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THE MOORE-PENROSE INVERSE OF A FREE MATRIX∗
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Abstract. A matrix is free, or generic, if its nonzero entries are algebraically independent.
Necessary and sufficient combinatorial conditions are presented for a complex free matrix to have a
free Moore-Penrose inverse. These conditions extend previously known results for square, nonsingular
free matrices. The result used to prove this characterization relates the combinatorial structure of
a free matrix to that of its Moore-Penrose inverse. Also, it is proved that the bipartite graph or,
equivalently, the zero pattern of a free matrix uniquely determines that of its Moore-Penrose inverse,
and this mapping is described explicitly. Finally, it is proved that a free matrix contains at most as
many nonzero entries as does its Moore-Penrose inverse.
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1. The main results. A set of complex numbers S is algebraically independent
over the rational numbers Q if p(s1, . . . , sn) �= 0 whenever s1, . . . , sn are distinct
elements of S and p(x1, . . . , xn) is a nonzero polynomial with rational coefficients.

Lemma 1.1. Let S1 and S2 be finite sets of complex numbers so that each element
of S2 may be written as a rational form in elements of S1, and conversely. If S1 is alge-
braically independent, then S2 is algebraically independent if and only if |S1| = |S2|.

Proof. For each finite set of complex numbers S, let dtQ S denote the maximal
cardinality of an algebraically independent subset of S and note that dtQS = dtQQ(S).
Each element of S2 may be written as a rational form in entries of S1, so S2 ⊆ Q(S1).
Similarly, S1 ⊆ Q(S2); thus, Q(S1) = Q(S2). If S1 is algebraically independent, then
|S1| = dtQ S1 = dtQ Q(S1) = dtQ Q(S2) = dtQ S2, and the lemma follows.

A matrix with complex entries is free, or generic, if the multiset of nonzero entries
is algebraically independent. These nonzero entries may be viewed as indeterminants
over the rational numbers; see [5, Chap. 6]. Free matrices have been used to represent
objects from transversal theory, extremal poset theory, electrical network theory, and
other combinatorial areas; see [3, Chap. 9] for a partial overview. The advantage of
such representations is that they allow methods from linear algebra to be applied to
combinatorial problems, most often via the connection given in Theorem 1.2 below.
A nonzero partial diagonal of a matrix A is a collection of nonzero entries no two of
which lie in the same row or column, and the term rank of A is the maximal size of
a nonzero partial diagonal in A.

Theorem 1.2. [4, 6] The term rank of a free matrix equals its rank.
Note that the rank and term rank are identical for each submatrix of a free matrix.
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For any complex m × n matrix A = [aij ], the Moore-Penrose inverse A† is the
unique matrix that satisfies the following four properties [7, 8]:

A†AA† = A† AA†A = A (A†A)T = A†A (AA†)T = AA† .

If A is a square, nonsingular matrix, then A† = A−1. Hence, Moore-Penrose inversion
generalizes standard matrix inversion. For more information on the Moore-Penrose
inverse, see [1] and the extensive bibliography therein.

This article describes combinatorial properties of the Moore-Penrose inverses of
free matrices. The first two main results, Theorems 1.3 and 1.4 below, describe how
the combinatorial structure of a free matrix A relates to that of the Moore-Penrose
inverse A†. Stronger but more technical results are proved in Sections 2 and 3.

For each integer r ≥ 1, let A[1 : r] denote the leading principal (i.e. upper left)
r × r submatrix of A. Furthermore, let B(A) be the bipartite graph with vertices
U ∪ V and edges

{{ui, vj} : ui ∈ U, vj ∈ V, aij �= 0
}

where U = {u1, . . . , um}
and V = {v1, . . . , vn} are disjoint sets. If m = n, then let D(A) be the digraph with
vertices W = {w1, . . . , wn} and arcs E = {(wi, wj) : aij �= 0}. Thus, for instance,
D(In) denotes the digraph with arcs {(w,w) : w ∈W}. For any digraph D, let D be
the transitive closure of D. For (di)graphs D1 and D2, let the notation “D1 ⊆ D2”
indicate that D1 is a sub-(di)graph of D2.

Theorem 1.3. If A is a free matrix, then B(A) uniquely determines B(A†).
The above result follows immediately from Theorem 2.3 in Section 2.
Theorem 1.4. Let A be a free matrix of rank r for which D(Ir) ⊆ D(A[1 : r]).

