NOTE ON DELETING A VERTEX AND WEAK INTERLACING OF THE LAPLACIAN SPECTRUM*

ZVI LOTKER ${ }^{\dagger}$

Abstract

The question of what happens to the eigenvalues of the Laplacian of a graph when we delete a vertex is addressed. It is shown that $$
\lambda_{i}-1 \leq \lambda_{i}^{v} \leq \lambda_{i+1}
$$ where λ_{i} is the $i t h$ smallest eigenvalues of the Laplacian of the original graph and λ_{i}^{v} is the $i t h$ smallest eigenvalues of the Laplacian of the graph $G[V-v]$; i.e., the graph obtained after removing the vertex v. It is shown that the average number of leaves in a random spanning tree $\mathcal{F}(G)>\frac{2|E| e^{\frac{-1}{\alpha}}}{\lambda_{n}}$, if $\lambda_{2}>\alpha n$.

Key words. Spectrum, Random spanning trees, Cayley formula, Laplacian, Number of leaves.

AMS subject classifications. 05C30, 34L15, 34L40.

1. Introduction. Given a graph $G=(V, E)$ with n vertices $V=\{1, \ldots, n\}$ and E edges, let A be the adjacency matrix of G, i.e. $a_{i, j}=1$ if vertex $i \in V$ is adjacent to vertex $j \in V$ and $a_{i, j}=0$ otherwise. The Laplacian matrix of graph G is $L=D-A$, where D is a diagonal matrix where $d_{i, i}$ is equal to the degree d_{i} of vertex i in G. The Laplacian of a graph is one of the basic matrices associated with a graph. The spectrum of the Laplacian fully characterizes the Laplacian (for more detail see [1]). Since L is symmetric and positive semidefinite, its eigenvalues are all nonnegative. We denote them by $\lambda_{1} \leq \ldots \leq \lambda_{n}$. One of the elementary operations on a graph is deleting a vertex $v \in V$, we denote the graph obtained from deleting the node v by $G[V-v]$, and the Laplacian Matrix of $G[V-v]$ by L^{v}. Finally let $\lambda_{1}^{v} \leq \ldots \leq \lambda_{n-1}^{v}$ be the eigenvalues of L_{i}^{v}. A well known theorem in Algebraic Graph theory is the interlacing of Laplacian spectrum under addition/deletion of an edge; see for example [1, Thm. 13.6.2]) quoted next.

Theorem 1.1. Let X be a graph with n vertices and let Y be obtained from X by adding an edge joining distinct vertices of X then

$$
\lambda_{i-1}(L(Y)) \leq \lambda_{i}(L(X)) \leq \lambda_{i}(L(Y))
$$

for all $i=1, \ldots, n$, (we assume that $\lambda_{0}=-\infty$).
We remark that the eigenvalues of adjacency matrices $A(G)$ and $A(G[V-v])$ also interlace; see, for example, [1, Thm. 9.1.1]. A natural question is whether we get a similar behavior for the Laplacian when we add/delete a vertex. In this note we study this question.

[^0]Related Work. This work uses two theorems from Matrix Analysis. The first is Cauchy's Interlacing theorem which states that the eigenvalues of a Hermitian matrix A of order n interlace the eigenvalues of the principal submatrix of order $n-1$, obtained by removing the i th row and the i th column for each $i \in\{1, \ldots, n\}$.

Theorem 1.2. Let A be a Hermitian matrix of order n and let B be a principal submatrix of A of order $n-1$. Then the eigenvalues of A and B are interlacing i.e. $\lambda_{1}(A) \leq \lambda_{1}(B) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{n-1}(B) \leq \lambda_{n}(A)$.

Proof of this theorem can be found in [2].
The second theorem we use is the Courant-Fischer Theorem. This theorem is an extremely useful characterization of the eigenvalues of symmetric matrices.

Theorem 1.3. Let L be a symmetric matrix. Then

1. the ith eigenvalue λ_{i} of L is given by

$$
\lambda_{i}=\min _{U} \max _{x \in U} \frac{x^{t} L x}{x^{t} x}
$$

2. the $(n-i+1)$ st eigenvalue λ_{n-i+1} of L is given by

$$
\lambda_{n-i+1}=\max _{U} \min _{x \in U} \frac{x^{t} L x}{x^{t} x}
$$

where U ranges over all i dimensional subspaces.
Proof of this theorem can be found in [3, p. 186]. Let $v \in V$ be a vertex. Let P be the principal submatrix after we delete the row and column that correspond to the vertex v of the Laplacian. Denote the eigenvalues of P by $\rho_{1} \leq \cdots \leq \rho_{n-1}$.
2. Weak Interlace for the L, L^{v}. In this section we show a weak interlacing connection between the L and L^{v}. Since L is a symmetric matrix we can use Cauchy's interlacing theorem. The next corollary simply applies this theorem for L and P.

Corollary 2.1. $\lambda_{1} \leq \rho_{1} \leq \cdots \leq \rho_{n-1} \leq \lambda_{n}$.
The next lemma uses the Courant-Fischer Theorem in order to prove weak interlacing for L, P.

