CONTROLLABILITY OF SERIES CONNECTIONS*

MARIJA DODIG ${ }^{\dagger}$

Abstract

In this paper the controllability of series connections of arbitrary many linear systems is studied. As the main result, necessary and sufficient conditions are given, under which the system obtained as a result of series connections of arbitrary many linear systems is controllable.

Key words. Controllability, Linear systems, Completion, Invariant factors.
AMS subject classifications. 93B05, 15A21.

1. Introduction. Let S_{i} be a time-invariant linear system, with state x_{i}, input u_{i} and output $y_{i}, i=1, \ldots, m$:

$$
\begin{equation*}
\xrightarrow{u_{i}}{ }^{S_{i}} \xrightarrow{y_{i}} \tag{1.1}
\end{equation*}
$$

Suppose that the system S_{i} is described by the following system of linear differential equations:

$$
\begin{align*}
\dot{x}_{i} & =A_{i} x_{i}+B_{i} u_{i} \tag{1.2}\\
y_{i} & =C_{i} x_{i} \tag{1.3}
\end{align*}
$$

where $A_{i} \in \mathbb{K}^{n_{i} \times n_{i}}, B_{i} \in \mathbb{K}^{n_{i} \times m_{i}}, C_{i} \in \mathbb{K}^{p_{i} \times n_{i}}, i=1, \ldots, m, \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\} ;$ for details see e.g., [3].

Let $j \in\{1, \ldots, m\}$. The algebraic properties of the system S_{j} depend on the properties of the triple of matrices $\left(A_{j}, B_{j}, C_{j}\right)$. Recall that the system S_{j} is controllable if and only if the pair $\left(A_{j}, B_{j}\right)$ is controllable, where the controllability of a pair is defined as follows:

Definition 1.1. Let \mathbb{F} be a field. Let $A_{j} \in \mathbb{F}^{n_{j} \times n_{j}}, B_{j} \in \mathbb{F}^{n_{j} \times m_{j}}$. The pair $\left(A_{j}, B_{j}\right)$ is said to be controllable if one of the following (equivalent) conditions is satisfied:

1) $\min _{\lambda \in \overline{\mathbb{F}}} \operatorname{rank}\left[\begin{array}{cc}\lambda I-A_{j} & -B_{j}\end{array}\right]=n_{j}$
2) all invariant factors of the matrix pencil $\left[\begin{array}{cc}\lambda I-A_{j} & -B_{j}\end{array}\right]$ are trivial
3) $\operatorname{rank}\left[\begin{array}{ccccc}B_{j} & A_{j} B_{j} & A_{j}^{2} B_{j} & \cdots & A_{j}^{n_{j}-1} B_{j}\end{array}\right]=n_{j}$.

In this case, we also say that the matrix $\left[\begin{array}{ll}A_{j} & B_{j}\end{array}\right]$ and the corresponding matrix pencil $\left[\begin{array}{cc}\lambda I-A_{j} & \left.-B_{j}\right] \text { are controllable. }\end{array}\right.$

[^0]By series connections of the linear systems S_{1}, \ldots, S_{m} we mean connections where the input of the system S_{i+1} is a linear function of the output of $S_{i}, i=1, \ldots, m-1$, i.e.,

$$
\begin{equation*}
u_{i+1}=X_{i} y_{i}, \quad i=1, \ldots, m-1 \tag{1.5}
\end{equation*}
$$

where $X_{i} \in \mathbb{F}^{m_{i+1} \times p_{i}}$. As a result of this connection, we obtain a new linear system S, with input u_{1}, output y_{m} and state $\left[\begin{array}{lll}x_{1}^{T} & \cdots & x_{m}^{T}\end{array}\right]^{T}$.

Thus, studying the properties of the system S, arise the following matrix completion control problem:

Problem 1.2. Let \mathbb{F} be a field. Find necessary and sufficient conditions for the existence of matrices $X_{i} \in \mathbb{F}^{m_{i+1} \times p_{i}}, i=1, \ldots, m-1$, such that the matrix

$$
\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \cdots & 0 & B_{1} \tag{1.6}\\
B_{2} X_{1} C_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
0 & B_{3} X_{2} C_{2} & A_{3} & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ddots & B_{m} X_{m-1} C_{m-1} & A_{m} & 0
\end{array}\right]
$$

is controllable.
In Section 4 (Theorem 4.1), we give a complete solution to Problem 1.2 when \mathbb{F} is an infinite field. Furthermore, in Section 5, we obtain solutions over arbitrary fields of particular cases of the previous problem.

Similar problems, especially in the case $m=2$, have been studied previously; see for example the results of I. Baragaña and I. Zaballa [1], and F. C. Silva [8].
2. Notation and Auxiliary results. Let \mathbb{F} be a field. For any polynomial $f \in \mathbb{F}[\lambda], d(f)$ denotes its degree. If $f(\lambda)=\lambda^{k}-a_{k-1} \lambda^{k-1}-\cdots-a_{1} \lambda-a_{0} \in \mathbb{F}[\lambda]$, where $k>0$, then the matrix

$$
C(f(\lambda)):=\left[\begin{array}{llll}
e_{2}^{(k)} & \cdots & e_{k}^{(k)} & a
\end{array}\right]^{T}
$$

where $e_{i}^{(k)}$ is the i th column of the identity matrix I_{k} and $a=\left[a_{0} \cdots a_{k-1}\right]^{T}$, is called the companion matrix for the polynomial $f(\lambda)$.

If $A(\lambda) \in \mathbb{F}[\lambda]^{n \times m}$, with $r=\operatorname{rank} A(\lambda)$, and $\psi_{1}|\cdots| \psi_{r}$ are the invariant factors of $A(\lambda)$, make a convention that $\psi_{i}=1$ for $i \leq 0$ and $\psi_{i}=0$ for $i \geq r+1$.

Definition 2.1. Let $A, A^{\prime} \in \mathbb{F}^{n \times n}, B, B^{\prime} \in \mathbb{F}^{n \times l}$. Two matrices

$$
M=\left[\begin{array}{ll}
A & B
\end{array}\right], \quad M^{\prime}=\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \tag{2.1}
\end{array}\right]
$$

are feedback equivalent if there exists a nonsingular matrix

$$
P=\left[\begin{array}{ll}
N & 0 \\
V & T
\end{array}\right]
$$

where $N \in \mathbb{F}^{n \times n}, V \in \mathbb{F}^{l \times n}, T \in \mathbb{F}^{l \times l}$, such that $M^{\prime}=N^{-1} M P$.
If M and M^{\prime} are feedback equivalent, then we also say that the corresponding pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ are feedback equivalent.

It is easy to verify that two matrices M and M^{\prime} are feedback equivalent if and only if the corresponding matrix pencils

$$
R=\left[\begin{array}{ll}
\lambda I-A & -B
\end{array}\right] \quad \text { and } \quad R^{\prime}=\left[\begin{array}{ll}
\lambda I-A^{\prime} & -B^{\prime} \tag{2.2}
\end{array}\right]
$$

are strictly equivalent, for details see [4].
If $(A, B) \in \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times m}$, is a controllable matrix pair, then it is feedback equivalent to the pair $\left(A_{c}, B_{c}\right)$ with

$$
A_{c}=\operatorname{diag}\left(A_{1}, \ldots, A_{s}\right), \quad B_{c}=\left[\operatorname{diag}\left(B_{1}, \ldots, B_{s}\right) \quad 0\right]
$$

where

$$
A_{i}=\left[\begin{array}{cc}
0 & I_{k_{i}-1} \\
0 & 0
\end{array}\right] \in \mathbb{F}^{k_{i} \times k_{i}}, \quad B_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \in \mathbb{F}^{k_{i} \times 1}, \quad 1 \leq i \leq s
$$

The pair $\left(A_{c}, B_{c}\right)$ is called the Brunovsky canonical form of the pair (A, B), and the positive integers $k_{1} \geq \cdots \geq k_{s}$ are called the nonzero controllability indices of (A, B). Analogously as in [2], we introduce the following definition.

Definition 2.2. Two polynomial matrices $A(\lambda) \in \mathbb{F}[\lambda]^{p \times q}$ and $B(\lambda) \in \mathbb{F}[\lambda]^{p \times q}$ are $S P$-equivalent if there exist invertible matrices $P \in \mathbb{F}^{p \times p}$ and $Q(\lambda) \in \mathbb{F}[\lambda]^{q \times q}$ such that

$$
P A(\lambda) Q(\lambda)=B(\lambda)
$$

Lemma 2.3. [2] Let \mathbb{F} be an infinite field and $f(x), g(x), h(x)$ be nonzero polynomials over \mathbb{F}. Then there exists $\alpha \in \mathbb{F}$ such that

$$
\begin{equation*}
\operatorname{gcd}(f(x)+\alpha g(x), h(x))=\operatorname{gcd}(f(x), g(x), h(x)) \tag{2.3}
\end{equation*}
$$

In fact, in [2] was proved that (2.3) is not valid only for finitely many $\alpha \in \mathbb{F}$. Hence, (2.3) is valid for a generic (almost every) $\alpha \in \mathbb{F}$.

Proposition 2.4. [6, 7, 9] Let \mathbb{D} be a principal ideal domain. Let $A \in \mathbb{D}^{n \times n}$, $B \in \mathbb{D}^{n \times n}$. Let $\alpha_{1}|\cdots| \alpha_{n}$ be the invariant factors of A, and $\beta_{1}|\cdots| \beta_{n}$ be the invariant factors of B. Let $\gamma_{1}|\cdots| \gamma_{n}$ be the invariant factors of $A B$. Then we have

$$
\begin{equation*}
\operatorname{lcm}\left(\alpha_{n-k-i+1} \beta_{i+1}: 0 \leq i \leq n-k\right)\left|\gamma_{n-k+1}\right| \operatorname{gcd}\left(\alpha_{n-i+1} \beta_{n-k+i}: 1 \leq i \leq k\right) \tag{2.4}
\end{equation*}
$$

$$
k=1, \ldots, n
$$

138 M. Dodig
3. Preliminary results. The following proposition deals with the almost canonical form for the SP equivalence of arbitrary square polynomial matrix. Proof goes analogously as the proof of Proposition 2 in [2], thus will be omitted.