Then A = [aij ] and A† = [αij ] can be written as

A =
[
C F
G 0

]
and A† =

[
S X
Y Z

]

with C=A[1 :r], D(Ir)⊆D(C)⊆D(C)⊆D(S), B(F )⊆B(Y T ), and B(G)⊆B(XT ).
A proof of Theorem 1.4 is given in Section 3.
Corollary 1.5. The Moore-Penrose inverse A† of a free matrix A has at least

as many nonzero entries as A.
In the nonsingular case, Theorem 1.4 has the following simple form.
Theorem 1.6. For any nonsingular n×n free matrix A such that D(In) ⊆ D(A),

the digraph D(A−1) is equal to the transitive closure D(A).
Proof. Since A−1 is a polynomial in A, we have D(A−1) ⊆ D(A)∪D(In) = D(A).

Conversely, Theorem 1.4 asserts that D(A) ⊆ D(A−1). Hence, D(A−1) = D(A).
Remark 1.7. No generality is lost by requiring that D(Ir) ⊆ D(A[1 : r]) in

Theorem 1.4. Indeed for each free matrix A of rank r, choose any permutation
matrices P and Q for which A′ := PAQ satisfies this condition, and apply the theorem
to A′. Similarly, no generality is lost by requiring thatD(In) ⊆ D(A) in Theorem 1.6.

The final main result is expressed as Theorem 1.8 below. It provides necessary
and sufficient conditions for the Moore-Penrose inverse A† of a free matrix A to be
free, and thereby generalizes [2, Theorem 3.1].
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Theorem 1.8. Let A be a free matrix of rank r and let P and Q be permutation
matrices for which A′ := PAQ satisfies D(Ir) ⊆ D(A′[1 : r]). Write

A′ =
[
C F
G 0

]
and A′† =

[
S X
Y Z

]

where C = A′[1 : r] and S are r×r matrices. The following statements are equivalent:
1. A† is free;
2. A and A† have an equal number of nonzero (or zero) entries;
3. D(C) = D(S), B(F ) = B(Y T ), B(G) = B(XT ), and Z = 0.

Proof. Conditions 1. and 2. are equivalent by Lemma 1.1. Since A† is free if and
only if A′† is free, A† is free if and only if A′ and A′† have equal numbers of zero
entries. By Theorem 1.4, this is true if and only if condition 3. is satisfied.

Corollary 1.9. If A is a free matrix, then the bipartite graph B(A) determines
whether the Moore-Penrose inverse A† is also free.

Proof. By Theorem 1.3, B(A) determines B(A†) and thus whether A and A†

contain equal numbers of zero entries. Now apply Theorem 1.8.
Remark 1.10. Let A be a free matrix represented as in Theorems 1.4 and 1.8.

If A† is free, then, by these theorems, D(C) = D(C) = D(S).
Example 1.11. The above results are illustrated by Figures 1.1 and 1.2, each

of which shows a free matrix A and its inverse A†. The entries aij and αij represent
the nonzero entries of A and A†, respectively; for instance, α11 = a11/(a211 + a241)
in Figure 1.1. The matrices are represented as in Theorems 1.4 and 1.8, and the
(di)graphs associated to them in these theorems are also shown. Note that in each
figure D(Ir) ⊆ D(C) ⊆ D(C) ⊆ D(S), B(F ) ⊆ B(Y T ), and B(G) ⊆ B(XT ), as
asserted by Theorem 1.4. Note also that A† contains at least as many nonzero entries
as A, as asserted by Corollary 1.5. Finally, note that the Moore-Penrose inverse A†

in Figure 1.1 is not free but that A† in Figure 1.2 is indeed free. By Theorem 1.8, this
may be seen by comparing the numbers of zero entries in A and A† or by checking
whether the equalities D(C) = D(S), B(F ) = B(Y T ), and B(G) = B(XT ) hold.

