systems by
state feedback are studied.

AMS subject classi�cations. 15A18, 93B60

Key words. Matrix completion, eigenvalue, linear system.

1. Introduction. Throughout this paper, F denotes a �eld. If f(x) is a poly-
nomial, d(f) denotes its degree.

Several results are known that study the existence of matrices (matrix comple-
tions) with a �xed submatrix and satisfying certain conditions. For example, the
following theorem, due to Wimmer, describes the possible characteristic polynomials
of a matrix when a certain number of rows are �xed and the others vary.

Theorem 1.1. [20] Let A1;1 2 F p�p; A1;2 2 F p�q and m = p+ q. Let f 2 F [x]
be a monic polynomial of degree m. Let �1 j � � � j �p be the invariant factors of�

xIp �A1;1 �A1;2

�
:

Then, there exist A2;1 2 F q�p and A2;2 2 F q�q such that

�
A1;1 A1;2

A2;1 A2;2

�

has characteristic polynomial f if and only if

�1 � � ��p j f:(1)

Later, Zaballa [22] characterized the possible invariant polynomials of a matrix
when a certain number of rows are �xed and the others vary. As a square matrix is
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similar to its transpose, these results also describe the possible characteristic poly-
nomials and the possible invariant polynomials of a matrix when a certain number
of columns are �xed and the others vary. For other results of this type, see, e.g.,
[1, 9, 10, 11, 12, 15, 17, 19, 22, 25].

Recall that the characteristic polynomial of a matrix A 2 Fm�m is the product
of the invariant factors of xIm � A. Now call characteristic polynomial of a matrix�
A B

�
, where A 2 Fm�m, B 2 Fm�n, to the product of the invariant factors of

�
xIm �A �B

�
:

Note that the condition (1) says that the characteristic polynomial of�
A1;1 A1;2

�
divides f .

In a previous paper [7], we have described all possible characteristic polynomials
of
�
A B

�
when some of its rows are �xed and the others vary. The main purpose

of this paper is to describe all the possible characteristic polynomials of
�
A B

�
when some of its columns are �xed and the others vary. Note that, in order to solve
this problem, we may assume that the columns �xed in A are the �rst ones and that
the columns �xed in B are also the �rst ones. In fact, if P 2 Fm�m and Q 2 Fn�n

are permutation matrices, then

�
A B

�
and

�
P�1AP P�1BQ

�
have the same characteristic polynomial.

Analogously, call characteristic polynomial of a matrix
�
At Ct

�t
; where A 2

Fm�m, C 2 F s�m, to the product of the invariant factors of

�
xIm � At �Ct

�t
:

Two matrices �
A B

C D

�
and

�
A0 B0

C0 D0

�
(2)

A;A0 2 Fm�m; B;B0 2 Fm�n; C; C0 2 F s�m and D;D0 2 F s�n, are said to be
m-similar if there exist matrices P 2 Fm�m, Q 2 F s�s, R 2 Fn�n, S 2 Fm�s,
T 2 Fn�m such that P , Q and R are nonsingular and

�
A0 B0

C 0 D0

�
=

�
P�1 S

0 Q

� �
A B

C D

� �
P 0
T R

�
:(3)

It is easy to see that the matrices (2) are m-similar if and only if the pencils

�
xIm �A �B
�C �D

�
and

�
xIm � A0 �B0

�C0 �D0

�
(4)

are strictly equivalent. Therefore the m-similarity classes are completely described
by the Kronecker invariants for strict equivalence. Moreover, a canonical form for m-
similarity results easily from the Kronecker canonical form for strict equivalence. An
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explicit canonical form for m-similarity was presented in [3, Lemma 2]. For details
about strict equivalence, see, e.g., [8]. Note that the proof of the existence of the
Kronecker canonical form presented in [8] fails in �nite �elds. However the Kronecker
canonical form is valid in arbitrary �elds; see [6].

When s = 0, m-similarity appeared in [2] with the name of feedback equivalence.
(Also see [22].) Note that, in this case, the pencils (4), which do not have the second
row of blocks, have neither rowminimal indices nor in�nite elementary divisors. When
s = n = 0, m-similarity is the usual relation of similarity.

2. The Characteristic Polynomial of Matrices with Prescribed

Columns. The following result was obtained by Zaballa when t = 0 [22] and when
q = 0 [23]. The general case was established in [4].