Proposition 3.1. Let \mathbb{F} be an infinite field and let $A(\lambda) \in \mathbb{F}[\lambda]^{n \times n}$. Let $r=$ $\operatorname{rank} A(\lambda) \leq n$. Then $A(\lambda)$ is SP-equivalent to a lower triangular matrix $S(\lambda)=$ $\left(s_{i j}(\lambda)\right), i, j \in\{1, \ldots, n\}$, with the following properties:

1. $s_{i i}(\lambda)=s_{i}(\lambda), i=1, \ldots, r-1$, where $s_{1}(\lambda)|\cdots| s_{r-1}(\lambda)$
are the first $r-1$ invariant factors of $A(\lambda)$
2. $\quad s_{i i}(\lambda) \mid s_{j i}(\lambda), \quad 1 \leq i \leq r-1, \quad i \leq j \leq n$
3. $\quad s_{r}(\lambda)=\operatorname{gcd}\left(s_{r r}(\lambda), \ldots, s_{n r}(\lambda)\right)$ and $\quad d\left(s_{r r}(\lambda)\right) \geq \cdots \geq d\left(s_{n r}(\lambda)\right)$
where $s_{r}(\lambda)$ is the r-th invariant factor of $A(\lambda)$
4. if $i \leq r-1$ and $i<j$ and $s_{j i}(\lambda) \neq 0$,
then $\quad s_{j i}(\lambda) \quad$ is monic and $\quad d\left(s_{i i}(\lambda)\right)<d\left(s_{j i}(\lambda)\right)$
5. $s_{i j}=0, j>r$.

Further on, the matrix $S(\lambda)$ will be called the $S P$ canonical form of the matrix $A(\lambda)$.
Lemma 3.2. Let \mathbb{F} be a field. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$. If there exists $X \in \mathbb{F}^{m \times p}$ such that $(A, B X)$ is controllable, then the pair (A, B) is controllable.

Proof. There exists an invertible matrix $P \in \mathbb{F}^{n \times n}$ such that

$$
P B X=\left[\begin{array}{l}
Y \\
0
\end{array}\right], \quad Y \in \mathbb{F}^{\mathrm{rank} B \times p}
$$

Thus, from the controllability of $(A, B X)$ and since

$$
\left[\begin{array}{ll}
P A P^{-1} & P B X
\end{array}\right]=\left[\begin{array}{ccc}
A_{1} & A_{2} & Y \\
A_{3} & A_{4} & 0
\end{array}\right], \quad A_{4} \in \mathbb{F}^{(n-\operatorname{rank} B) \times(n-\operatorname{rank} B)}
$$

we have that the pair $\left(A_{4}, A_{3}\right)$ is controllable. Furthermore, there exists an invertible matrix $Q \in \mathbb{F}^{m \times m}$ such that

$$
P B Q=\left[\begin{array}{cc}
I_{\mathrm{rank} B} & 0 \\
0 & 0
\end{array}\right] .
$$

Hence, the controllability of (A, B) is equivalent to the controllability of $\left(A_{4}, A_{3}\right)$, which concludes our proof.

Lemma 3.3. Let \mathbb{F} be an infinite field. Let $A(\lambda) \in \mathbb{F}[\lambda]^{n \times n}$ and $C(\lambda) \in \mathbb{F}[\lambda]^{a \times b}$ be such that $n=\operatorname{rank} A(\lambda)$. Let $\alpha_{1}|\cdots| \alpha_{n}$ be the invariant factors of $A(\lambda)$, and let $\beta_{1}|\cdots| \beta_{s}$ be the invariant factors of $C(\lambda)$, where $s=\operatorname{rank} C(\lambda)$.

There exists $X \in \mathbb{F}^{n \times a}$ such that

$$
\left[\begin{array}{ll}
A(\lambda) & X C(\lambda)
\end{array}\right] \text { is equivalent to }\left[\begin{array}{cc}
I_{n} & 0 \tag{3.1}
\end{array}\right],
$$

if and only if

$$
\begin{equation*}
\operatorname{gcd}\left(\alpha_{i}, \beta_{n+1-i}\right)=1, \quad i=1, \ldots, n \tag{3.2}
\end{equation*}
$$

Proof. If $a \leq b$, then there exists an invertible matrix $Q(\lambda) \in \mathbb{F}[\lambda]^{b \times b}$, such that

$$
C(\lambda) Q(\lambda)=\left[\begin{array}{cc}
D(\lambda) & 0
\end{array}\right], \text { where } D(\lambda) \in \mathbb{F}[\lambda]^{a \times a}
$$

Thus, instead of $C(\lambda)$ we can consider the matrix $D(\lambda)$.
If $a>b$, then instead of the matrix $C(\lambda)$ consider the matrix

$$
D(\lambda)=\left[\begin{array}{cc}
C(\lambda) & 0
\end{array}\right], \text { where } D(\lambda) \in \mathbb{F}[\lambda]^{a \times a} .
$$

Thus, without loss of generality, we can assume that $a=b$.
Necessity:
Suppose that there exists $X \in \mathbb{F}^{n \times a}$, such that $[A(\lambda) X C(\lambda)]$ is equivalent to $\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$. Denote by $A^{\prime}(\lambda)$ and $C^{\prime}(\lambda)$ the Smith canonical forms of the matrices $A(\lambda)$ and $C(\lambda)$, respectively. Then $[A(\lambda) X C(\lambda)]$ is equivalent to $\left[A^{\prime}(\lambda) \quad X(\lambda) C^{\prime}(\lambda)\right]$, for some $X(\lambda) \in \mathbb{F}[\lambda]^{n \times a}$. Thus, we have that for every $x \in \overline{\mathbb{F}}, \operatorname{rank}\left[\begin{array}{cc}A^{\prime}(x) & \left.X(x) C^{\prime}(x)\right]=n .\end{array}\right.$

If $\operatorname{gcd}\left(\alpha_{n}, \beta_{s}\right)=1$, then the condition is obviously satisfied. Otherwise, let $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, s\}$ be such that $\operatorname{gcd}\left(\alpha_{i}, \beta_{j}\right) \neq 1$. Let $\lambda_{0} \in \overline{\mathbb{F}}$ be a common zero of α_{i} and β_{j}. Let $t:=\min _{k \in\{1, \ldots, n\}}\left\{k \mid \alpha_{k}\left(\lambda_{0}\right)=0\right\}$ and $p:=$ $\min _{l \in\{1, \ldots, s\}}\left\{l \mid \beta_{l}\left(\lambda_{0}\right)=0\right\}$. The rank of the matrix $\left[A^{\prime}\left(\lambda_{0}\right) \quad X\left(\lambda_{0}\right) C^{\prime}\left(\lambda_{0}\right)\right.$] (which is equal to n) is less or equal than the number of its nonzero columns. Since the number of nonzero columns of $A^{\prime}\left(\lambda_{0}\right)$ is $t-1$ and the number of nonzero columns of $C^{\prime}\left(\lambda_{0}\right)$ is $p-1$, we have

$$
n \leq t-1+p-1, \text { and so } \quad i+j \geq n+2
$$

Thus, for all indices i and j such that $i+j \leq n+1$, the polynomials α_{i} and β_{j} are mutually prime, which proves our condition.

Sufficiency:

Suppose that the condition (3.2) is satisfied. Without loss of generality, we shall consider $A(\lambda)$ in its SP canonical form, and $C(\lambda)$ in its SP equivalent form $M(\lambda)$ which we describe below:

First, put the matrix $C(\lambda) \in \mathbb{F}[\lambda]^{a \times a}$, into its SP canonical form:

$$
\left[\begin{array}{ccccc|c}
\beta_{1} & 0 & & 0 & 0 & 0 \tag{3.3}\\
a_{11} \beta_{1} & \beta_{2} & & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & & & \vdots \\
a_{s-21} \beta_{1} & a_{s-22} \beta_{2} & \cdots & \beta_{s-1} & 0 & 0 \\
a_{s-11} \beta_{1} & a_{s-12} \beta_{2} & \cdots & a_{s-1 s-1} \beta_{s-1} & X_{0} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
a_{a-11} \beta_{1} & a_{a-12} \beta_{2} & \cdots & a_{a-1 s-1} \beta_{s-1} & X_{a-s} & 0
\end{array}\right],
$$

where $a_{i j} \in \mathbb{F}[\lambda], 1 \leq i \leq a-1,1 \leq j \leq s-1$, and $\operatorname{gcd}\left(X_{0}, \ldots, X_{a-s}\right)=\beta_{s}$. By using the condition and Lemma 2.3, there exist $x_{1}, \ldots, x_{a-s} \in \mathbb{F}$, such that

$$
\operatorname{gcd}\left(\alpha_{n-s+1}, X_{0}+x_{1} X_{1}+\cdots+x_{a-s} X_{a-s}\right)=1
$$

Let $\bar{\beta}_{s}:=X_{0}+x_{1} X_{1}+\cdots+x_{a-s} X_{a-s}$. By multiplying the row $s+i$ by x_{i}, for all $i=1, \ldots, a-s$, and adding it to the s th row, we obtain the matrix $M(\lambda)$, which is SP equivalent to the matrix $C(\lambda)$, and at the position (s, s) has the polynomial $\bar{\beta}_{s}$. Further on, the matrix $M(\lambda)$ will be called the SP-quasi canonical form of the matrix $C(\lambda)$. Note that $\beta_{s} \mid \bar{\beta}_{s}$ and $\operatorname{gcd}\left(\alpha_{n-s+1}, \bar{\beta}_{s}\right)=1$.

Consider the submatrix $\bar{M}(\lambda)$ of $M(\lambda)$ formed by the rows $2, \ldots, a-1$, and by the columns $2, \ldots, a-1$. If $s=a$, the invariant factors of $\bar{M}(\lambda)$ are $\beta_{2}|\cdots| \beta_{s-1}$ and if $s<a$, the invariant factors of $\bar{M}(\lambda)$ are $\beta_{2}|\cdots| \beta_{s-1} \mid \beta_{s}^{\prime}$, for some polynomial β_{s}^{\prime} which satisfies $\beta_{s}\left|\beta_{s}^{\prime}\right| \bar{\beta}_{s}$.

From now on, we shall consider the matrix $M(\lambda)$ instead of the matrix $C(\lambda)$ in (3.1). The proof is further split into three cases:

Case 1. Let $n=a$.
The proof goes by induction on n. The case $n=1$ is trivial. If $n=2$, there are two nontrivial possibilities on $s: s=1$ or $s=2$.

