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ON PERFECT CONDITIONING OF VANDERMONDE MATRICES
ON THE UNIT CIRCLE∗

LIHU BERMAN† AND ARIE FEUER†

Abstract. Let K, M ∈ N with K < M , and define a square K × K Vandermonde matrix
A = A

�
τ,−→n �

with nodes on the unit circle: Ap,q = exp (−j2πpnqτ/K) ; p, q = 0, 1, ...,K − 1, where
nq ∈ {0, 1, ...,M − 1} and n0 < n1 < .... < nK−1. Such matrices arise in some types of interpolation
problems. In this paper, necessary and sufficient conditions are presented on the vector −→n so that
a value of τ ∈ R can be found to achieve perfect conditioning of A. A simple test to check the
condition is derived and the corresponding value of τ is found.
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1. Introduction and some notation. Vandermonde matrices with real nodes
are often badly conditioned; see [8], [12] or [2]. However, this is not necessarily
so when the nodes are complex. In fact, such matrices can even be unitary, hence
perfectly-conditioned; e.g., the N × N DFT (Discrete Fourier Transform) matrix:
Fa,b = 1/

√
N exp (−j2πab/N).

Such matrices often arise in engineering problems such as interpolation, extrapo-
lation, super-resolution and recovering of missing samples. One application which is of
particular interest to us is interpolation from sub-Nyquist periodic non-uniform sam-
ples of band-limited multiband signals ([6], [10] and [4]). In all these applications the
quality of the result depends heavily on the condition number of the aforementioned
matrix (see more about this later).

This fact led several authors to investigate the conditioning of such matrices. For
example, reference [5] studies the conditioning of Vandermonde matrices with nodes
on the unit circle, given by the Van der Corput sequence. Reference [7] derives bounds
on the condition number (through bounds on the singular values) of Vandermonde
matrices with nodes on the unit circle, dependant on the minimum and maximum
distances between the nodes of the generating row. Another reference([1]) considered
the effect of increasing N on the conditioning of n × N rectangular Vandermonde
matrices with nodes in the unit disk.

Let us introduce some notation we use in the sequel. We denote by S (f) the
Fourier Transform of s (t): S (f) =

∫
R
s (t) exp (−j2πft)dt, where j �

√−1. AH is
the conjugate transpose of A and κ (A) � ‖A‖ ∥∥A−1

∥∥ denotes the condition number
of A and varies according to particular matrix norm chosen. Using the spectral
norm leads to: κ (A) � σmax (A) /σmin (A) where σmax (A) (σmin (A) ) is the maximal
(respectively: minimal) singular value of A.
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2. Motivation. Define the spectral support of s (t) as the set: χ (s) =
{f ∈ R | S (f) �= 0}. A signal is band-limited if its spectral support is bounded:
χ (s) ⊂ (fmin, fmax). It is well known ([11]) that such a signal can be perfectly
reconstructed from its uniform samples s (nT ) taken at the Nyquist rate or higher:
T−1 ≥ (fmax − fmin).

A signal s (t) is called multi-band if its (bounded) spectral support is not con-
nected; i.e. its spectral support consists of a union of a finite set of disjoint intervals:
χ (s) ⊆ ⋃K−1

q=0

(
fmin +

nq(fmax−fmin)
M , fmin +

(nq+1)(fmax−fmin)
M

)
.

In this case, it can be shown ([6] or [3]) that the signal s (t) can be perfectly
reconstructed from its periodic non-uniform samples

⋃K−1
p=0 s (nMT + tp), where the

average K
M T−1 is lower than the Nyquist rate .

A sampling equation for the aforementioned case is:
−→
G (f) = A

−→
S (f) where

the K- dimensional vector
−→
G (f) relates to the sampled signal, the K- dimensional

vector
−→
S (f) relates to the original signal and the K ×K matrix is given by: Ap,q =

exp (−j2πtpnq/M) ; p, q = 0, 1, ...,K − 1. Note that the signal s (t) can be recovered
if and only if the matrix A is invertible. The columns of A are determined by the
spectral support, given by −→n = [n0, n1, ..., nK−1] and its rows are determined by
the sampling pattern given by

−→
t = [t0, t1, ..., tK−1]. The choice tp = M

K pτ for the
sampling pattern results in A being a Vandermonde matrix.

As a motivating remark we wish to point out that different sampling patterns
lead to different quality of reconstruction in the presence of noise. Considering the
set of linear equations above,

−→
G (f) = A

−→
S (f), it is well known that an error ∆

−→
G (f)

in the data
−→
G (f), will propagate to an error ∆

−→
S (f) in the solution

−→
S (f). This error

is bounded by



∆

−→
S (f)








−→
S (f)





≤ κ (A)



∆

−→
G(f)








−→
G(f)





, where κ (A) is the condition number of A;

see e.g., [13] for a more detailed discussion. This observation motivates our interest
in the condition number of A.

2.1. Problem Statement. Given K < M ∈ N and −→n = [n0, n1, ..., nK−1],
where nq ∈ {0, 1, ...,M − 1} ; n0 < n1 < ... < nK−1. Define the K ×K Vandermonde
matrix A (τ) as

Ap,q (τ) = e−j
2πpnq

K ; 0 ≤ p, q ≤ K − 1. (2.1)

Find conditions on −→n which guarantee the existence of τopt ∈ R so that κ (A (τopt)) =
1 (namely, for which the resulting matrix is perfectly conditioned) and find τopt.