Theorem 2.1. Let A1;1 2 F p�p and A2;1 2 F q�p. Let �1 j � � � j �p be the

invariant factors and k1 � � � � � kq be the row minimal indices of

�
xIp �A1;1

�A2;1

�
:(5)

Let m = p+ q; B1 2 Fm�m and B2 2 Fm�t. Let 
1 j � � � j 
m be the invariant factors

and s1 � � � � � s� > s�+1 = � � � = st(= 0) be the column minimal indices of

�
xIm �B1 �B2

�
:(6)

Then, there exist A1;2 2 F p�q, A1;3 2 F p�t, A2;2 2 F q�q and A2;3 2 F q�t such that

�
A1;1 A1;2 A1;3

A2;1 A2;2 A2;3

�
(7)

and
�
B1 B2

�
are feedback equivalent if and only if

(i2:1) 
i j �i j 
i+q+� ; i 2 f1; : : : ; pg;
(ii2:1) m � d(�q) and

(k1 + 1; : : : ; kq + 1) � (m � d(�q�1); d(�q�1)� d(�q�2); : : : ; d(�1) � d(�0));

where �j = �
j
1 � � ��

j
p+j and �

j
i = l:c:m:f�i�j; 
ig;

i 2 f1; : : : ; p+ jg; j 2 f0; : : : ; qg;
(iii2:1) m � d(��) and

(s1; : : : ; s�) � (m � d(���1); d(���1) � d(���2); : : : ; d(�1)� d(�0));

where �j = �
j
1 � � ��

j
m��+j and �

j
i = l:c:m:f�i�q; 
i+��jg;

i 2 f1; : : : ;m� � + jg; j 2 f0; : : : ; �g:
[We make convention that 
i = 0 whenever i > m, and �i = 1 whenever i � 0:]

The following lemma is not hard to prove; see [17, Lemma 8] for details.
Lemma 2.2. Let t1; : : : ; tm; t

0
1; : : : ; t

0
m; t

00 be integers such that t1 � � � � � tm; t
0
1 �

� � � � t0m; t1 + � � �+ tm � t00 � t01 + � � �+ t0m. Then there exist integers t001 ; : : : ; t
00
m such

that t001 � � � � � t00m; ti � t00i � t0i; i 2 f1; : : : ;mg; t
00
1 + � � �+ t00m = t00.
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Corollary 2.3. Let A1;1 2 F p�p and A2;1 2 F q�p. Let �1 j � � � j �p be

the invariant factors of (5). Let m = p + q and let t be a positive integer. Let

f 2 F [x] be a monic polynomial. Then, there exist A1;2 2 F p�q, A1;3 2 F p�t,

A2;2 2 F q�q and A2;3 2 F q�t such that (7) has characteristic polynomial f if and

only if d(l:c:m:f�1 � � ��p; fg) � m and

�1 � � ��p�� j f;(8)

where � = minfm � d(f); tg.
Proof. Necessity. Suppose that there exists a matrix of the form (7) with char-

acteristic polynomial f . Let 
1 j � � � j 
m be the invariant factors of

�
xIp � A1;1 �A1;2 �A1;3

�A2;1 xIq � A2;2 �A2;3

�
:(9)

According to Theorem 2.1,m � d(�q). Clearly l:c:m:f�1 � � ��p; fg j �
q and, therefore,

d(l:c:m:f�1 � � ��p; fg) � m. It also follows from Theorem 2.1, that �1 � � ��p��0 j

1+q+�0 � � �
m; where �0 is the number of nonzero column minimal indices of (9).
Note that � � �0. Therefore �1 � � ��p�� j f:

Su�ciency. Suppose that d(l:c:m:f�1 � � ��p; fg) � m and �1 � � ��p�� j f , where
� = minfm� d(f); tg. Suppose that

�i = �
li;1
1 � � ��li;�� ; i 2 f1; : : : ; pg;

f = �l11 � � ��
l�
� ;

were �1; : : : ; �� are monic, pairwise distinct, irreducible polynomials and li;j and lj
are nonnegative integers. For each j 2 f1; : : : ; �g, let

l0j = maxfl1;j + � � �+ lp;j; ljg;

l0i;j = li;j ; i 2 f1; : : : ; p� 1g;(10)

l0p;j = lp;j + l0j � (l1;j + � � �+ lp;j):

We have

l1;j + � � �+ lp��;j � lj � l0j = l01;j + � � �+ l0p;j:

The �rst inequality follows from (8). Take li;j = l0i;j = 0 whenever i � 0. According
to Lemma 2.2, there exist integers l001;j ; : : : ; l

00
m;j such that

l001;j � � � � � l00m;j ;

li�q��;j � l00i;j � l0i�q;j ; i 2 f1; : : : ;mg;(11)

lj = l001;j + � � �+ l00m;j :

Let


i = �
l00i;1
1 � � ��

l00i;�
� ; i 2 f1; : : : ;mg:
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From (10) and (11), it follows that

�i�q�� j 
i; i 2 f1; : : : ;mg;


i j �i�q j �i; i 2 f1; : : : ;m� 1g;(12)

where �i = 0 whenever i > p. If q > 0, then the condition (i2:1) is already proved.
Now suppose that q = 0. Then d(�1 � � ��p) = p. From d(l:c:m:f�1 � � ��p; fg) � m it
follows that f j �1 � � ��p. Therefore l

0
j = l1;j + � � �+ lp;j and l0p;j = lp;j , j 2 f1; : : : ; �g.

From (11) it follows that 
p j �p. In any case, the condition (i2:1) is proved.
Let j 2 f1; : : : ; �g. Note that

maxfli�q;j; l
00
i;jg � l0i�q;j ; i 2 f1; : : : ;mg:

Therefore

mX
i=1

maxfli�q;j; l
00
i;jg �

mX
i=1

l0i�q;j = l0j :

Also note that

�q = �� =
mY
i=1

l:c:m:f�i�q; 
ig = �

P
m

i=1
maxfli�q;j;l

00

i;jg

j �j;

where g:c:d:f�j; �jg = 1, and l:c:m:f�1 � � ��p; fg = �
l0j
j �

0
j; where g:c:d:f�j; �

0
jg = 1.

Therefore �q = �� j l:c:m:f�1 � � ��p; fg and d(�q) = d(��) � m.
From (12), it follows that �j = �1 � � ��p; j 2 f0; : : : ; q � 1g. As 
1 � � �
m = f

and d(f) � m � �, we have 
1 = � � � = 
� = 1. Therefore, from (12), it follows that
�0 = 
�+1 � � �
m = 
1 � � �
m = f . Suppose that m � d(f) = �g + h, where g and h

are integers and 0 � h < �. Let

si = g + 1; i 2 f1; : : : ; hg;

si = g; i 2 fh+ 1; : : : ; �g:

Note that d(
1 � � �
m) + s1 + � � �+ s� = m. Looking at the normal form for feedback
equivalence, it is easy to �nd B1 2 Fm�m and B2 2 Fm�t such that (6) has invariant
factors 
1 j � � � j 
m and columnminimal indices s1 � � � � � s� > s�+1 = � � � = st(= 0).

From the previous remarks, it is not hard to deduce that the conditions (i2:1){
(iii2:1) are satis�ed. According to Theorem 2.1, there exist A1;2 2 F p�q, A1;3 2 F p�t,
A2;2 2 F q�q and A2;3 2 F q�t such that (7) and

�
B1 B2

�
are feedback equivalent.

Therefore (7) has characteristic polynomial 
1 � � �
m = f .
The following lemma is easy to prove.
Lemma 2.4. Let A1;1; A

0
1;1 2 F p�p, A1;3; A

0
1;3 2 F p�t, A2;1; A

0
2;1 2 F q�p,

A2;3; A
0
2;3 2 F q�t. Let m = p+ q, and let f 2 F [x] be a monic polynomial. Suppose

that �
A1;1 A1;3

A2;1 A2;3

�
and

�
A0
1;1 A0

1;3

A0
2;1 A0

2;3

�
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are p-similar. Then, there exist A1;2 2 F p�q, A1;4 2 F p�u, A2;2 2 F q�q, A2;4 2 F q�u

such that �
A1;1 A1;2 A1;3 A1;4

A2;1 A2;2 A2;3 A2;4

�

has characteristic polynomial f if and only if there exist A0
1;2 2 F p�q, A0

1;4 2 F p�u,

A0
2;2 2 F q�q, A0

2;4 2 F q�u such that

�
A0
1;1 A0

1;2 A0
1;3 A0

1;4

A0
2;1 A0

2;2 A0
2;3 A0

2;4

�

has characteristic polynomial f .