2. The structure of the Moore-Penrose inverse of a free matrix. Let
Qk,l be the family of ordered k-subsets of (1, . . . , l). Consider γ = (γ1, . . . , γk) ∈ Qk,l.
For each i ∈ γ, let γ − i denote the ordered set γ\{i}; also for each i /∈ γ, let (i; γ)
denote the ordered set (i, γ1, . . . , γk). If A is an m × n matrix and γ, δ are ordered
subsets of (1, . . . ,m) and (1, . . . , n), respectively, then let A[γ|δ] denote the |γ| × |δ|
matrix whose (i, j)th entry equals aγiδj . Note that A[1 : k] := A[1, . . . , k|1, . . . , k].
Note also that A[γ|δ] is the submatrix of A with rows γ and columns δ, whereas
A[i; γ|j; δ] has rows and columns ordered (i; γ) and (j; δ), respectively.

Theorem 2.1. [7] Let A be a complex m× n matrix A with rank r ≥ 2 and let
A† = [αij ] denote the Moore-Penrose inverse of A. Then

αij =

∑
γ∈Qr−1,m,j /∈γ

∑
δ∈Qr−1,n,i/∈δ

detA[γ|δ]detA[j; γ|i; δ]
∑

ρ∈Qr,m

∑
τ∈Qr,n

detA[ρ|τ ]detA[ρ|τ ]
.
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Fig. 1.1. The combinatorial structure of a free matrix and its Moore-Penrose inverse

A =

�
C F
G 0

�
=

2
66664

a11 a12 a13 0 0
0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 a45

0 0 0 0 0

3
77775 A† =

�
S X
Y Z

�
=

2
66664

α11 α12 α23 0 0
0 α22 0 0 0
0 0 α33 0 0
0 0 0 α44 0

0 0 0 α54 0

3
77775

�

�

❣

❣

� �❣ ❣
w1

w3

w4

w2

D(I4)

�

�

❣

❣

� �❣ ❣.........
..........
..........
...........
..............

........................
...................................................................................................

w1

w3

w4

w2

✠ ❘

D(C) = D(C) = D(S)

� � � �

�

.........

.........

.........

..........

.........

.........

....

u1 u2 u3 u4

v4

B(F ) = B(Y T )

� � � �

�
u4

v1 v2 v3 v4

B(G) = B(XT )

Fig. 1.2. A free matrix whose Moore-Penrose inverse is also free

Throughout the remainder of this section, let A = [aij ] denote a free m×nmatrix
of rank r and let A† = [αij ] denote its Moore-Penrose inverse.

Remark 2.2. If r = 0, then A† = AT = 0, and B(A) and B(A†) have no edges.
If r = 1, then, by Theorem 1.2, rows and columns of A may be swapped so that A
or AT has the form [v 0] for a nonzero vector v and a possibly empty zero matrix, so
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A† = A∗/||v||2. Hence, {ui, vj} is an edge of B(A†) if and only if {uj, vi} is an edge
of B(A).

Theorem 2.3 below describes how the bipartite graph of a free matrix A uniquely
determines the bipartite graph of the Moore-Penrose inverse A†. A matching in a
graph is a collection of edges no two of which are incident.

Theorem 2.3. {ui, vj} is an edge of B(A†) if and only if B(A) contains a path p
from vi to uj of length 2s+ 1 with s ≥ 0 and a matching with r − s− 1 edges, none
of which is incident to p.

Proof. If r = 0 or r = 1, then the proof follows trivially from Remark 2.2, so
suppose that r ≥ 2. Assume that αij �= 0. By Theorem 2.1, there are sequences
γ ∈ Qr−1,m and δ ∈ Qr−1,n so that j /∈ γ, i /∈ δ, and detA[γ|δ]detA[j; γ|i; δ] �= 0.
Then B(A[γ|δ]) and B(A[j; γ|i; δ]) each contains a matching with r − 1 and r edges,
respectively, say E1 and E2. Let G denote the bipartite graph with edges E1 ∪ E2

and delete from G each isolated edge containing neither vi nor uj. In G, vertices vi
and uj have degree 1 and all other vertices have degree 2, so G is the disjoint union
of some path p from vi to uj and some cycles. Hence, B(A[j; γ|i; δ]) contains p and at
least one (perhaps empty) matching E that covers all vertices not in p. Thus, there
is an integer s ≥ 0 so that p has length 2s+ 1 and so that E contains r− s− 1 edges.
Both p and E are contained in B(A) and satisfy the conditions stated in the theorem.