If $s=2$, it is enough to prove the existence of $x \in \mathbb{F}$, such that the matrix

$$
\left[\begin{array}{cc|cc}
\alpha_{1} & 0 & \beta_{1} & 0 \tag{3.4}\\
b(\lambda) \alpha_{1} & \alpha_{2} & (a(\lambda)+x) \beta_{1} & \beta_{2}
\end{array}\right]
$$

has two invariant factors both equal to 1 , where $a(\lambda), b(\lambda) \in \mathbb{F}[\lambda]$.
In fact, we shall prove that there exists $x \in \mathbb{F}$ such that the second determinantal divisor of (3.4), D_{2}, given by

$$
D_{2}=\operatorname{gcd}\left(\beta_{1} \beta_{2}, \alpha_{1} \alpha_{2}, \beta_{1} \alpha_{2}, \alpha_{1} \beta_{2}, \alpha_{1} \beta_{1}(b(\lambda)-a(\lambda)-x)\right)
$$

is equal to 1 .
Since \mathbb{F} is infinite, by applying Lemma 2.3 , there exists $x \in \mathbb{F}$, such that

$$
D_{2}=\operatorname{gcd}\left(\beta_{1} \beta_{2}, \alpha_{1} \alpha_{2}, \beta_{1} \alpha_{2}, \alpha_{1} \beta_{2}, \alpha_{1} \beta_{1}\right)
$$

Since $\operatorname{gcd}\left(\beta_{1}, \alpha_{2}\right)=1$ and $\operatorname{gcd}\left(\beta_{2}, \alpha_{1}\right)=1$, we have $D_{2}=1$, as wanted.
If $s=1$, we need to prove the existence of $x \in \mathbb{F}$ such that the second determinantal divisor of the matrix

$$
\left[\begin{array}{cc|cc}
1 & 0 & p(\lambda) & 0 \\
b(\lambda) & \alpha_{2} & q(\lambda)+x p(\lambda) & 0
\end{array}\right]
$$

is equal to 1 , whenever $\operatorname{gcd}\left(p(\lambda), \alpha_{2}\right)=1, b(\lambda), p(\lambda), q(\lambda) \in \mathbb{F}[\lambda]$. By simple calculation, we have $D_{2}=\operatorname{gcd}\left(p(\lambda) b(\lambda)-q(\lambda)-x p(\lambda), \alpha_{2}, p(\lambda) \alpha_{2}, \alpha_{2}\right)$. Thus, again by applying Lemma 2.3 , we obtain the existence of $x \in \mathbb{F}$ such that $D_{2}=1$.

Now suppose that the claim is true for $n-2$ and prove that it will be valid for n.
Let $\bar{A}(\lambda)$ be a submatrix of $A(\lambda)$ formed by the rows $2, \ldots, n-1$ and the columns $2, \ldots, n-1$. Thus, $\bar{A}(\lambda)$ has $\alpha_{2}|\cdots| \alpha_{n-1}$ as the invariant factors. In both cases, $s=a$ or $s<a$, the invariant factors of $\bar{M}(\lambda)$ and of $\bar{A}(\lambda)$ satisfy the condition (3.2). Thus, we can apply the induction hypothesis and obtain that there exists $Y \in \mathbb{F}^{(n-2) \times(n-2)}$ such that the matrix $\left[\begin{array}{cc}\bar{A}(\lambda) & Y \bar{M}(\lambda)\end{array}\right]$ is equivalent to $\left[\begin{array}{ll}I_{n-2} & 0\end{array}\right]$.

To finish the proof, we shall show that there exists $x \in \mathbb{F}$, such that the matrix $\left[\begin{array}{ll}A(\lambda) & X M(\lambda)\end{array}\right]$ is equivalent to $\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$, where

$$
X=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & Y & 0 \\
x & 0 & 1
\end{array}\right]
$$

Since $\left[\begin{array}{ll}\bar{A}(\lambda) & Y \bar{M}(\lambda)\end{array}\right]$ is equivalent to $\left[\begin{array}{ll}I_{n-2} & 0\end{array}\right]$, and from the forms of matrices $A(\lambda)$ and $M(\lambda)$, the matrix $\left[\begin{array}{cc}A(\lambda) & X M(\lambda)\end{array}\right]$ is equivalent to the following one
$\left[\begin{array}{c|c|c|c|c|c}\alpha_{1} & 0 & 0 & \beta_{1} & 0 & 0 \\ \hline 0 & I_{n-2} & 0 & 0 & 0 & 0 \\ \hline p(\lambda) \alpha_{1} & 0 & \alpha_{n} & (q(\lambda)+x) \beta_{1} & * & \beta_{n}\end{array}\right]$,
for some polynomials $p(\lambda)$ and $q(\lambda) \in \mathbb{F}[\lambda]$ (* denotes unimportant entries).
The matrices

$$
\left[\begin{array}{cc}
\alpha_{1} & 0 \\
p(\lambda) \alpha_{1} & \alpha_{n}
\end{array}\right] \text { and }\left[\begin{array}{cc}
\beta_{1} & 0 \\
q(\lambda) \beta_{1} & \beta_{n}
\end{array}\right]
$$

have $\alpha_{1} \mid \alpha_{n}$ and $\beta_{1} \mid \beta_{n}$ as the invariant factors, respectively, and they are both in SP canonical forms.

Since $\operatorname{gcd}\left(\alpha_{1}, \beta_{n}\right)=\operatorname{gcd}\left(\alpha_{n}, \beta_{1}\right)=1$ by applying the case $n=2$, there exists $x \in \mathbb{F}$ such that

$$
\left[\begin{array}{cc|cc}
\alpha_{1} & 0 & \beta_{1} & 0 \\
p(\lambda) \alpha_{1} & \alpha_{n} & (q(\lambda)+x) \beta_{1} & \beta_{n}
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{cc}I_{2} & 0\end{array}\right]$.
Hence, for such $x \in \mathbb{F}$ we have that the matrix (3.5) is equivalent to $\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$, as wanted.

Case 2. Let $n>a$.
Let

$$
\tilde{M}(\lambda)=\left[\begin{array}{c}
I_{a} \\
0
\end{array}\right] M(\lambda)\left[\begin{array}{cc}
I_{a} & 0
\end{array}\right] \in \mathbb{F}[\lambda]^{n \times n}
$$

Then the invariant factors of $\tilde{M}(\lambda)$ are $\beta_{1}|\cdots| \beta_{s}$. From the Case 1., there exists $Y \in \mathbb{F}^{n \times n}$ such that

$$
\left[\begin{array}{ll}
A(\lambda) & Y \tilde{M}(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$. Now, put $X:=Y\left[\begin{array}{c}I_{a} \\ 0\end{array}\right] \in \mathbb{F}^{n \times a}$.
Case 3. Let $n<a$.
Let

$$
M^{\prime}(\lambda)=\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right] M(\lambda)\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right] \in \mathbb{F}[\lambda]^{n \times n}
$$

If $n<s$, then the invariant factors of $M^{\prime}(\lambda)$ are $\beta_{1}|\cdots| \beta_{n}$, and if $n \geq s$, then the invariant factors of $M^{\prime}(\lambda)$ are $\beta_{1}|\cdots| \beta_{s-1} \mid \beta_{s}^{\prime \prime}$, for some polynomial $\beta_{s}^{\prime \prime}$ such that $\beta_{s}\left|\beta_{s}^{\prime \prime}\right| \bar{\beta}_{s}$. By applying the Case 1 , there exists $Y \in \mathbb{F}^{n \times n}$ such that

$$
\left[\begin{array}{ll}
A(\lambda) & Y M^{\prime}(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{cc}I_{n} & 0\end{array}\right]$. Now, put $X:=Y\left[\begin{array}{cc}I_{n} & 0\end{array}\right] \in \mathbb{F}^{n \times a}$. \square
REmark 3.4. Let $A(\lambda)$ be in its SP canonical form and $M(\lambda)$ be the SP-quasi canonical form of the matrix $C(\lambda)$. Let $X_{0} \in \mathbb{F}^{n \times a}$ be the matrix defined in the previous lemma, such that

$$
\left[\begin{array}{ll}
A(\lambda) & X_{0} M(\lambda)
\end{array}\right] \text { is equivalent to }\left[\begin{array}{ll}
I_{n} & 0 \tag{3.6}
\end{array}\right] .
$$

Let $P \in \mathbb{F}^{n \times n}$ be a lower triangular matrix with units on diagonal. From the proof of Lemma 3.3 (see (3.4)), we have that for a generic matrix $P, P X_{0}$ also satisfies (3.6).

Further on in this paper, by S we denote the set of all lower triangular matrices with units on diagonal, P, such that $P X_{0}$ satisfies (3.6), and we define

$$
G:=\left\{P X_{0} \mid P \in S\right\}
$$

Lemma 3.5. Let \mathbb{F} be an infinite field. Let $A(\lambda) \in \mathbb{F}[\lambda]^{n \times n}$ be such that $n=$ $\operatorname{rank} A(\lambda)$, and let $\alpha_{1}|\cdots| \alpha_{n}$ be its invariant factors. Let $D(\lambda) \in \mathbb{F}[\lambda]^{m \times m}$ be such that $m=\operatorname{rank} D(\lambda)$ and let $\beta_{1}|\cdots| \beta_{m}$ be its invariant factors. Let $C(\lambda) \in \mathbb{F}[\lambda]^{a \times n}$, $a \leq m$, and let $\gamma_{1}|\cdots| \gamma_{s}$ be its invariant factors, $s=\operatorname{rank} C(\lambda)$. Let $\mu_{1}|\cdots| \mu_{n}$ be the invariant factors of

$$
\left[\begin{array}{l}
A(\lambda) \\
C(\lambda)
\end{array}\right]
$$

If

$$
\begin{equation*}
\operatorname{gcd}\left(\gamma_{i}, \beta_{m+1-i}\right)=1, \quad i=1, \ldots, m \tag{3.7}
\end{equation*}
$$

then there exists $X \in \mathbb{F}^{m \times a}$, such that

$$
\left[\begin{array}{ll}
D(\lambda) & X C(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{cc}I_{m} & 0\end{array}\right]$, and such that every zero of a polynomial $\epsilon_{m+i}^{X}, i=$ $1, \ldots, n$, is a zero of the polynomial α_{i} or of the polynomial $\operatorname{gcd}\left(\beta_{j}, \mu_{m+i-j+1}\right)$, for some $j=1, \ldots, m$, where $\epsilon_{1}^{X}|\cdots| \epsilon_{m+n}^{X}$ are the invariant factors of

$$
T(\lambda)=\left[\begin{array}{c|c}
A(\lambda) & 0 \tag{3.8}\\
\hline X C(\lambda) & D(\lambda)
\end{array}\right] .
$$

Proof. Without loss of generality, consider the matrix $D(\lambda)$ in its SP canonical form, and the matrix $C(\lambda)$ in its SP-quasi canonical form. By the condition (3.7),
and by applying Lemma 3.3 there exists $X_{0} \in \mathbb{F}^{m \times a}$, such that $\left[D(\lambda) \quad X_{0} C(\lambda)\right]$ is equivalent to $\left[\begin{array}{ll}I_{m} & 0\end{array}\right]$. Even more, by Remark 3.4, for every $X \in G$, the matrix

$$
\left[\begin{array}{ll}
D(\lambda) & X C(\lambda)
\end{array}\right] \text { is equivalent to }\left[\begin{array}{ll}
I_{m} & 0 \tag{3.9}
\end{array}\right] .
$$

Also, note that for every $X \in G$, the invariant factors of

$$
\left[\begin{array}{c}
A(\lambda) \\
X C(\lambda)
\end{array}\right]
$$

are exactly $\mu_{1}|\cdots| \mu_{n}$. Indeed, the invariant factors of $\left[\begin{array}{c}A(\lambda) \\ C(\lambda)\end{array}\right] \in \mathbb{F}[\lambda]^{(n+a) \times n}$ are the same as the invariant factors of $\left[\begin{array}{c}A(\lambda) \\ C(\lambda) \\ 0\end{array}\right] \in \mathbb{F}[\lambda]^{(n+m) \times n}$, since $a \leq m$.