3. Results. While the following result seems quite intuitive (as noted in [5]) we
did not find anywhere in the literature a formal statement and proof for it. So, for
the sake of completeness we decided to include both here.

Lemma 3.1. Let A (τ) be as in (2.1). Then κ (A (τ)) = 1 if and only if the

elements of the generating row,
{
e−j

2πτnq
K

}K−1

q=0
are uniformly spread on the unit

circle.
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Proof. Note first that by (2.1)

(
AH (τ)A (τ)

)
p,q

=
K−1∑
l=0

ej
2πlτ(np−nq)

K

=




K if τ (np − nq) = mK; m ∈ Z

1−ej2πτ(np−nq)

1−ej
2πτ(np−nq)

K

otherwise. (3.1)

Further note that for any square matrix A

κ (A) = 1 ⇔ AHA = cI for some c ∈ R. (3.2)

Combining (3.1) and (3.2) we get

κ (A (τ)) = 1 ⇔
{τ (np − nq) ∈ Z and τ (np − nq) �≡ 0 (modK)}

for all 0 ≤ p �= q ≤ K − 1 (3.3)

leading to

κ (A (τ)) = 1 ⇔ τnp = ε+ rpK + sp where ε ∈ R; rp, sp ∈ Z

and 0 ≤ sp �= sq ≤ K − 1 for all 0 ≤ p �= q ≤ K − 1, (3.4)

which readily implies that κ (A (τ)) = 1 if and only if the points
{
e−j

2πτnq
K

}K−1

q=0
are

spread uniformly on the unit circle.

Clearly, the set of points
{
e−j

2πτ(nq−n0)
K

}K−1

q=0

is a rotated version of the set
{
e−j

2πτnq
K

}K−1

q=0
. Hence, we can assume w.l.o.g. that n0 = 0. Furthermore, we

readily observe that the points
{
e−j

2πτnq
K

}K−1

q=0
are spread uniformly if and only if

{τnq}K−1
q=0 is a complete residue system1 mod K.

We can now establish our main result.
Theorem 3.2. Let A (τ) be as in (2.1) and let Q = gcd

(
{nq}K−1

q=1

)
. Then, there

exists τ ∈ R such that κ (A (τ)) = 1 if and only if
{(

nq

Q

)}K−1

q=1

is a complete residue

system mod K.
Proof. We know already that κ (A (τ)) = 1 if and only if {τnq}K−1

q=0 is a complete
residue system mod K. Thus, it suffices to show that there exists a τ ∈ R such

that {τnq}K−1
q=0 is a complete residue system mod K if and only if

{(
nq

Q

)}K−1

q=1

is a

complete residue system mod K.

1{rq}K−1
q=0 is called a complete residue system mod K if for any a ∈ Z there exists a unique rq

such that a ≡ rq (modK). meaning that rp ≡ rq (modK) ⇔ p = q for all 0 ≤ p, q ≤ K − 1.
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Sufficiency is straightforward as, given that
{(

nq

Q

)}K−1

q=1

is a complete residue

system mod K, choose τ = 1
Q and we are done.

For necessity, assume there exists τ ∈ R such that {τnq}K−1
q=0 is a complete residue

system mod K. Then we have

τnq = τQ
nq

Q
∈ Z ⇒ τQ = R ∈ Z

⇒ τ =
R

Q
. (3.5)

This means, by assumption, that
{(

Rnq

Q

)}K−1

q=1

is a complete residue system mod K.

It is known (see e.g., Theorem 2.1.2 in [9]) that for any a, b, c ∈ Z and n ∈ N

ac ≡ bc (modn) ⇔ a ≡ b

(
mod

n

g

)
where g = gcd (c, n) (3.6)

So, taking a = np

Q , b = nq

Q , c = R and n = K and applying (3.6) we get

R
np

Q
≡ R

nq

Q
(modK)⇔ np

Q
≡ nq

Q

(
mod

K

g

)
where g = gcd (R,K) (3.7)

Then, as a complete residue system mod K
g contains exactly K

g distinct elements,
if K

g < K there must be at least two integers 0 ≤ p �= q ≤ K − 1 such that np

Q ≡
nq

Q

(
modK

g

)
. However, by (3.7) this implies that Rnp

Q ≡ R
nq

Q (modK) for some p �= q

and contradicts the fact that
{(

Rnq

Q

)}K−1

q=1

is a complete residue system modK. This

necessarily means that g = 1 and by (3.7), that
{(

nq

Q

)}K−1

q=1

is a complete residue

system mod K, which completes the proof of the theorem.
The above theorem also suggests a simple test for the existence and calculation

of a τopt ∈ R such that κ (A (τopt)) = 1. Assuming the condition in Theorem 3.2 is
satisfied we can choose τopt = 1

Q (note that this choice is not unique since −τopt and
τopt + nK will also give the same condition number).

4. Conclusion. This paper presents necessary and sufficient conditions on the
vector −→n such that there exists τ ∈ R for which the matrix Ap,q (τ) = e−j

2πpnqτ

K ,
p, q = 0, 1, ...,K − 1 is perfectly conditioned.
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