Theorem 2.5. Let A1;1 2 F p�p; A1;3 2 F p�t; A2;1 2 F q�p and A2;3 2 F q�t. Let

�1 j � � � j �p+� be the invariant factors, � the number of in�nite elementary divisors,

l the sum of the degrees of the in�nite elementary divisors, w the sum of the column

minimal indices of �
xIp �A1;1 �A1;3

�A2;1 �A2;3

�
:(13)

Let m = p+q; and let f 2 F [x] be a monic polynomial. Then, there exist A1;2 2 F p�q,

A2;2 2 F q�q, A1;4 2 F p�u and A2;4 2 F q�u such that

�
A1;1 A1;2 A1;3 A1;4

A2;1 A2;2 A2;3 A2;4

�
(14)

has characteristic polynomial f if and only if one of the following conditions is satis-

�ed.

(I2:5) maxf�; ug > 0; d(l:c:m:f�1 � � ��p+�; fg) � m �w � l and

�1 � � ��p+��� j f;

where � = minfm �w � l � d(f); �+ ug.
(II2:5) � = u = 0; d(f) = m� w and

�1 � � ��p j f:

Proof. Note that �1 = � � � = �w+l = 1. With permutations of the rows and
columns of the normal form for p-similarity of�

A1;1 A1;3

A2;1 A2;3

�
(15)

one can get a p-similar matrix of the form
2
664

D1;1 0 0
0 E1;1 E1;3

D2;1 0 0
0 E2;1 E2;3

3
775 ;(16)
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where D1;1 2 F (p�w�l+�)�(p�w�l+�), D2;1 2 F (q��)�(p�w�l+�), E1;1 2
F (w+l��)�(w+l��), the matrix

�
xIp�w�l+� �D1;1

�D2;1

�

has invariant factors �w+l+1; : : : ; �p+�, and the matrix

�
xIw+l�� � E1;1 �E1;3

�E2;1 �E2;3

�
(17)

has w+ l invariant factors equal to 1. Bearing in mind Lemma 2.4, one may assume,
without loss of generality, that (15) has the form (16).

Necessity. Suppose that there exists a matrix of the form (14) with characteristic
polynomial f . Bearing in mind that (17) has w + l invariant factors equal to 1, and
that, therefore, its Smith normal form is

�
Iw+l 0

�
, it is not hard to deduce that

�
xIp � A1;1 �A1;2 �A1;3 �A1;4

�A2;1 xIq � A2;2 �A2;3 �A2;4

�
(18)

is equivalent to a matrix of the form

2
4 xIp�w�l+� �D1;1 �D1;2 �D1;3 0 0

�D2;1 xIq�� �D2;2 �D2;3 0 0
0 0 0 Iw+l 0

3
5 ;(19)

where D1;3 2 F (p�w�l+�)�(�+u). Consequently,

�
D1;1 D1;2 D1;3

D2;1 D2;2 D2;3

�
(20)

has characteristic polynomial f .
Suppose that maxf�; ug > 0. According to Corollary 2.3, d(l:c:m:f�1 � � ��p+�; fg

= d(l:c:m:f�l+w+1 � � ��p+�; fg � m� w � l and

�1 � � ��p+��� = �l+w+1 � � ��p+��� j f;

where � = minfm� l � w � d(f); � + ug.
Now suppose that � = u = 0. Then l = 0 and, as (20) is a square matrix, its

characteristic polynomial, f , has degree m� w. According to Theorem 1.1,

�1 � � ��p = �w+1 � � ��p j f:

Su�ciency. The arguments are similar to the ones used to prove necessity.
Suppose that maxf�; ug > 0. According to Corollary 2.3, there exist D1;2 2
F (p�w�l+�)�(q��), D1;3 2 F (p�w�l+�)�(�+u), D2;2 2 F (q��)�(q��), and D2;3 2
F (q��)�(�+u), such that (20) has characteristic polynomial f . It is not hard to see
that the matrices (18) and (19) are equivalent for certain blocks A1;2; A2;2; A1;4 and
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A2;4. For these blocks (14) has characteristic polynomial f . The case � = u = 0 is
analogous.

The next theorem was established in [5] for in�nite �elds. Now it can be deduced,
for arbitrary �elds, as a simple consequence of Theorems 1.1 and 2.5. This theorem
describes the possible characteristic polynomials of a matrix with a prescribed arbi-
trary submatrix. Note that, with permutations of rows and columns that correspond
to similarity transformations, the general problem can be reduced to the case where
the prescribed submatrix lies in the position considered in the next statement; see [5],
for details.