If $a=m$, then by the proof of the previous Lemma, every matrix $X \in G$ is invertible, and so the invariant factors of $\left[\begin{array}{c}A(\lambda) \\ C(\lambda)\end{array}\right]$ and $\left[\begin{array}{c}A(\lambda) \\ X C(\lambda)\end{array}\right]$ coincide.

If $a<m$, then (see case 2. in the previous lemma) we defined $X:=Y\left[\begin{array}{c}I_{a} \\ 0\end{array}\right]$, where Y is an invertible matrix. Thus,

$$
\left[\begin{array}{c}
A(\lambda) \\
X C(\lambda)
\end{array}\right]=\left[\begin{array}{c}
A(\lambda) \\
Y\left[\begin{array}{c}
I_{a} \\
0
\end{array}\right] C(\lambda)
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & Y
\end{array}\right]\left[\begin{array}{c}
A(\lambda) \\
C(\lambda) \\
0
\end{array}\right]
$$

and so its invariant factors are $\mu_{1}|\cdots| \mu_{n}$.
Now, from (3.9), there exist invertible matrices $P(\lambda) \in \mathbb{F}[\lambda]^{m \times m}$, and

$$
Q(\lambda)=\left[\begin{array}{ll}
Q_{1}(\lambda) & Q_{2}(\lambda) \\
Q_{3}(\lambda) & Q_{4}(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(n+m) \times(n+m)}, \text { where } Q_{1}(\lambda) \in \mathbb{F}[\lambda]^{n \times n}
$$

such that

$$
\left[\begin{array}{cc}
I & 0 \\
0 & P(\lambda)
\end{array}\right]\left[\begin{array}{c|c}
A(\lambda) & 0 \\
\hline X C(\lambda) & D(\lambda)
\end{array}\right] Q(\lambda)=\left[\begin{array}{cc}
A(\lambda) Q_{1}(\lambda) & A(\lambda) Q_{2}(\lambda) \\
0 & I
\end{array}\right]
$$

Thus, the invariant factors of $A(\lambda) Q_{1}(\lambda)$ are exactly $\epsilon_{m+1}^{X}|\cdots| \epsilon_{m+n}^{X}$. On the other hand, we have that

$$
\left[\begin{array}{cc}
I & 0 \\
0 & P(\lambda)
\end{array}\right]\left[\begin{array}{c|c}
I & 0 \\
\hline X C(\lambda) & D(\lambda)
\end{array}\right] Q(\lambda)=\left[\begin{array}{cc}
Q_{1}(\lambda) & Q_{2}(\lambda) \\
0 & I
\end{array}\right]
$$

Hence, the nontrivial invariant factors of $Q_{1}(\lambda)$ coincide with the nontrivial invariant factors of $D(\lambda)$. So, the invariant factors of the matrix $Q_{1}(\lambda)$, denoted by $\beta_{1}^{\prime}|\cdots| \beta_{n}^{\prime}$, satisfy $\beta_{i}^{\prime}=\beta_{i+m-n}, i=1, \ldots, n$.

Now, by applying Proposition 2.4 to the matrix product $A(\lambda) Q_{1}(\lambda)$, we have that for every $X \in G$

$$
\begin{equation*}
\epsilon_{i+m}^{X} \mid \operatorname{gcd}\left(\alpha_{i} \beta_{m}, \ldots, \alpha_{n} \beta_{i+m-n}\right), \quad i=1, \ldots, n \tag{3.10}
\end{equation*}
$$

Denote by $\phi_{i}:=\operatorname{gcd}\left(\alpha_{i} \beta_{m}, \ldots, \alpha_{n} \beta_{i+m-n}\right), i=1, \ldots, n$. Let $\lambda_{1}^{i}, \ldots, \lambda_{k_{i}}^{i} \in \overline{\mathbb{F}}$ be distinct zeros of $\phi_{i}, i=1, \ldots, n$.

Let $l \in\left\{1, \ldots, k_{i}\right\}$. We shall show the following:
$(*) \quad$ If λ_{l}^{i} is not a zero of the polynomial $\alpha_{i} \prod_{j=1}^{m} \operatorname{gcd}\left(\beta_{j}, \mu_{m+i-j+1}\right)$, then for a generic $X \in G, \lambda_{l}^{i}$ is not a zero of the corresponding ϵ_{m+i}^{X}.

This will obviously prove that for generic $X \in G$, for every $i=1, \ldots, n$, every zero of the polynomial ϵ_{m+i}^{X} is a zero of the polynomial α_{i} or of the polynomial $\operatorname{gcd}\left(\beta_{j}, \mu_{m+i-j+1}\right)$ for some $j=1, \ldots, m$, as wanted.

Thus, we are left with proving $(*)$.
Let $i \in\{1, \ldots, n\}, l \in\left\{1, \ldots, k_{i}\right\}$, and λ_{l}^{i} be a zero of ϕ_{i} such that $\alpha_{i}\left(\lambda_{l}^{i}\right) \neq 0$ and $\operatorname{gcd}\left(\beta_{j}, \mu_{m+i-j+1}\right)\left(\lambda_{l}^{i}\right) \neq 0$, for all $j=1, \ldots, m$. Let

$$
\begin{aligned}
p & =\min _{w=i, \ldots, n+1}\left\{w \mid \alpha_{w}\left(\lambda_{l}^{i}\right)=0\right\} \\
t & =\min _{w=i+m-n, \ldots, m+1}\left\{w \mid \beta_{w}\left(\lambda_{l}^{i}\right)=0\right\}
\end{aligned}
$$

Since $\phi_{i}\left(\lambda_{l}^{i}\right)=0$, we have $\alpha_{p-1}\left(\lambda_{l}^{i}\right) \neq 0 \Rightarrow \beta_{i+m-p+1}\left(\lambda_{l}^{i}\right)=0$, and $\beta_{t-1}\left(\lambda_{l}^{i}\right) \neq 0 \Rightarrow$ $\alpha_{i+m-t+1}\left(\lambda_{l}^{i}\right)=0$, which gives $p+t \leq i+m+1$.

Furthermore, since $\alpha_{i}\left(\lambda_{l}^{i}\right) \neq 0$ we have $p>i$ and since $\operatorname{gcd}\left(\beta_{i+m-n}, \mu_{n+1}\right)\left(\lambda_{l}^{i}\right)=$ $\beta_{i+m-n}\left(\lambda_{l}^{i}\right) \neq 0$, we have $t>i+m-n$. Also, since $\beta_{t}\left(\lambda_{l}^{i}\right)=0$, we must have $\mu_{m+i-t+1}\left(\lambda_{l}^{i}\right) \neq 0$.

Consider the following equivalent form of the matrix $T\left(\lambda_{l}^{i}\right) \in \mathbb{F}^{(n+m) \times(n+m)}$:
$\left[\begin{array}{cc|cc}\operatorname{diag}\left(\alpha_{1}\left(\lambda_{l}^{i}\right), \ldots, \alpha_{p-1}\left(\lambda_{l}^{i}\right)\right) & 0 & 0 & \\ 0 & 0 & \\ \hline X \bar{C}\left(\lambda_{l}^{i}\right) & & \operatorname{diag}\left(\beta_{1}\left(\lambda_{l}^{i}\right), \ldots, \beta_{t-1}\left(\lambda_{l}^{i}\right)\right) & 0 \\ & & 0 & 0\end{array}\right]$,
where $\bar{C}\left(\lambda_{l}^{i}\right) \in \mathbb{F}^{a \times n}$.
Since $X=P X_{0}, P \in S$ (see Remark 3.4), the matrix (3.11) becomes
$\left[\begin{array}{cc|cc}\operatorname{diag}\left(\alpha_{1}\left(\lambda_{l}^{i}\right), \ldots, \alpha_{p-1}\left(\lambda_{l}^{i}\right)\right) & 0 & 0 & \\ 0 & 0 & 0 \\ \hline P\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] & & \operatorname{diag}\left(\beta_{1}\left(\lambda_{l}^{i}\right), \ldots, \beta_{t-1}\left(\lambda_{l}^{i}\right)\right) & 0 \\ & & 0 & 0\end{array}\right]$,
where

$$
X_{0} \bar{C}\left(\lambda_{l}^{i}\right)=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \in \mathbb{F}^{m \times n}, \quad A \in \mathbb{F}^{(t-1) \times(p-1)}
$$

Let

$$
\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right]:=P\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], D^{\prime} \in \mathbb{F}^{(m-t+1) \times(n-p+1)} .
$$

Since, $\mu_{m+i-t+1}\left(\lambda_{j}^{i}\right) \neq 0$, we have

$$
\operatorname{rank}\left[\begin{array}{c}
B \\
D
\end{array}\right] \geq \operatorname{rank}\left[\begin{array}{c}
B^{\prime} \\
D^{\prime}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{c}
A\left(\lambda_{l}^{i}\right) \\
X C\left(\lambda_{l}^{i}\right)
\end{array}\right]-p+1=
$$

$$
=\operatorname{rank}\left[\begin{array}{ccc}
\mu_{1}\left(\lambda_{l}^{i}\right) & & \\
& \ddots & \\
& & \mu_{n}\left(\lambda_{l}^{i}\right)
\end{array}\right]-p+1 \geq m+i-t-p+2 \quad(\geq 1)
$$

On the other hand, $\epsilon_{m+i}^{X}\left(\lambda_{l}^{i}\right) \neq 0$ is equivalent to

$$
\begin{equation*}
\operatorname{rank} D^{\prime} \geq m+i-t-p+2 \tag{3.13}
\end{equation*}
$$

Indeed, this is because the rank of the matrix (3.11) is equal to $p+t-2+\operatorname{rank} D^{\prime}$. Since $p \geq i+1$ and $t \geq i+m-n+1$, we have

$$
\min \{m-t+1, n-p+1\} \geq m+i-p-t+2
$$

Thus, for a generic matrix $X \in G$, we have that (3.13) is valid, which finishes our proof.
4. Main result. The following theorem gives our main result:

ThEOREM 4.1. Let \mathbb{F} be an infinite field. Let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}, B_{i} \in \mathbb{F}^{n_{i} \times m_{i}}, i=$ $1, \ldots, m, C_{i} \in \mathbb{F}^{p_{i} \times n_{i}}, i=1, \ldots, m-1$. There exist matrices $X_{i} \in \mathbb{F}^{m_{i+1} \times p_{i}}, i=$ $1, \ldots, m-1$, such that

$$
M=\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \ddots & 0 & B_{1} \tag{4.1}\\
B_{2} X_{1} C_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
0 & B_{3} X_{2} C_{2} & A_{3} & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & B_{m} X_{m-1} C_{m-1} & A_{m} & 0
\end{array}\right]
$$

is controllable if and only if:

$$
\begin{equation*}
\left(A_{i}, B_{i}\right) \text { are controllable for all } i=1, \ldots, m \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(\gamma_{k_{1}}^{i}, \mu_{k_{2}}^{i+1}, \ldots, \mu_{k_{j-i}}^{j-1}, \alpha_{k_{j-i+1}}^{j}\right)=1, \quad 1 \leq i<j \leq m \tag{4.3}
\end{equation*}
$$

for all indices k_{1}, \ldots, k_{j-i+1} such that

$$
k_{1}+\cdots+k_{j-i+1} \leq n_{i}+\cdots+n_{j}+j-i
$$

Here $\gamma_{1}^{i}|\cdots| \gamma_{y_{i}}^{i}$ are the invariant factors of

$$
\left[\begin{array}{cc}
\lambda I-A_{i} & -B_{i} \tag{4.4}\\
-C_{i} & 0
\end{array}\right], \quad i=1, \ldots, m-1
$$

y_{i} is its rank, $\alpha_{1}^{i}|\cdots| \alpha_{n_{i}}^{i}$ are the invariant factors of $\lambda I-A_{i}, i=1, \ldots, m$, and $\mu_{1}^{i}|\cdots| \mu_{n_{i}}^{i}$ are the invariant factors of

$$
\left[\begin{array}{c}
\lambda I-A_{i} \\
-C_{i}
\end{array}\right], \quad i=1, \ldots, m-1
$$

Proof.
Necessity:
From the controllability of (4.1), we have that the pair $\left(A_{1}, B_{1}\right)$ is controllable and $\left(A_{i}, B_{i} X_{i-1} C_{i-1}\right)$ are controllable for all $i=2, \ldots, m$. By applying Lemma 3.2, we obtain the condition (4.2).

Furthermore, there exist invertible matrices $P_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$, such that

$$
P_{i} B_{i}=\left[\begin{array}{c}
T_{i} \\
0
\end{array}\right], \quad T_{i} \in \mathbb{F}^{\mathrm{rank} B_{i} \times m_{i}}, \quad i=1, \ldots, m
$$

Let

$$
P_{i} A_{i} P_{i}^{-1}=\left[\begin{array}{cc}
A_{1}^{i} & A_{2}^{i} \\
A_{3}^{i} & A_{4}^{i}
\end{array}\right], \quad A_{1}^{i} \in \mathbb{F}^{\mathrm{rank} B_{i} \times \operatorname{rank} B_{i}}, \quad i=1, \ldots, m .
$$

Then $\left(A_{4}^{i}, A_{3}^{i}\right)$ is controllable (moreover the controllability of $\left(A_{4}^{i}, A_{3}^{i}\right)$ is equivalent to the controllability of $\left.\left(A_{i}, B_{i}\right)\right)$ and there exist invertible matrices $Q_{i}(\lambda) \in \mathbb{F}[\lambda]^{n_{i} \times n_{i}}$ and $S_{i}(\lambda) \in \mathbb{F}[\lambda]^{n_{i} \times n_{i}}, i=1, \ldots, m$, such that

$$
Q_{i}(\lambda)\left(\lambda I-P_{i} A_{i} P_{i}^{-1}\right) S_{i}(\lambda)=\left[\begin{array}{cc}
A_{i}(\lambda) & 0 \\
0 & I
\end{array}\right]
$$

where $A_{i}(\lambda) \in \mathbb{F}[\lambda]^{\operatorname{rank}} B_{i} \times \operatorname{rank} B_{i}, i=1, \ldots, m$. Note that the first rank B_{i} columns of the matrices $Q_{i}(\lambda), i=1, \ldots, m$ are of the form $\left[\begin{array}{c}I_{\mathrm{rank} B_{i}} \\ 0\end{array}\right]$. Denote the invariant factors of $A_{i}(\lambda)$ by $\alpha_{1}^{\prime i}|\cdots| \alpha_{\operatorname{rank} B_{i}}^{\prime i}$, then $\alpha_{j}^{\prime i}:=\alpha_{j+n_{i}-\operatorname{rank} B_{i}}^{i}, j=1, \ldots, \operatorname{rank} B_{i}$, $i=1, \ldots, m$.

Let

$$
Y_{i}:=T_{i+1} X_{i} \in \mathbb{F}^{\mathrm{rank} B_{i+1} \times p_{i}}, \quad i=1, \ldots, m-1
$$

Let $\bar{P}_{i} \in \mathbb{F}^{m_{i} \times m_{i}}$ be the invertible matrices such that $-T_{i} \bar{P}_{i}=\left[\begin{array}{cc}I_{\text {rank } B_{i}} & 0\end{array}\right]$, $i=1, \ldots, m$. Denote by $P=\operatorname{diag}\left(P_{1}, \ldots, P_{m}\right), Q(\lambda)=\operatorname{diag}\left(Q_{1}(\lambda), \ldots, Q_{m}(\lambda)\right)$, $\bar{P}=\operatorname{diag}\left(P_{1}^{-1}, \ldots, P_{m}^{-1}, \bar{P}_{1}\right)$ and $S(\lambda)=\operatorname{diag}\left(S_{1}(\lambda), \ldots, S_{m}(\lambda), I\right)$.

Furthermore, let $-C_{i} P_{i}^{-1} S_{i}(\lambda)=\left[\begin{array}{cc}C_{i}(\lambda) & C_{i}^{\prime}(\lambda)\end{array}\right], C_{i}(\lambda) \in \mathbb{F}[\lambda]^{p_{i} \times \operatorname{rank} B_{i}}, i=$ $1, \ldots, m-1$.

Now, consider the matrix

$$
M(\lambda)=Q(\lambda) P\left(\lambda\left[\begin{array}{ll}
I & 0
\end{array}\right]-M\right) \bar{P} S(\lambda)
$$

The matrix $M(\lambda)$ has the following form

$\left[\begin{array}{cc}A_{1}(\lambda) & 0 \\ 0 & I\end{array}\right.$					$\|$$I$ 0 0 0
Y ${ }_{1} C_{1}(\lambda) Y_{1} C_{1}^{\prime}(\lambda)$ 0	 $A_{2}(\lambda)$ 0 0 I				
	$Y_{2} C_{2}(\lambda)$ $Y_{2} C_{2}^{\prime}(\lambda)$ 0 0	$A_{3}(\lambda)$ 0 0 I			
			$\left\|\begin{array}{cc}Y_{m-1} C_{m-1}(\lambda) Y_{m-1} C_{m-1}^{\prime}(\lambda) \\ 0 & 0\end{array}\right\|$	$\left\lvert\, \begin{array}{cc}A_{m}(\lambda) \\ 0 & I\end{array}\right.$	

Thus, the matrix $\lambda\left[\begin{array}{ll}I & 0\end{array}\right]-M$ is equivalent to
where nonmarked entries are equal to zero.
Since the matrix

$$
\left[\begin{array}{cc}
Q_{i}(\lambda) P_{i} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\lambda I-A_{i} & -B_{i} \\
-C_{i} & 0
\end{array}\right]\left[\begin{array}{cc}
P_{i}^{-1} S_{i}(\lambda) & 0 \\
0 & \bar{P}_{i}
\end{array}\right]
$$

is equal to the following one

$$
\left[\begin{array}{cc|cc}
A_{i}(\lambda) & 0 & I & 0 \\
0 & I & 0 & 0 \\
\hline C_{i}(\lambda) & C_{i}^{\prime}(\lambda) & 0 & 0
\end{array}\right], \quad i=1, \ldots, m-1
$$

the invariant factors of the matrix $C_{i}(\lambda)$, denoted by $\gamma_{1}^{\prime i}|\cdots| \gamma_{y_{i}-n_{i}}^{\prime i}$, satisfy $\gamma_{j}^{\prime i}:=$ $\gamma_{j+n_{i}}^{i}, j=1, \ldots, y_{i}-n_{i}, i=1, \ldots, m-1$.

Moreover, if denote by $\mu_{1}^{\prime i}|\cdots| \mu_{\text {rank } B_{i}}^{i}$ the invariant factors of

$$
\left[\begin{array}{c}
A_{i}(\lambda) \\
C_{i}(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{\left(\operatorname{rank} B_{i}+p_{i}\right) \times \operatorname{rank} B_{i}}, \quad i=2, \ldots, m-1,
$$

from

$$
\left[\begin{array}{cc}
Q_{i}(\lambda) P_{i} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
\lambda I-A_{i} \\
-C_{i}
\end{array}\right] S_{i}(\lambda)=\left[\begin{array}{cc}
A_{i}(\lambda) & 0 \\
0 & I \\
\hline C_{i}(\lambda) & C_{i}^{\prime}(\lambda)
\end{array}\right]
$$

they satisfy $\mu_{j}^{\prime i}:=\mu_{j+n_{i}-\operatorname{rank} B_{i}}^{i}, j=1, \ldots, \operatorname{rank} B_{i}, i=2, \ldots, m-1$.
Now the condition (4.3) becomes

$$
\begin{equation*}
\operatorname{gcd}\left(\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i+1}, \ldots, \mu_{k_{j-i}}^{\prime j-1}, \alpha_{k_{j-i+1}}^{\prime j}\right)=1, \quad 1 \leq i<j \leq m \tag{4.6}
\end{equation*}
$$

for all k_{1}, \ldots, k_{j-i+1} such that

$$
k_{1}+\cdots+k_{j-i+1} \leq \operatorname{rank} B_{i+1}+\cdots+\operatorname{rank} B_{j}+j-i .
$$

Since the matrix (4.5) is equivalent to $\left[\begin{array}{ll}I & 0\end{array}\right]$, every submatrix formed by some of its rows is also equivalent to $\left[\begin{array}{ll}I & 0\end{array}\right]$. Let i and j be such that $1 \leq i<j \leq m$. Consider the submatrix

$$
R(\lambda)=\left[\begin{array}{ccccc}
Y_{i} C_{i}(\lambda) & A_{i+1}(\lambda) & & & \tag{4.7}\\
& Y_{i+1} C_{i+1}(\lambda) & A_{i+2}(\lambda) & & \\
& & Y_{i+2} C_{i+2}(\lambda) & A_{i+3}(\lambda) & \\
& & & \ddots & \ddots \\
& & & & Y_{j-1} C_{j-1}(\lambda)
\end{array} A_{j}(\lambda)\right] .
$$

