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NOTE ON DELETING A VERTEX AND WEAK INTERLACING OF
THE LAPLACIAN SPECTRUM∗

ZVI LOTKER†

Abstract. The question of what happens to the eigenvalues of the Laplacian of a graph when
we delete a vertex is addressed. It is shown that

λi − 1 ≤ λv
i ≤ λi+1,

where λi is the ith smallest eigenvalues of the Laplacian of the original graph and λv
i is the ith smallest

eigenvalues of the Laplacian of the graph G[V −v]; i.e., the graph obtained after removing the vertex

v. It is shown that the average number of leaves in a random spanning tree F(G) >
2|E|e

−1
α

λn
, if

λ2 > αn.

Key words. Spectrum, Random spanning trees, Cayley formula, Laplacian, Number of leaves.

AMS subject classifications. 05C30, 34L15, 34L40.

1. Introduction. Given a graph G = (V,E) with n vertices V = {1, ..., n} and
E edges, let A be the adjacency matrix of G, i.e. ai,j = 1 if vertex i ∈ V is adjacent to
vertex j ∈ V and ai,j = 0 otherwise. The Laplacian matrix of graph G is L = D−A,
where D is a diagonal matrix where di,i is equal to the degree di of vertex i in G.
The Laplacian of a graph is one of the basic matrices associated with a graph. The
spectrum of the Laplacian fully characterizes the Laplacian (for more detail see [1]).
Since L is symmetric and positive semidefinite, its eigenvalues are all nonnegative.
We denote them by λ1 ≤ ... ≤ λn. One of the elementary operations on a graph is
deleting a vertex v ∈ V , we denote the graph obtained from deleting the node v by
G[V − v], and the Laplacian Matrix of G[V − v] by Lv. Finally let λv

1 ≤ ... ≤ λv
n−1

be the eigenvalues of Lv
i . A well known theorem in Algebraic Graph theory is the

interlacing of Laplacian spectrum under addition/deletion of an edge; see for example
[1, Thm. 13.6.2]) quoted next.

Theorem 1.1. Let X be a graph with n vertices and let Y be obtained from X
by adding an edge joining distinct vertices of X then

λi−1(L(Y )) ≤ λi(L(X)) ≤ λi(L(Y )),

for all i = 1, ..., n, (we assume that λ0 = −∞).
We remark that the eigenvalues of adjacency matrices A(G) and A(G[V −v]) also

interlace; see, for example, [1, Thm. 9.1.1]. A natural question is whether we get
a similar behavior for the Laplacian when we add/delete a vertex. In this note we
study this question.
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Related Work. This work uses two theorems from Matrix Analysis. The first is
Cauchy’s Interlacing theorem which states that the eigenvalues of a Hermitian matrix
A of order n interlace the eigenvalues of the principal submatrix of order n − 1,
obtained by removing the ith row and the ith column for each i ∈ {1, ..., n}.

Theorem 1.2. Let A be a Hermitian matrix of order n and let B be a principal
submatrix of A of order n− 1. Then the eigenvalues of A and B are interlacing i.e.
λ1(A) ≤ λ1(B)≤λ2(A)≤· · ·≤ λn−1(B)≤λn(A).

Proof of this theorem can be found in [2].
The second theorem we use is the Courant-Fischer Theorem. This theorem is an

extremely useful characterization of the eigenvalues of symmetric matrices.
Theorem 1.3. Let L be a symmetric matrix. Then
1. the ith eigenvalue λi of L is given by

λi = min
U

max
x∈U

xtLx

xtx
;

2. the (n− i+ 1)st eigenvalue λn−i+1 of L is given by

λn−i+1 = max
U

min
x∈U

xtLx

xtx
,

where U ranges over all i dimensional subspaces.
Proof of this theorem can be found in [3, p. 186]. Let v ∈ V be a vertex. Let

P be the principal submatrix after we delete the row and column that correspond to
the vertex v of the Laplacian. Denote the eigenvalues of P by ρ1 ≤ · · · ≤ ρn−1.

2. Weak Interlace for the L,Lv. In this section we show a weak interlacing
connection between the L and Lv. Since L is a symmetric matrix we can use Cauchy’s
interlacing theorem. The next corollary simply applies this theorem for L and P .

Corollary 2.1. λ1 ≤ ρ1 ≤ · · · ≤ ρn−1 ≤ λn.
The next lemma uses the Courant-Fischer Theorem in order to prove weak inter-

lacing for L,P .
Lemma 2.2. For all i = 1, ..., n− 1, ρi ≤ λv

i + 1
Proof. Let Iv = P − Lv. Note that Iv is a (0,1) diagonal matrix whose jth

diagonal entry is 1 if and only if j is connected to v in G. Fix i ∈ {1, ..., n−1}. Using
the Courant-Fischer Theorem it follows that

ρn−i+1 = max
U

min
x∈U

{x
tPx

xtx
: U ⊆ R

n, dim(U) = i, x ∈ U = span(U)},

where xt is the transpose of x. Substituting Lv + Iv in P it follows that

ρn−i+1 = max
U

min
x∈U

{x
t(Lv + Iv)x

xtx
: U ⊆ R

n, dim(U) = i, x ∈ U = span(U)}.

Using standard calculus we get

ρn−i+1 ≤ max
U

min
x∈U

{x
tLvx

xtx
: U ⊆ R

n, dim(U) = i, x ∈ U = span(U)}

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 68-72, February 2007



ELA

70 Z. Lotker

+ max
U

min
x∈U

{x
tIvx

xtx
: U ⊆ R

n, dim(U) = i, x ∈ U = span(U)}
≤ λv

n−i+1 + 1.

We now use the previous lemma to get a lower bound on λv
i .