Theorem 2.6. Let A1;1 2 F p�p; A1;3 2 F p�t; A2;1 2 F q�p and A2;3 2 F q�t. Let

�1 j � � � j �p+� be the invariant factors, � the number of in�nite elementary divisors,

l the sum of the degrees of the in�nite elementary divisors, w the sum of the column

minimal indices of (13). Let u be a nonnegative integer and m = p + q + t + u; and

let f 2 F [x] be a monic polynomial of degree m.

If � = u = 0, then there exist A1;2 2 F p�q; A2;2 2 F q�q; A1;4 2 F p�u; A2;4 2
F q�u; A3;1 2 F t�p; A3;2 2 F t�q; A3;3 2 F t�t; A3;4 2 F t�u; A4;1 2 Fu�p; A4;2 2
Fu�q; A4;3 2 Fu�t; A4;4 2 Fu�u; such that2

664
A1;1 A1;2 A1;3 A1;4

A2;1 A2;2 A2;3 A2;4

A3;1 A3;2 A3;3 A3;4

A4;1 A4;2 A4;3 A4;4

3
775(21)

has characteristic polynomial f if and only if there exists a polynomial g of degree

p+ q � w such that

�1 � � ��p j g j f:

If maxf�; ug > 0, then such a matrix completion exists if and only if

�1 � � ��p�u j f:

Proof. Necessity. Let g be the characteristic polynomial of (14). According to
Theorem 1.1, g j f .

If � = u = 0, then according to Theorem 2.5, g has degree p+q�w and �1 � � ��p j g.
Now suppose that maxf�; ug > 0. According to Theorem 2.5,

d(l:c:m:f�1 � � ��p+�; gg) � p+ q �w � l and �1 � � ��p+��� j g, where � = minfp+ q �
w � l � d(g); �+ ug. Therefore �1 � � ��p�u j g j f .

Su�ciency. Suppose that � = u = 0. According to Theorem 2.5, there exists a
matrix of the form (14) with characteristic polynomial g. According to Theorem 1.1,
there exists a matrix of the form (21) with characteristic polynomial f .

From now on suppose that maxf�; ug > 0. Let g = �1 � � ��p�u and � = minfp+
q � w � l � d(g); �+ ug.

Firstly suppose that � = p+ q�w � l � d(g) < �+ u. From the normal form for
p-similarity [3, Lemma 2] of (15) [or the normal form for strict equivalence of (13)],
it follows that

p = d(�1 � � ��p+�) + k +w + l � �;
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where k is the sum of the rowminimal indices of (13), and that q � �. If d(�p+���) > 0,
then d(�p�u+1 � � ��p+�) > � = p+ q�w� l�d(g) and d(�1 � � ��p+�) > p+ q�w� l �
p�w� k� l+ �, which is impossible. Therefore, 1 = �1 � � ��p+��� = �1 � � ��p�u = g.

For any of the two possible values of �, according to Theorem 2.5, there exists a
matrix of the form (14) with characteristic polynomial g. According to Theorem 1.1,
there exists a matrix of the form (21) with characteristic polynomial f .

Lemma 2.7. Let A;A0 2 Fm�m; B;B0 2 Fm�t; C; C0 2 F s�m and D;D0 2 F s�t.

Let f 2 F [x] be a monic polynomial. Suppose that�
A B

C D

�
and

�
A0 B0

C0 D0

�

are m-similar. Then, there exists X 2 F t�m such that�
A +BX

C +DX

�
(22)

has characteristic polynomial f if and only if there exists X0 2 F t�m such that�
A0 +B0X0

C0 +D0X0

�
(23)

has characteristic polynomial f .

Proof. Suppose that (3) is satis�ed. Suppose that there exists X 2 F t�m such
that (22) has characteristic polynomial f . Let X0 = R�1(XP � T ). Then�

A0 +B0X0

C0 +D0X 0

�
=

�
P�1 S

0 Q

� �
A +BX

C +DX

�
P;

which shows that (22) and (23) are feedback equivalent and, therefore, have the same
characteristic polynomial.