Let k_{1}, \ldots, k_{j-i+1} be arbitrary indices such that the polynomials $\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i+1}, \ldots$, $\ldots, \mu_{k_{j-i}}^{\prime j-1}, \alpha_{k_{j-i+1}}^{\prime j}$ have a common zero $\lambda_{0} \in \overline{\mathbb{F}}$. Then, since $R(\lambda)$ is equivalent to $\left[\begin{array}{ll}I & 0\end{array}\right]$, we have

$$
\operatorname{rank} R\left(\lambda_{0}\right)=\operatorname{rank} B_{i+1}+\cdots+\operatorname{rank} B_{j}
$$

On the other hand, from the form of $R(\lambda)$, we have

$$
\begin{aligned}
& \operatorname{rank} R\left(\lambda_{0}\right) \leq \operatorname{rank} C_{i}\left(\lambda_{0}\right)+\sum_{l=i+1}^{j-1} \operatorname{rank}\left[\begin{array}{c}
A_{l}\left(\lambda_{0}\right) \\
C_{l}\left(\lambda_{0}\right)
\end{array}\right]+\operatorname{rank} A_{j}\left(\lambda_{0}\right) \leq \\
& \leq k_{1}-1+\sum_{l=2}^{j-i}\left(k_{l}-1\right)+k_{j-i+1}-1=k_{1}+\cdots+k_{j-i+1}-(j-i+1)
\end{aligned}
$$

as wanted.
Sufficiency:
Since $\left(A_{i}, B_{i}\right)$ is controllable for every $i=1, \ldots, m$, as in the necessity part of the proof, the matrix (4.1) is equivalent to the matrix (4.5). Thus, it is enough to define Y_{1}, \ldots, Y_{m-1} over \mathbb{F}, such that the matrix (4.5) is equivalent to $\left[\begin{array}{ll}I & 0\end{array}\right]$, when the condition (4.6) is satisfied.

Further proof goes by induction on m. For $m=2$, the condition (4.6) becomes

$$
\operatorname{gcd}\left(\gamma_{i}^{\prime 1}, \alpha_{\operatorname{rank} B_{2}+1-i}^{\prime 2}\right)=1, \quad \text { for all } i=1, \ldots, \operatorname{rank} B_{2},
$$

and so by Lemma 3.3 , there exists a matrix $Y_{m-1} \in \mathbb{F}^{\mathrm{rank}} B_{m} \times p_{m-1}$, such that

$$
\left[\begin{array}{ll}
A_{m}(\lambda) & Y_{m-1} C_{m-1}(\lambda)
\end{array}\right]
$$

is equivalent to [$\left.\begin{array}{cc}I_{\text {rank } B_{m}} & 0\end{array}\right]$.
Now suppose that the condition is sufficient for $m-1$ and we shall prove that it is sufficient for m. Consider the matrix

$$
\left[\begin{array}{cc}
A_{m-1}(\lambda) & 0 \tag{4.8}\\
Y_{m-1} C_{m-1}(\lambda) & A_{m}(\lambda)
\end{array}\right] .
$$

If $p_{m-1} \leq \operatorname{rank} B_{m}$, by Lemma 3.5, there exists a matrix Y_{m-1} such that the matrix

$$
\left[\begin{array}{ll}
A_{m}(\lambda) & Y_{m-1} C_{m-1}(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{cc}I_{\mathrm{rank} B_{m}} & 0\end{array}\right]$, and every zero of the polynomial $\epsilon_{i+\mathrm{rank} B_{m}}$ is the zero of the polynomial $\alpha_{i}^{\prime m-1}$ or of the polynomial $\operatorname{gcd}\left(\alpha_{j}^{\prime m}, \mu_{\operatorname{rank} B_{m}+i-j+1}^{\prime m-1}\right)$, for some $j=1, \ldots, \operatorname{rank} B_{m}$, where $\epsilon_{1}|\cdots| \epsilon_{\mathrm{rank}} B_{m}+\mathrm{rank} B_{m-1}$ are the invariant factors of (4.8).

If $p_{m-1}>\operatorname{rank} B_{m}$, instead of $A_{m}(\lambda)$ consider the matrix $\bar{A}_{m}(\lambda):=A_{m}(\lambda) \oplus$ $I_{p_{m-1}-\operatorname{rank} B_{m}}$. Now, again by Lemma 3.5, there exists a matrix $Y_{m-1}^{\prime} \in \mathbb{F}^{p_{m-1} \times p_{m-1}}$ such that

$$
\left[\begin{array}{ll}
\bar{A}_{m}(\lambda) & Y_{m-1}^{\prime} C_{m-1}(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{ll}I_{p_{m-1}} & 0\end{array}\right]$. Then define $Y_{m-1}:=\left[\begin{array}{ll}I_{\mathrm{rank} B_{m}} & 0\end{array}\right] Y_{m-1}^{\prime}$.
In both cases, the matrix (4.8) is equivalent to the matrix

$$
\left[\begin{array}{cc}
A_{m-1}^{\prime}(\lambda) & 0 \\
0 & I_{\operatorname{rank~} B_{m}}
\end{array}\right], \text { for some } A_{m-1}^{\prime}(\lambda) \in \mathbb{F}[\lambda]^{\operatorname{rank} B_{m-1} \times \operatorname{rank} B_{m-1}}
$$

Note that the invariant factors of $A_{m-1}^{\prime}(\lambda)$, denoted by $\epsilon_{1}^{\prime}|\cdots| \epsilon_{\text {rank } B_{m-1}}^{\prime}$, satisfy $\epsilon_{i}^{\prime}=$ $\epsilon_{i+\operatorname{rank} B_{m}}, i=1, \ldots, \operatorname{rank} B_{m-1}$.

Denote the submatrix of (4.5) formed by the rows $1, \ldots, \sum_{i=2}^{m-1}$ rank B_{i} and by the columns $1, \ldots, \sum_{i=1}^{m-2}$ rank B_{i}, by E. Now, our problem reduces to defining the matrices Y_{1}, \ldots, Y_{m-2} such that the matrix

$$
\left[\begin{array}{c|c}
E & 0 \\
A_{m-1}^{\prime}(\lambda)
\end{array}\right]
$$

is equivalent to $\left[\begin{array}{ll}I & 0\end{array}\right]$.
In order to apply the induction hypothesis, and thus to finish the proof, we need to prove the validity of the following condition

$$
\begin{equation*}
\operatorname{gcd}\left(\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i+1}, \ldots, \mu_{k_{m-i-1}}^{\prime m-2}, \epsilon_{k_{m-i}}^{\prime}\right)=1, \tag{4.9}
\end{equation*}
$$

for every $i=1, \ldots, m-2$ and for all indices k_{1}, \ldots, k_{m-i} such that

$$
k_{1}+\cdots+k_{m-i} \leq \operatorname{rank} B_{i+1}+\cdots+\operatorname{rank} B_{m-1}+m-i-1
$$

Suppose that the condition (4.9) is not valid. Then there exists $\lambda_{0} \in \overline{\mathbb{F}}$, a common zero of the polynomials $\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i}, \ldots, \mu_{k_{m-i-1}}^{\prime m-2}$ and $\epsilon_{k_{m-i}}^{\prime}$ for some indices k_{1}, \ldots, k_{m-i} satisfying $k_{1}+\cdots+k_{m-i} \leq \operatorname{rank} B_{i+1}+\cdots+\operatorname{rank} B_{m-1}+m-i-1$.

Hence, λ_{0} is a zero of the polynomial $\epsilon_{k_{m-i}+\operatorname{rank} B_{m}}$. Now, since Y_{m-1} is defined by Lemma 3.5, λ_{0} is a zero of the polynomial $\alpha_{k_{m-i}}^{\prime m-1}$ or of the polynomial $\operatorname{gcd}\left(\mu_{\mathrm{rank} B_{m}+k_{m-i}-l+1}^{\prime m-1}, \alpha_{l}^{\prime m}\right)$, for some index $l \in\left\{1, \ldots, \operatorname{rank} B_{m}\right\}$.

If $\alpha_{k_{m-i}}^{\prime m-1}\left(\lambda_{0}\right)=0$, then

$$
\operatorname{gcd}\left(\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i+1}, \ldots, \mu_{k_{m-i-1}}^{\prime m-2}, \alpha_{k_{m-i}}^{\prime m-1}\right) \neq 1
$$

which is a contradiction by (4.6).
If $\operatorname{gcd}\left(\mu_{\text {rank } B_{m}+k_{m-i}-l+1}^{\prime m-1}, \alpha_{l}^{\prime m}\right)\left(\lambda_{0}\right)=0$, then

$$
\operatorname{gcd}\left(\gamma_{k_{1}}^{\prime i}, \mu_{k_{2}}^{\prime i+1}, \ldots, \mu_{k_{m-i-1}}^{\prime m-2}, \mu_{\operatorname{rank} B_{m}+k_{m-i}-l+1}^{\prime m-1}, \alpha_{l}^{\prime m}\right) \neq 1
$$

which is again a contradiction. Thus, (4.9) is valid, as wanted.
5. Special cases. In this section we study some special cases of the Problem 1.2 over arbitrary fields.

Theorem 5.1. Let \mathbb{F} be a field. Let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}, B_{i} \in \mathbb{F}^{n_{i} \times m_{i}}, i=1, \ldots, m$, $C_{i} \in \mathbb{F}^{p_{i} \times n_{i}}, i=1, \ldots, m-1$. Let $\operatorname{rank} B_{i}=1, i=1, \ldots, m$, and $\operatorname{rank} C_{i}=1$, $i=1, \ldots, m-1$. There exist matrices $X_{i} \in \mathbb{F}^{m_{i+1} \times p_{i}}, i=1, \ldots, m-1$, such that

$$
\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \ddots & 0 & B_{1} \tag{5.1}\\
B_{2} X_{1} C_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
0 & B_{3} X_{2} C_{2} & A_{3} & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & B_{m} X_{m-1} C_{m-1} & A_{m} & 0
\end{array}\right]
$$

is controllable, if and only if
(i) $\left(A_{i}, B_{i}\right)$ is controllable, $\quad i=1, \ldots, m$,
(ii) $\operatorname{gcd}\left(\gamma_{n_{i}+1}^{i}, \alpha_{n_{j}}^{j}\right)=1, \quad 1 \leq i<j \leq m$,
where $\gamma_{1}^{i}|\cdots| \gamma_{n_{i}+1}^{i}$ are the invariant factors of the matrix

$$
\left[\begin{array}{cc}
\lambda I-A_{i} & -B_{i} \tag{5.2}\\
-C_{i} & 0
\end{array}\right],
$$

$i=1, \ldots, m-1$. Also, $\alpha_{n_{j}}^{j}$ is the only nontrivial invariant factor of $\lambda I-A_{j}, j=$ $1, \ldots, m$.