Lemma 2.3. For all v = 1, ..., n and for all i = 1, ..., n− 1,

λi − 1 ≤ λv
i .

Proof. Fix i ∈ {1, ..., n− 1}. From Lemma 2.2 it follows that ρi ≤ λv
i + 1. Now

this lemma follows from substituting the conclusion of Corollary 2.1 into the previous
inequality λi ≤ ρi ≤ λv

i + 1.
The next lemma provides an upper bound on λv

i .
Lemma 2.4. For all v = 1, ..., n and for all i = 1, ..., n− 1,

λv
i ≤ λi+1.

Proof. We prove this lemma by induction on dv, the degree of the node v. If
the degree is dv = 0, then by removing the node v we reduce the multiplicity of the
small eigenvalues, which is 0. Formally λv

i = λi+1 for i = 1, ..., n− 1. Therefore the
lemma holds in this case. For the induction step, suppose that the statement holds for
dv = k and consider the case dv = k + 1. Since dv > 0 it follows that there exists an
edge e connecting the vertex v to some other node u. Denote the graph obtained by
removing the edge e from the graph G by X . Let σ1 ≤ .... ≤ σn−1 be the eigenvalues
of the Laplacian of the graph X . From Theorem 1.1 it follows that σi ≤ λi for all
i = 1, ..., n. Using induction we obtain that λv

i−1 ≤ σi ≤ λi, for all i = 2, ..., n
Now we present our main theorem.
Theorem 2.5. For all v = 1, ..., n and for all i = 1, ..., n− 1,

λi − 1 ≤ λv
i ≤ λi+1.

Proof. The proof is a direct consequence of Lemmas 2.3 and 2.4.
We remark that both inequalities above are tight. To see that, we show there

exist graphs such that λi − 1 = λv
i . Consider the graph Kn. It is well known that the

eigenvalues of Kn are 0, n, ..., n, where the multiplicity of the eigenvalue n is n − 1
and 0 is a simple eigenvalue. Now removing a vertex from Kn produces the graph
Kn−1. Again the eigenvalues of Kn−1 are 0, n − 1, ..., n − 1, where the multiplicity
of the eigenvalue n − 1 is n − 2 and 0 is a simple eigenvalue. To see that there are
graphs that satisfy λv

i = λi+1, consider the graph without any edges.

3. Application to average leafy trees. In this section we use the weak inter-
lacing Theorem 2.5 to obtain a bound on the average number of leaves in a random
spanning tree F(G). Our bound is useful when λ2 > αn, for fixed α > 0 and
|E| = O(n2). We call such a graph a dense expander; in this case we show that the
bound is linear in the number of vertices.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 16, pp. 68-72, February 2007



ELA

Weak Interlacing of the Laplacian Spectrum 71

It is well known that the smallest eigenvalue of L is 0 and that its corresponding
eigenvector is (1, 1, . . . , 1). If G is connected, all other eigenvalues are greater than 0.
Let P v denote the submatrix of L obtained by deleting the vth row and vth column.
Then, by the Matrix Tree Theorem, for each vertex v ∈ V we have t(G) = | det(P v)|,
where t(G) is the number of spanning trees of G. One can rephrase the Matrix Tree
Theorem in terms of the spectrum of the Laplacian matrix. The next theorem appears
in [1, p. 284]; it connects the eigenvalues of the Laplacian of G and t(G).

Theorem 3.1. Let G be a graph on n vertices and let λ1 ≤ λ2 ≤ · · · ≤ λn be the
eigenvalues of the Laplacian of G. Then the number of labeled spanning trees in G is
1
n

∏n
i=2 λi.
Let G be a graph. Using the previous theorem it is possible to define the following

probability space: Ω(G) = {T : T is a spanning tree in G}. On this set we take a
spanning tree in a uniform probability. We are interested in finding the average
number of leaves in a random spanning tree. Let T be a random spanning tree taken
from Ω(G) with the uniform distribution. Denote by F(G) the expected number of
leaves in T . Using the matrix theorem we can get a formula to compute the average
number of leaves in a random spanning tree.

Lemma 3.2.

F(G) =
∑

v∈V

ndv

∏n−1
i=2 λv

i

(n− 1)
∏n

i=2 λi
.

Proof. The number of trees that have vertex v as a leaf is di
Qn−1

i=2 λv
i

n−1 . The lemma
follows by summing over all vertices and dividing by the total number of trees.

The weak interlacing theorem enables us to bound the average number of leaves
in a dense expander graph. More precisely, we show that F(G) = O(n).

Theorem 3.3. Let G be a graph. If λ2 > αn, then the average number of leaves

in T is bigger than 2|E|e−1
α

λn
.

Proof.

F(G) =
∑

v∈V

ndv

∏n−1
i=2 λv

i

(n− 1)
∏n

i=2 λi

≥
∑

v∈V

ndv

∏n−1
i=2 (λi − 1)

(n− 1)
∏n

i=2 λi

=
∑

v∈V

ndv

∏n−1
i=2

λi−1
λi

(n− 1)λn

=
∑

v∈V

ndv

∏n−1
i=2 (1− 1

λi
)

(n− 1)λn

≥
∑

k∈V

ndk(1 − 1
λ2
)n

(n− 1)λn
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≥ 2|E|e−n
λ2

λn

≥ 2|E|e−1
α

λn
.

Corollary 3.4. For any constant α > 0, if λ2 > αn, and |E| = O(n2), then
the average number of leaves in T is O(n).

Conclusion. In this paper we proved a weak interlacing theorem for the Lapla-
cian. Using this theorem we showed that in a dense expander the average number of
leaves is O(n). A natural open question is to show that the average number of leaves
in a random tree is an approximation to the maximal spanning leafy tree.
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