Theorem 2.8. Let A 2 Fm�m; B 2 Fm�t; C 2 F s�m and D 2 F s�t. Let

�1 j � � � j �m+� be the invariant factors, � the number of in�nite elementary divisors,

l the sum of the degrees of the in�nite elementary divisors, k the sum of the row

minimal indices of �
xIm �A �B
�C �D

�
:(24)

Let f 2 F [x] be a monic polynomial. Then, there exists X 2 F t�m such that�
A +BX

C +DX

�
(25)

has characteristic polynomial f if and only if one of the following conditions is satis-

�ed.

(I2:8) � > 0; d(l:c:m:f�1 � � ��m+� ; fg) � m � k � l + � and

�1 � � ��m+��� j f;

where � = minfm � k � l + �� d(f); �g.
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(II2:8) � = 0; d(f) = m � k and

�1 � � ��m j f:

Proof. By performing permutations of rows and columns in the normal form for
m-similarity [3, Lemma 2] of

�
A B

C D

�
(26)

one get an m-similar matrix of the form

�
A0 B0

C0 D0

�
=

2
664

A1;1 A1;2 0 0 0
0 0 Iq 0 0

C3;1 C3;2 0 0 0
0 0 0 Iu 0

3
775 ;(27)

where A1;1 2 F p�p, A1;2 2 F p�q, m = p+ q, and

�
A1;1 A1;2

C3;1 C3;2

�

has a normal form for p-similarity. Note that u is the number of in�nite elementary
divisors of (24) of degree equal to 1. Let (1 =) l1 = � � � = lu < lu+1 � � � � � l� be
the degrees of the in�nite elementary divisors of (24). It is not hard to deduce that
�q+u+1; : : : ; �m+� are the invariant factors and lu+1 � 1; : : : ; l� � 1 are the degrees of
the in�nite elementary divisors of

�
xIp �A1;1 �A1;2

�C3;1 �C3;2

�
:

Moreover, �1 = : : : = �q+u = 1. Bearing in mind Lemma 2.7, one may assume,
without loss of generality, that (26) has already the form (27).

Necessity. Suppose that there exists X 2 F t�m such that (25) has characteristic
polynomial f . Note that (25) has the form

2
664

A1;1 A1;2

A2;1 A2;2

C3;1 C3;2
C4;1 C4;2

3
775 ;(28)

where A2;1 2 F q�p, A2;2 2 F q�q, C4;1 2 Fu�p, C4;2 2 Fu�q. According to Theorem
2.5, one of the conditions (I2:8), (II2:8) is satis�ed.

Su�ciency. Suppose that one of the conditions (I2:8), (II2:8) is satis�ed. Accord-
ing to Theorem 2.5, there exist A2;1 2 F q�p, A2;2 2 F q�q, C4;1 2 Fu�p, C4;2 2 Fu�q

such that (28) has characteristic polynomial f . Note that (28) has the form (25) for
some X 2 F t�m.
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3. Stabilization and Observability of Linear Systems by Linear Feed-

back. Let F be the �eld of complex numbers, C , or the �eld of real numbers, R.
Consider a linear system S

�
_x(t) = Ax(t) + Bu(t);
v(t) = Cx(t) +Du(t);

where A 2 F
m�m, B 2 F

m�n, C 2 F
s�m, D 2 F

s�n, x(t) is the state, u(t) is the
input and v(t) is the output.

Several results are known that relate matrix completion problems to linear sys-
tems; see, e.g., [16, 18, 20, 24].

Recall that S is stable if and only if all the solutions of _x(t) = Ax(t) converge to
0 as t ! +1 if and only if the real parts of the eigenvalues of A are negative; and
that S is stabilizable if and only if there exists a state feedback u(t) = Xx(t) such
that _x(t) = (A+BX)x(t) becomes stable if and only if the roots of the characteristic
polynomial of

�
A B

�
have their real parts negative. In this context, arises the

problem of describing the possible eigenvalues of A + BX, when X varies, whose
solution is known for a long time, and it is a particular case of Theorem 2.8.