Lemma 2.2. For all $i=1, \ldots, n-1, \rho_{i} \leq \lambda_{i}^{v}+1$
Proof. Let $I_{v}=P-L^{v}$. Note that I_{v} is a $(0,1)$ diagonal matrix whose j th diagonal entry is 1 if and only if j is connected to v in G. Fix $i \in\{1, \ldots, n-1\}$. Using the Courant-Fischer Theorem it follows that

$$
\rho_{n-i+1}=\max _{U} \min _{x \in U}\left\{\frac{x^{t} P x}{x^{t} x}: U \subseteq \mathbb{R}^{n}, \operatorname{dim}(U)=i, x \in U=\operatorname{span}(U)\right\}
$$

where x^{t} is the transpose of x. Substituting $L^{v}+I_{v}$ in P it follows that

$$
\rho_{n-i+1}=\max _{U} \min _{x \in U}\left\{\frac{x^{t}\left(L^{v}+I_{v}\right) x}{x^{t} x}: U \subseteq \mathbb{R}^{n}, \operatorname{dim}(U)=i, x \in U=\operatorname{span}(U)\right\}
$$

Using standard calculus we get

$$
\rho_{n-i+1} \leq \max _{U} \min _{x \in U}\left\{\frac{x^{t} L^{v} x}{x^{t} x}: U \subseteq \mathbb{R}^{n}, \operatorname{dim}(U)=i, x \in U=\operatorname{span}(U)\right\}
$$

$$
\begin{aligned}
& +\max _{U} \min _{x \in U}\left\{\frac{x^{t} I_{v} x}{x^{t} x}: U \subseteq \mathbb{R}^{n}, \operatorname{dim}(U)=i, x \in U=\operatorname{span}(U)\right\} \\
& \leq \lambda_{n-i+1}^{v}+1 . \square
\end{aligned}
$$

We now use the previous lemma to get a lower bound on λ_{i}^{v}.
Lemma 2.3. For all $v=1, \ldots, n$ and for all $i=1, \ldots, n-1$,

$$
\lambda_{i}-1 \leq \lambda_{i}^{v}
$$

Proof. Fix $i \in\{1, \ldots, n-1\}$. From Lemma 2.2 it follows that $\rho_{i} \leq \lambda_{i}^{v}+1$. Now this lemma follows from substituting the conclusion of Corollary 2.1 into the previous inequality $\lambda_{i} \leq \rho_{i} \leq \lambda_{i}^{v}+1$.

The next lemma provides an upper bound on λ_{i}^{v}.
Lemma 2.4. For all $v=1, \ldots, n$ and for all $i=1, \ldots, n-1$,

$$
\lambda_{i}^{v} \leq \lambda_{i+1}
$$

Proof. We prove this lemma by induction on d_{v}, the degree of the node v. If the degree is $d_{v}=0$, then by removing the node v we reduce the multiplicity of the small eigenvalues, which is 0 . Formally $\lambda_{i}^{v}=\lambda_{i+1}$ for $i=1, \ldots, n-1$. Therefore the lemma holds in this case. For the induction step, suppose that the statement holds for $d_{v}=k$ and consider the case $d_{v}=k+1$. Since $d_{v}>0$ it follows that there exists an edge e connecting the vertex v to some other node u. Denote the graph obtained by removing the edge e from the graph G by X. Let $\sigma_{1} \leq \ldots \leq \sigma_{n-1}$ be the eigenvalues of the Laplacian of the graph X. From Theorem 1.1 it follows that $\sigma_{i} \leq \lambda_{i}$ for all $i=1, \ldots, n$. Using induction we obtain that $\lambda_{i-1}^{v} \leq \sigma_{i} \leq \lambda_{i}$, for all $i=2, \ldots, n \square$

Now we present our main theorem.
Theorem 2.5. For all $v=1, \ldots, n$ and for all $i=1, \ldots, n-1$,

$$
\lambda_{i}-1 \leq \lambda_{i}^{v} \leq \lambda_{i+1}
$$

Proof. The proof is a direct consequence of Lemmas 2.3 and 2.4. Z
We remark that both inequalities above are tight. To see that, we show there exist graphs such that $\lambda_{i}-1=\lambda_{i}^{v}$. Consider the graph K_{n}. It is well known that the eigenvalues of K_{n} are $0, n, \ldots, n$, where the multiplicity of the eigenvalue n is $n-1$ and 0 is a simple eigenvalue. Now removing a vertex from K_{n} produces the graph K_{n-1}. Again the eigenvalues of K_{n-1} are $0, n-1, \ldots, n-1$, where the multiplicity of the eigenvalue $n-1$ is $n-2$ and 0 is a simple eigenvalue. To see that there are graphs that satisfy $\lambda_{i}^{v}=\lambda_{i+1}$, consider the graph without any edges.
3. Application to average leafy trees. In this section we use the weak interlacing Theorem 2.5 to obtain a bound on the average number of leaves in a random spanning tree $\mathcal{F}(G)$. Our bound is useful when $\lambda_{2}>\alpha n$, for fixed $\alpha>0$ and $|E|=O\left(n^{2}\right)$. We call such a graph a dense expander; in this case we show that the bound is linear in the number of vertices.