Now assume that B(A) contains a path p from vi to uj

vi − uj1 − vi1 − uj2 − vi2 − · · · − ujs − vis − uj

of length 2s + 1 with s ≥ 0 and at least one matching with r − s − 1 edges, say{ {uj′t , vi′t} : t = 1, . . . , r − s− 1
}

, none of which is incident to p. Order the sets

{j1, . . . , js} ∪ {j′t : t = 1, . . . , r − s− 1}
and {i1, . . . , is} ∪ {i′t : t = 1, . . . , r − s− 1}

to form increasing sequences, γ′ and δ′, respectively. Then

{aj1i1 , . . . , ajsis} ∪ {aj′ti
′
t

: t = 1, . . . , r − s− 1}
and {aj1i, aj2i1 , . . . , ajsis−1 , ajis} ∪ {aj′ti

′
t

: t = 1, . . . , r − s− 1}

are nonzero partial diagonals of A[γ′|δ′] and A[j; γ′|i; δ′], respectively. Therefore,

S =
∑

γ∈Qr−1,m,j /∈γ

∑
δ∈Qr−1,n,i/∈δ

detA[γ|δ]detA[j; γ|i; δ]

is a sum of signed monomials of degree 2r − 1, one of which is

aj1i1 · · ·ajsisaj′1i′1 · · · aj′r−s−1i′r−s−1
aj1iaj2i1 · · ·ajsis−1ajisaj′1i′1 · · · aj′r−s−1i′r−s−1

.

Since A is free, these monomials do not vanish, so S �= 0. By Theorem 2.1, αij �= 0.
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Proposition 2.4. Let {uj, vi} be an edge of B(A). Then {ui, vj} is an edge
of B(A†) if and only if {uj, vi} is contained in some matching of B(A) with r edges.
If {uj, vi} is contained in every such matching, then αij = 1

aji
. If {ui, vj} is contained

in no such matching, and E is such a matching, then E contains edges {ui, viE} and
{ujE , vj} for which {uiE , vjE} is an edge of B(A†).

Proof. If {uj, vi} is contained in some matching E in B(A) with r edges, then
uj − vi is a path that together with the matching E −{uj, vi} satisfies the conditions
in Theorem 2.3, so {ui, vj} is an edge of B(A†).

Conversely, suppose that {ui, vj} is an edge of B(A†). By Theorem 2.3, B(A)
contains a path p from vi to uj of length 2s+ 1,

vi − uj1 − vi1 − uj2 − vi2 − · · · − ujs − vis − uj ,

as well as a matching E with r − s − 1 edges, none of which are incident to p.
Then E ∪ {{uj, vi}, {uj1, vi1}, . . . , {ujs , vis}

}
is a matching in B(A) with r edges,

including {uj, vi}. If {uj, vi} is in every matching in B(A) with r edges, then
detA[j; γ|i; δ] = aji detA[γ|δ] for all γ ∈ Qr−1,m and δ ∈ Qr−1,n with j /∈ γ, i /∈ δ.
By Theorem 2.1, αij = aji

ajiaji
= 1

aji
. If E has no edges incident to ui or vj , then

E∪{ui, vj} is a matching in B(A) with r+1 edges, so, by Theorem 1.2, the rank of A
is at least r+1, a contradiction. Thus, E contains at least one such edge, say {ui, viE}.
If E does not also contain an edge {ujE , vj}, then (E−{ui, viE})∪{ui, vj} is a match-
ing of B(A) with r edges, one of which is {ui, vj}, a contradiction. Thus, E contains
edges {ui, viE} and {ujE , vj} for some vertices viE and ujE . Then viE − ui − vj − ujE

is a path from ujE to viE of length 2s+1 with s = 1 and E−{ui, viE}−{ujE , vj} is a
matching in B(A) with r−s−1 = r−2 edges, none of which contain ujE , ui, vj , or viE .
By Theorem 2.3, {uiE , vjE} is an edge of B(A†). Then {ujE , viE} is not an edge of
B(A) since this would imply that

(
E−{ujE , vj}−{ui, viE}

)∪ {ui, vj}∪ {ujE , viE} is
a matching in B(A) with r edges, one of which is {ui, vj}.

Example 2.5. To illustrate the results in this section, let A be as follows:
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Here, c = a222 + a232 and the rank of A is r = 2. The graph B(A) contains the path
v1 − u1 − v2 − u3 of length 2s+ 1 with s = 1. Then r − s− 1 = 0 and Theorem 2.3
implies that {u1, v3} is an edge of B(A†), as is indeed the case. The graph B(A)
contains precisely two matchings with r = 2 edges, namely

E1 =
{{u1, v1}, {u2, v2}

}
and E2 =

{{u1, v1}, {u3, v2}
}
.