Also recall that S is completely observable if and only if the characteristic poly-

nomial of
�
At Ct

�t
is equal to 1 if and only if rankO(A;C) = m; where

O(A;C) =
�
Ct (CA)t � � � (CAm�1)t

�t
is the observability matrix of S; and that S is detectable if and only if the roots of

the characteristic polynomial of
�
At Ct

�t
have their real parts negative. For the

meaning of these concepts in systems theory and other details, see, e.g., [13].
Now suppose that the entries of A and C are polynomials in variables x1; : : : ; xh

and let A be the set of all h-uples (a1; : : : ; ah) 2 F
h such that

rankO(A(a1; : : : ; ah); C(a1; : : : ; ah)) < m:

Then A is an algebraic set. Therefore, if ; 6= A 6= F
h, then, in any neighbourhood of

any element of A, there are elements of Fh that do not belong to A.
The following results are simple consequences of Theorem 2.8. We use the nota-

tion of Theorem 2.8.
Corollary 3.1. There exists a state feedback u(t) = Xx(t) such that

�
_x(t) = (A +BX)x(t);
v(t) = (C +DX)x(t)

(29)

becomes completely observable if and only if one of the following conditions is satis�ed.

(I3:1) The system is already completely observable with u(t) � 0.
(II3:1) � > 0 and �1 � � ��m = 1.

Proof. Note that, from the normal form for m-similarity [3, Lemma 2] of (26) [or
the normal form for strict equivalence of (24)], it follows that

m = d(�1 � � ��m+�) + k +w + l � �;(30)
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where w is the sum of the column minimal indices of (28).

Necessity. The characteristic polynomial of (25) is f = 1. According to Theorem
2.8, �1 � � ��m = 1.

Now suppose that � = 0. Then l = 0 and m = d(�1 � � ��m) + k + w. According
to Theorem 2.8, m = k and, therefore, w = 0. It follows that B = 0 and D = 0.

Consequently the characteristic polynomial of
�
At Ct

�t
is �1 � � ��m = 1, that is,

the system is already completely observable with u(t) � 0.

Su�ciency. As the case (I3:1) is trivial, suppose that (II3:1) is satis�ed. Take
f = 1 2 F[x]. Let � = minfm � k � l + �; �g. Suppose that � = m � k � l + �. If
�k+l = �m+��� 6= 1, then d(�1 � � ��m+�) > � = m + � � k � l, which is impossible.
Then (I2:8) is satis�ed. If � = �, then (I2:8) is also satis�ed. According to Theorem
2.8, there exists X 2 F t�m such that (25) has characteristic polynomial f , that is,
(29) is completely observable.

Corollary 3.2. There exists a state feedback u(t) = Xx(t) such that (29)
becomes detectable if and only if the roots of �1 � � ��m have their real parts negative.

Proof. Necessity. Let f be the characteristic polynomial of (25). The roots of f
have their real parts negative. According to Theorem 2.8, the roots of �1 � � ��m have
their real parts negative.

Su�ciency. Note that (30) is satis�ed.

If � = 0, then d(�1 � � ��m) � m � k. Let f = �1 � � ��mg be a monic polynomial
of degree m � k such that the real parts of the roots of g are negative. According to
Theorem 2.8, there exists X 2 F s�m such that (25) has characteristic polynomial f .
Therefore (29) is detectable.

Now suppose that � > 0. From (30) it follows that d(�1 � � ��m) � m � k � l + �.
Let � = minfm � k � l + �� d(�1 � � ��m); �g.

Suppose that � = m � k � l + � � d(�1 � � ��m) < �. If d(�m+���) > 0, then
d(�m+1 � � ��m+�) > � = m� k � l + � � d(�1 � � ��m), which is impossible. Therefore,
1 = �1 � � ��m+��� = �1 � � ��m.

For any value of �, according to Theorem 2.8, there exists X 2 Fn�m such that
(25) has characteristic polynomial �1 � � ��m and (29) is detectable.

Corollary 3.3. There exists a state feedback u(t) = Xx(t) such that (29)
becomes simultaneously stable and completely observable if and only if the roots of the

characteristic polynomial of
�
A B

�
have their real parts negative and one of the

conditions (I3:1), (II3:1) is satis�ed.

Proof. The necessity follows immediately from the previous remarks and results.

Su�ciency. As the roots of the characteristic polynomial of
�
A B

�
have

their real parts negative, there exists X0 2 F
n�m such that A + BX0 is stable.

By continuity, there exists a neighbourhood V of X0 such that A + BX is stable
for every X 2 V. Now let A be the set of all the matrices X 2 F

n�m such that
rank(O(A + BX;C +DX)) < m. As one of the conditions (I3:1), (II3:1) is satis�ed,
A 6= F

n�m.

If X0 62 A, the proof is complete with X = X0. If X0 2 A, there exists a matrix
X 2 V n A and the proof is also complete.
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