It is well known that the smallest eigenvalue of L is 0 and that its corresponding eigenvector is $(1,1, \ldots, 1)$. If G is connected, all other eigenvalues are greater than 0 . Let P^{v} denote the submatrix of L obtained by deleting the v th row and v th column. Then, by the Matrix Tree Theorem, for each vertex $v \in V$ we have $t(G)=\left|\operatorname{det}\left(P^{v}\right)\right|$, where $t(G)$ is the number of spanning trees of G. One can rephrase the Matrix Tree Theorem in terms of the spectrum of the Laplacian matrix. The next theorem appears in [1, p. 284]; it connects the eigenvalues of the Laplacian of G and $t(G)$.

Theorem 3.1. Let G be a graph on n vertices and let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of the Laplacian of G. Then the number of labeled spanning trees in G is $\frac{1}{n} \prod_{i=2}^{n} \lambda_{i}$.

Let G be a graph. Using the previous theorem it is possible to define the following probability space: $\Omega(G)=\{T: T$ is a spanning tree in $G\}$. On this set we take a spanning tree in a uniform probability. We are interested in finding the average number of leaves in a random spanning tree. Let T be a random spanning tree taken from $\Omega(G)$ with the uniform distribution. Denote by $\mathcal{F}(G)$ the expected number of leaves in T. Using the matrix theorem we can get a formula to compute the average number of leaves in a random spanning tree.

Lemma 3.2.

$$
\mathcal{F}(G)=\sum_{v \in V} \frac{n d_{v} \prod_{i=2}^{n-1} \lambda_{i}^{v}}{(n-1) \prod_{i=2}^{n} \lambda_{i}}
$$

Proof. The number of trees that have vertex v as a leaf is $\frac{d_{i} \prod_{i=2}^{n-1} \lambda_{i}^{v}}{n-1}$. The lemma follows by summing over all vertices and dividing by the total number of trees.

The weak interlacing theorem enables us to bound the average number of leaves in a dense expander graph. More precisely, we show that $\mathcal{F}(G)=O(n)$.

THEOREM 3.3. Let G be a graph. If $\lambda_{2}>\alpha n$, then the average number of leaves in T is bigger than $\frac{2|E| e \frac{-1}{\alpha}}{\lambda_{n}}$.

Proof.

$$
\begin{aligned}
\mathcal{F}(G) & =\sum_{v \in V} \frac{n d_{v} \prod_{i=2}^{n-1} \lambda_{i}^{v}}{(n-1) \prod_{i=2}^{n} \lambda_{i}} \\
& \geq \sum_{v \in V} \frac{n d_{v} \prod_{i=2}^{n-1}\left(\lambda_{i}-1\right)}{(n-1) \prod_{i=2}^{n} \lambda_{i}} \\
& =\sum_{v \in V} \frac{n d_{v} \prod_{i=2}^{n-1} \frac{\lambda_{i}-1}{\lambda_{i}}}{(n-1) \lambda_{n}} \\
& =\sum_{v \in V} \frac{n d_{v} \prod_{i=2}^{n-1}\left(1-\frac{1}{\lambda_{i}}\right)}{(n-1) \lambda_{n}} \\
& \geq \sum_{k \in V} \frac{n d_{k}\left(1-\frac{1}{\lambda_{2}}\right)^{n}}{(n-1) \lambda_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{2|E| e^{\frac{-n}{\lambda_{2}}}}{\lambda_{n}} \\
& \geq \frac{2|E| e^{\frac{-1}{\alpha}}}{\lambda_{n}}
\end{aligned}
$$

Corollary 3.4. For any constant $\alpha>0$, if $\lambda_{2}>\alpha n$, and $|E|=O\left(n^{2}\right)$, then the average number of leaves in T is $O(n)$.

Conclusion. In this paper we proved a weak interlacing theorem for the Laplacian. Using this theorem we showed that in a dense expander the average number of leaves is $O(n)$. A natural open question is to show that the average number of leaves in a random tree is an approximation to the maximal spanning leafy tree.

Acknowledgment. I would like to thank Ronald de Wolf for helpful discussions.

REFERENCES

[1] Chris D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001.
[2] Suk-Geun Hwang. Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices. Amer. Math. Monthly, 111:157-159, 2004.
[3] H. Golub and C. F. Van Loan. Matrix Computations. 2nd ed., Johns Hopkins University Press, Baltimore, 1989

[^0]: *Received by the editors 29 May 2006. Accepted for publication 30 January 2007. Handling Editor: Richard A. Brualdi.
 ${ }^{\dagger}$ Ben Gurion University, Communication Systems Engineering, Beer Sheva, Israel (zvilo@cse.bgu.ac.il).