Thus, the edge {u1, v1} is contained in all matchings in B(A) with r = 2 edges and the
edge {u1, v2} is contained in none of these. By Proposition 2.4, α11 = 1

a11
, α21 = 0,

and the edges {u1, v2} and {u1, v3} are edges of B(A†).
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3. Proof of Theorem 1.4. Theorem 1.4 follows trivially from the next result.
Theorem 3.1. Let A be a free matrix of rank r for which D(Ir) ⊆ D(A[1 : r]).

Then A = [aij ] and A† = [αij ] can be written as

A =
[
C F
G 0

]
and A† =

[
S X
Y Z

]

where C = A[1 : r]. Furthermore, let i, j, k be positive integers with max{i, j} ≤ r < k,
and suppose that there is at least one path in D(C) from wi to wj . Then

1. αij �= 0;
2. if aik �= 0, then αkj �= 0;
3. if akj �= 0, then αik �= 0;
4. if ajk �=0 or aki�=0, then paths from wi to wj in D(C) are also paths in D(ST ).

Proof. Write A and A† as

A =
[
C F
G H

]
and A† =

[
S X
Y Z

]

where C = A[1 : r] and S are r × r matrices. The r = 0 and r = 1 cases follow easily
from Remark 2.2 so suppose that r ≥ 2. Since C contains a diagonal of r nonzero
entries, Theorem 1.2 implies that H = 0. Let

wi → wi1 → wi2 → · · · → wjs−1 → wj

be a (perhaps trivial) path p from wi to wj in D(C). To prove statement 1., first note
that D(Ir) ⊆ D(C). It follows that the graph B(A) contains the path

vi − ui − vi1 − ui1 − vi2 − ui2 − · · · − vis−1 − uis−1 − vj − uj

from vi to uj and the matching{{ut, vt} : t ∈ {1, . . . , r} − {i, i1, i2, . . . , is−1, j}
}
.

By Theorem 2.3, B(A†) contains the edge {ui, vj}, i.e., αij �= 0.
Similarly, if aik �= 0, then B(A) contains the path

vk − ui − vi1 − ui1 − vi2 − ui2 − · · · − vis−1 − uis−1 − vj − uj

from vk to uj and the same matching as before. By Theorem 2.3, αkj �= 0, which
proves statement 2. Statement 3. follows from statement 2. by transposing A.

To prove statement 4., suppose that ajk �= 0. Then{{ui, vi1}, {ui1 , vi2}, . . . , {uis−1 , vj}, {uj, vk}
}

∪ {{ut, vt} : t ∈ {1, . . . , r} − {i, i1, i2, . . . , is−1, j}
}

is a matching E in B(A) with r edges. By Proposition 2.4, {uj′ , vi′} is an edge of
B(A†) for each edge {ui′ , vj′} of E. Therefore, (wj′ , wi′) is an arc of D(S) for each
arc (wi′ , wj′ ) of p, so p is a path in D(ST ). The aki �= 0 case is proved similarly.

Acknowledgments. I gratefully thank Carsten Thomassen for his advice and
encouragement and also thank the anonymous referee for good suggestions.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 208-215, August 2007



ELA

The Moore-Penrose Inverse of a Free Matrix 215

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville. Generalized Inverses. Theory and Applications. Second
edition. Springer, New York, 2003.

[2] T. Britz. The inverse of a non-singular free matrix. Linear Algebra Appl., 338:245–249, 2001.
[3] R. A. Brualdi and H. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cam-

bridge, 1991.
[4] J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards

Sect. B, 71B:241–245, 1967.
[5] T. Hungerford. Algebra. Reprint of the 1974 original. Springer-Verlag, New York-Berlin, 1980.
[6] L. Mirsky and H. Perfect. Applications of the notion of independence to problems of combina-

torial analysis. J. Combinatorial Theory, 2:327–357, 1967.
[7] E. Moore. On the reciprocal of the general algebraic matrix. Bull. Amer. Math. Soc., 26:394–395,

1920.
[8] R. Penrose. A generalized inverse for matrices. Proc. Camb. Philos. Soc., 51:406–413, 1955.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 208-215, August 2007