Proof. First, since $\operatorname{rank} C_{i}=1, i=1, \ldots, m-1$, there exist invertible matrices $P_{i} \in \mathbb{F}^{p_{i} \times p_{i}}$ such that

$$
\bar{C}_{i}=P_{i} C_{i}=\left[\begin{array}{c}
c_{i} \\
0
\end{array}\right], \text { where } c_{i} \in \mathbb{F}^{1 \times n_{i}}, \quad i=1, \ldots, m-1
$$

Let

$$
\bar{X}_{i}=X_{i} P_{i}^{-1}, \quad i=1, \ldots, m-1
$$

Further on, instead of matrix (5.1), we shall consider the matrix

$$
M=\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \ddots & 0 & B_{1} \tag{5.3}\\
B_{2} \bar{X}_{1} \bar{C}_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
0 & B_{3} \bar{X}_{2} \bar{C}_{2} & A_{3} & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & B_{m} \bar{X}_{m-1} \bar{C}_{m-1} & A_{m} & 0
\end{array}\right] .
$$

Necessity:
Suppose that there exist matrices $\bar{X}_{1}, \ldots, \bar{X}_{m-1}$ such that the matrix (5.3) is controllable. Like in Theorem 4.1, we obtain the condition (i). Also, note that the fact that rank of the matrix (5.2) is equal to $n_{i}+1$ follows from the controllability of the pair $\left(A_{i}, B_{i}\right), i=1, \ldots, m$.

Furthermore, we shall consider the matrix $\lambda\left[\begin{array}{ll}I & 0\end{array}\right]-M$. As in Theorem 4.1, matrix $\lambda\left[\begin{array}{ll}I & 0\end{array}\right]-M$ is equivalent to the matrix (4.5), and since in this case $\operatorname{rank} B_{i}=1, i=1, \ldots, m$, the matrix (4.5) is of the following form

$$
\left[\begin{array}{cccccc|c}
q_{1} & \alpha_{n_{2}}^{2} & & & & & \tag{5.4}\\
& q_{2} & \alpha_{n_{3}}^{3} & & & & \\
& & q_{3} & \ddots & & & \\
& & & \ddots & \ddots & & \\
& & & & q_{m-1} & \alpha_{n_{m}}^{m} & \\
\hline & & & & & & I
\end{array}\right]
$$

where the polynomials $\alpha_{n_{i}}^{i}$ are the only nontrivial invariant factors of the matrices $\lambda I-A_{i}, i=2, \ldots, m$, and the polynomials $q_{i}, i=1, \ldots, m-1$ (see the proof of Theorem 4.1) are the last nonzero invariant factors of the matrices

$$
\left[\begin{array}{cc}
\lambda I-A_{i} & -B_{i} \tag{5.5}\\
-\bar{C}_{i} & 0
\end{array}\right],
$$

i.e.

$$
q_{i}=\gamma_{n_{i}+1}^{i}, \quad i=1, \ldots, m-1
$$

Hence, we have that the matrix

$$
N=\left[\begin{array}{cccccc}
\gamma_{n_{1}+1}^{1} & \alpha_{n_{2}}^{2} & & & & \tag{5.6}\\
& \gamma_{n_{2}+1}^{2} & \alpha_{n_{3}}^{3} & & & \\
& & \gamma_{n_{3}+1}^{3} & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & \gamma_{n_{m-1}+1}^{m-1} & \alpha_{n_{m}}^{m}
\end{array}\right]
$$

has only trivial invariant factors. Thus, $D_{m-1}=1\left(D_{m-1}\right.$ is the $(m-1)$ th determinantal divisor of (5.6), i.e. the greatest common divisor of minors of order $m-1$ of (5.6)). We shall prove that this is equivalent to the condition (ii).

Indeed, since

$$
D_{m-1}=\operatorname{gcd}\left(\Pi_{m-1}, \Pi_{m-2}, \ldots, \Pi_{0}\right)
$$

where

$$
\Pi_{i}:=\gamma_{n_{1}+1}^{1} \ldots \gamma_{n_{i}+1}^{i} \alpha_{n_{i+2}}^{i+2} \ldots \alpha_{n_{m}}^{m}, \quad i=0, \ldots, m-1
$$

we shall prove that:

$$
\begin{aligned}
& D_{m-1}=1 \Leftrightarrow \operatorname{gcd}\left(\gamma_{n_{i}+1}^{i}, \alpha_{n_{j}}^{j}\right)=1,1 \leq i<j \leq m \text {, i.e., } \\
& D_{m-1} \neq 1 \Leftrightarrow \exists i, j: 1 \leq i<j \leq m, \text { such that } \operatorname{gcd}\left(\gamma_{n_{i}+1}^{i}, \alpha_{n_{j}}^{j}\right) \neq 1
\end{aligned}
$$

Let $D_{m-1} \neq 1$. Let $\lambda_{0} \in \overline{\mathbb{F}}$ be a common zero of $\Pi_{m-1}, \ldots, \Pi_{0}$. Since Π_{m-1} is the product only of $\gamma_{n_{i}+1}^{i}$'s, at least one of $\gamma_{n_{i}+1}^{i}, i=1, \ldots, m-1$, must have λ_{0} as its zero. Let $k:=\min \left\{i \mid \gamma_{n_{i}+1}^{i}\left(\lambda_{0}\right)=0\right\}, 1 \leq k \leq m-1$. Then $\Pi_{k-1}=$ $\gamma_{n_{1}+1}^{1} \cdots \gamma_{n_{k-1}+1}^{k-1} \alpha_{n_{k+1}}^{k+1} \cdots \alpha_{n_{m}}^{m}$. Thus, there exists $j>k$ such that $\alpha_{n_{j}}^{j}\left(\lambda_{0}\right)=0$. Then, obviously, $\operatorname{gcd}\left(\gamma_{n_{k}+1}^{k}, \alpha_{n_{j}}^{j}\right) \neq 1$, as wanted.

Conversely, suppose that there exist indices i and j such that $1 \leq i<j \leq m$ and $\operatorname{gcd}\left(\gamma_{n_{i}+1}^{i}, \alpha_{n_{j}}^{j}\right) \neq 1$, i.e., $\exists \lambda_{0} \in \overline{\mathbb{F}}$ such that $\gamma_{n_{i}+1}^{i}\left(\lambda_{0}\right)=0$ and $\alpha_{n_{j}}^{j}\left(\lambda_{0}\right)=0$. Then every $\Pi_{l}, l=0, \ldots, m-1$, has λ_{0} as its zero. Indeed, if $i \leq l$, then since $\gamma_{n_{i}+1}^{i}\left(\lambda_{0}\right)=0$, we have $\Pi_{l}\left(\lambda_{0}\right)=0$. If $i>l$, then $j>i \geq l+1$ and since $\alpha_{n_{j}}^{j}\left(\lambda_{0}\right)=0$, we have $\Pi_{l}\left(\lambda_{0}\right)=0$.

Sufficiency:
Let the conditions (i) and (ii) be valid. Then as in the proof of Theorem 4.1, we can consider the matrix $\lambda\left[\begin{array}{ll}I & 0\end{array}\right]-M$ in the equivalent form (4.5). Define

$$
Y_{i}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right] \in \mathbb{F}^{1 \times p_{i}}, \quad i=1, \ldots, m-1
$$

Then (4.5) becomes

$$
\left[\begin{array}{cc}
N & 0 \tag{5.7}\\
0 & I
\end{array}\right] .
$$

In the necessity part of the proof, we have proved that the condition (ii) is equivalent to the fact that the matrix N has all invariant factors equal to 1 . Thus, the matrix (5.7) has all invariant factors equal to 1 , as wanted.

In the following theorem, we consider the series connection of the linear systems $S_{i}, i=1, \ldots, m$, in the case when $\operatorname{rank} B_{i}=n_{i}, i=2, \ldots, m$, and $\operatorname{rank} C_{i}=n_{i}$, $i=1, \ldots, m-1$.

ThEOREM 5.2. Let \mathbb{F} be a field. Let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}, i=1, \ldots, m, B_{1} \in \mathbb{F}^{n_{1} \times m_{1}}$, $\operatorname{rank} B_{1}=s$. Let $l_{i} \geq 0, i=1, \ldots, m-1$. There exist matrices $X_{i} \in \mathbb{F}^{n_{i+1} \times n_{i}}$,
$i=1, \ldots, m-1$, such that the matrix

$$
\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \ddots & 0 & B_{1} \tag{5.8}\\
X_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
0 & X_{2} & A_{3} & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & X_{m-1} & A_{m} & 0
\end{array}\right]
$$

is controllable and such that $\operatorname{rank} X_{i} \leq l_{i}, i=1, \ldots, m-1$, if and only if
(i) $\left(A_{1}, B_{1}\right)$ is controllable
(ii) $\min \left\{s, l_{i}, n_{i}\right\} \geq \max _{j=i+1, \ldots, m}\left\{r_{j}\right\}, \quad i=1, \ldots, m-1$.

Here, by r_{i} we have denoted the number of nontrivial invariant factors of $\lambda I-A_{i}$, $i=1, \ldots, m$.

Proof.
Necessity:
Since the matrix (5.8) is controllable, we directly obtain the condition (i). Also, considering the submatrices of (5.8) formed by its last $\sum_{i=1}^{j} n_{m-i+1}, j=1, \ldots, m$, rows, we can apply the result from Theorem 1 in [8] and thus obtain that $s \geq$ $\max _{j=2, \ldots, m}\left\{r_{j}\right\}$, and $\operatorname{rank} X_{i} \geq \max _{j=i+1, \ldots, m}\left\{r_{j}\right\}, i=1, \ldots, m-1$. Thus, we obtain the condition (ii).

Sufficiency:

Let $c_{1} \geq \cdots \geq c_{s}>0$ be the nonzero controllability indices of the pair $\left(A_{1}, B_{1}\right)$. Let $\alpha_{1}^{i}|\cdots| \alpha_{n_{i}}^{i}$ be the invariant factors of $\lambda I-A_{i}, r_{i}$ of them nontrivial, and let $D_{j}^{i}=d\left(\alpha_{n_{i}-j+1}^{i}\right), j=1, \ldots, r_{i}, i=2, \ldots, m$. Then the matrix (5.8) is feedback equivalent to the following one

$$
\left[\begin{array}{ccccc|c}
A_{c} & 0 & 0 & \ddots & 0 & B_{c} \tag{5.9}\\
X_{1}^{\prime} & N\left(A_{2}\right) & 0 & \ddots & 0 & 0 \\
0 & X_{2}^{\prime} & N\left(A_{3}\right) & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & X_{m-1}^{\prime} & N\left(A_{m}\right) & 0
\end{array}\right]
$$

where $\left(A_{c}, B_{c}\right)$ is the Brunovsky canonical form of the pair $\left(A_{1}, B_{1}\right)$ and

$$
N\left(A_{i}\right)=C\left(\alpha_{n_{i}-r_{i}+1}^{i}\right) \oplus \cdots \oplus C\left(\alpha_{n_{i}}^{i}\right)
$$

is the normal form for similarity of the matrix $A_{i}, i=2, \ldots, m$, see, e.g. [5].
Now, our problem is equivalent to the problem of defining matrices $X_{i}^{\prime}, i=$ $1, \ldots, m-1$, such that the matrix (5.9) is controllable, and such that rank $X_{i}^{\prime} \leq l_{i}$, $i=1, \ldots, m-1$.

Let $l_{i}^{\prime}:=\min \left\{s, l_{1}, \ldots, l_{i}, n_{i}, n_{i+1}\right\}, i=1, \ldots, m-1$. We shall define inductively matrices X_{i}^{\prime} such that rank $X_{i}^{\prime}=l_{i}^{\prime}, i=1, \ldots, m-1$. From the condition (ii) we have

$$
\begin{equation*}
l_{i} \geq \max \left\{r_{i+1}, \ldots, r_{m}\right\}, \quad i=1, \ldots, m-1 \tag{5.10}
\end{equation*}
$$

First we define X_{1}^{\prime}. Let $b_{j}^{1}=\sum_{i=j}^{r_{2}} D_{i}^{2}, j=1, \ldots, r_{2}$. Put r_{2} units in the matrix X_{1}^{\prime} at the positions

$$
\left(b_{j}^{1}, \sum_{i=1}^{j-1} c_{i}+1\right), \quad j=1, \ldots, r_{2}
$$

Moreover, let $b_{r_{2}+1}^{1}, \ldots, b_{l_{1}^{\prime}}^{1}$ be any $l_{1}^{\prime}-r_{2}$ distinct numbers from the set $\left\{1, \ldots, n_{2}\right\} \backslash$ $\left\{b_{1}^{1}, \ldots, b_{r_{2}}^{1}\right\}$. Then put $l_{1}^{\prime}-r_{2}$ units at the positions

$$
\left(b_{j}^{1}, \sum_{i=1}^{j-1} c_{i}+1\right), \quad j=r_{2}+1, \ldots, l_{1}^{\prime}
$$

while all other entries in X_{1}^{\prime} we put to be zeros. Obviously rank $X_{1}^{\prime}=l_{1}^{\prime}$.
Inductively, we define matrices $X_{j}^{\prime}, j=2, \ldots, m-1$:
Let $b_{k}^{j}=\sum_{i=k}^{r_{j+1}} D_{i}^{j+1}, k=1, \ldots, r_{j+1}$. Moreover, let $b_{r_{j+1}+1}^{j}, \ldots, b_{l_{j}^{\prime}}^{j}$ be any $l_{j}^{\prime}-r_{j+1}$ distinct numbers from the set $\left\{1, \ldots, n_{j}\right\} \backslash\left\{b_{1}^{j}, \ldots, b_{r_{j+1}}^{j}\right\}$. Now, put l_{j}^{\prime} units in the matrix X_{j}^{\prime} in the rows $b_{1}^{j}, \ldots, b_{l_{j}^{\prime}}^{j}$ such that they belong to any l_{j}^{\prime} different columns among the following ones:

$$
\left\{b_{i}^{j-1}+1, \quad i=2, \ldots, l_{j-1}^{\prime}\right\} \cup\{1\}
$$

while all other entries in $X_{j}^{\prime}, j=2, \ldots, m-1$, we put to be zeros.
Such obtained matrix

$$
\left[\begin{array}{ccccc|c}
A_{c} & 0 & 0 & \ddots & 0 & B_{c} \tag{5.11}\\
X_{1}^{\prime} & N\left(A_{2}\right) & 0 & \ddots & 0 & 0 \\
0 & X_{2}^{\prime} & N\left(A_{3}\right) & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & X_{m-1}^{\prime} & N\left(A_{m}\right) & 0
\end{array}\right]
$$

is controllable, and $\operatorname{rank} X_{i}^{\prime}=l_{i}^{\prime} \leq l_{i}, i=1, \ldots, m-1$, as wanted. \square
In order to clarify the way of defining the matrices $X_{1}^{\prime}, \ldots, X_{m-1}^{\prime}$ in the previous theorem we give the following example:

EXAMPLE 5.3. Let $m=3, n_{1}=4, n_{2}=5$ and $n_{3}=4$. Let $l_{1}=4, l_{2}=2$ and $s=2$. Let $\left(A_{1}, B_{1}\right)$ be a controllable pair of matrices with $2 \geq 2$ as nonzero controllability indices. Then

$$
\left(A_{c}, B_{c}\right)=\left(\left[\begin{array}{cc|cc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Let $r_{2}=1$, and let α be the only nontrivial invariant polynomial of $A_{2}, d(\alpha)=5$, i.e. $\alpha=\alpha_{5}^{2}$, while $\alpha_{1}^{2}=\cdots=\alpha_{4}^{2}=1$. Thus,

$$
N\left(A_{2}\right)=C(\alpha)
$$

Let $r_{3}=2$, and let $\beta \mid \gamma$ be the nontrivial invariant polynomials of $A_{3}, d(\beta)=1$ and $d(\gamma)=3$, i.e. $\alpha_{3}^{3}=\beta$ and $\alpha_{4}^{3}=\gamma$, while $\alpha_{1}^{3}=\alpha_{2}^{3}=1$. Thus

$$
N\left(A_{3}\right)=C(\beta) \oplus C(\gamma)
$$

Then both conditions (i) and (ii) from Theorem 5.2 are satisfied. Now define matrices X_{1}^{\prime} and X_{2}^{\prime} as explained in the theorem:

Since $l_{1}^{\prime}=2, c_{1}=2$ and $b_{1}^{1}=D_{1}^{2}=d(\alpha)=5$, put a unit in the matrix X_{1}^{\prime} at the position $(5,1)$. Let $b_{2}^{1}=4(4 \in\{1, \ldots, 5\} \backslash\{5\})$. Then put a unit at the position $(4,3)$, and all other entries in the matrix X_{1}^{\prime} put to be zeros. Thus,

$$
X_{1}^{\prime}=\left[\begin{array}{ll|ll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Moreover, since $l_{2}^{\prime}=2$ and $b_{1}^{2}=D_{1}^{3}+D_{2}^{3}=d(\gamma)+d(\beta)=4, b_{2}^{2}=D_{2}^{3}=d(\beta)=1$, put units in the matrix X_{2}^{\prime} on the positions $(4,1)$ and $\left(1, b_{2}^{1}+1\right)=(1,5)$, and all other entries in the matrix X_{2}^{\prime} put to be zeros. Hence,

$$
X_{2}^{\prime}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

For such defined X_{1}^{\prime} and X_{2}^{\prime} the matrix

$$
\left[\begin{array}{ccc|c}
A_{c} & 0 & 0 & B_{c} \tag{5.12}\\
X_{1}^{\prime} & C(\alpha) & 0 & 0 \\
0 & X_{2}^{\prime} & C(\beta) \oplus C(\gamma) & 0
\end{array}\right]
$$

is controllable and $\operatorname{rank} X_{1}^{\prime}=2 \leq 4$, $\operatorname{rank} X_{2}^{\prime}=2 \leq 2$, as wanted.
As a direct consequence of the previous result we obtain the following theorem:
Theorem 5.4. Let \mathbb{F} be a field. Let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}, i=1, \ldots, m$, and $B_{1} \in \mathbb{F}^{n_{1} \times m_{1}}$ be such that the pair $\left(A_{1}, B_{1}\right)$ is controllable, rank $B_{1}=s$. There exist matrices $X_{i} \in \mathbb{F}^{n_{i+1} \times n_{i}}, i=1, \ldots, m-1$, such that

$$
\left[\begin{array}{ccccc|c}
A_{1} & 0 & 0 & \ddots & 0 & B_{1} \tag{5.13}\\
X_{1} & A_{2} & 0 & \ddots & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & X_{m-1} & A_{m} & 0
\end{array}\right]
$$

156 M. Dodig
is controllable if and only if the following conditions are valid:
(i) $s \geq \max \left\{r_{2}, r_{3}, \ldots, r_{m}\right\}$
(ii) $\quad n_{i} \geq \max \left\{r_{i}, \ldots, r_{m}\right\}, \quad i=2, \ldots, m$.

Here r_{i} is the number of the nontrivial invariant factors of $\lambda I-A_{i}, i=2, \ldots, m$.

Acknowledgments. Many thanks are given to the referee whose valuable comments have improved the presentation of the paper. The author is supported by Fundação para a Ciência e a Tecnologia / (FCT), grant no. SFRH/BPD/26607/2006. When this work started, the author was supported by grant CELC/1431/BPD/06.

REFERENCES

[1] I. Baragaña, I. Zaballa. Feedback invariants of restrictions and quotients: series connected systems. Linear Algebra and Its Applications, 351/352:69-89, 2002.
[2] J. A. Dias da Silva, T. J. Laffey. On simultaneous similarity of matrices and related questions. Linear Algebra and Its Applications, 291:167-184, 1999.
[3] P. A. Fuhrmann. A Polynomial Approach to Linear Algebra. Springer-Verlag, New York, 1996.
[4] F. R. Gantmacher. The Theory of Matrices, vol.2. Chelsea Publishing Comp., New York, 1960.
[5] P. Lancaster, M. Tismenetsky. The Theory of Matrices. Academic Press, 1985.
[6] J. F. Queiró, E. M. Sá. Singular values and invariant factors of matrix sums and products. Linear Algebra and its Applications 225:43-56, 1995.
[7] E. M. Sá. Problemas de entrelaçamento para factores invariantes, unpublished manuscript Coimbra, 1978.
[8] F. C. Silva. On controllability of partially prescribed matrices. Linear and Multilinear Algebra 40:95-102, 1995
[9] R. C. Thompson. Smith invariants of a product of integral matrices. Contemporary Mathematics 47:401-435, 1985.

[^0]: *Received by the editors 6 March 2007. Accepted for publication 13 June 2007. Handling Editor: Joao Filipe Queiro.
 \dagger Centro de Estruturas Lineares e Combinatórias, CELC, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal (dodig@cii.fc.ul.pt).

