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Abstract. Inertially arbitrary nonzero patterns of order at most 4 are characterized. Some of
these patterns are demonstrated to be inertially arbitrary but not spectrally arbitrary. The order 4
sign patterns which are inertially arbitrary and have a nonzero pattern that is not spectrally arbitrary
are also described. There exists an irreducible nonzero pattern which is inertially arbitrary but has
no signing that is inertially arbitrary. In fact, up to equivalence, this pattern is unique among the
irreducible order 4 patterns with this property.
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1. Introduction: Definitions and Context. A sign pattern is a matrix A =
[Aij ] with entries in {+,−, 0}. The set of all real matrices with the same sign pattern
as A is the qualitative class

Q(A) = {A = [aij ] ∈ Mn(R) : sign(aij) = Aij for all i, j}.

A nonzero pattern is a matrix A = [Aij ] with entries in {∗, 0} with

Q(A) = {A ∈ Mn(R) : aij �= 0 ⇔ Aij = ∗ for all i, j}.

If a real matrix A is in Q(A), then A is called a matrix realization of A. The character-
istic polynomial of A is denoted by pA(x) and a pattern A realizes a polynomial p(x)
if there is a matrix A ∈ Q(A) such that pA(x) = p(x). A signing of a nonzero pattern
A is a fixed sign pattern B such that Bij = 0 whenever Aij = 0 and Bij ∈ {+,−}
whenever Aij = ∗.

The spectrum of a sign (or nonzero) pattern A is the collection of all multisets U of
n complex numbers such that U consists of the eigenvalues of some matrix A ∈ Q(A).
A pattern A is spectrally arbitrary if every multiset of n complex numbers, closed
under complex conjugation, is in the spectrum of A.

The inertia of a matrix A is an ordered triple i(A) = (n1, n2, n3) where n1 is the
number of eigenvalues of A with positive real part, n2 is the number of eigenvalues
with negative real part, and n3 is the number of eigenvalues with zero real part.
The inertia of a sign (or nonzero) pattern A is i(A) = {i(A)|A ∈ Q(A)}. An n-by-
n pattern A is inertially arbitrary if i(A) contains every ordered triple (n1, n2, n3)
with n1 + n2 + n3 = n. If a pattern is spectrally arbitrary it must also be inertially
arbitrary.
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A sign pattern P is signature similar to pattern A if P = DADT , where D is a
diagonal matrix with diagonal entries from {+,−}. If A is a spectrally or inertially
arbitrary sign pattern, then so is any matrix obtained from A via a signature similar-
ity. If A is a spectrally or inertially arbitrary sign pattern, then so is −A. Likewise
the property of being spectrally or inertially arbitrary is invariant under transposi-
tion, or permutation similarity for both sign and nonzero patterns. Thus we say a
sign pattern P is equivalent to A if A can be obtained from P by a combination of
signature similarity, negation, transposition and permutation similarity. Likwise a
nonzero pattern P is equivalent to A if A can be obtained from P via transposition
and/or permutation similarity. We use the notation such as T (34) to represent a
permutation (34) followed by a transposition.

We say P is a subpattern of an n-by-n pattern A if P = A or P is obtained from
A by replacing one or more nonzero entries by a zero. If P is a subpattern of A,
then we also say A is a superpattern of P . A pattern which is spectrally (inertially)
arbitrary is minimal, if no proper subpattern is spectrally (inertially) arbitrary.

Spectrally and inertially arbitrary sign patterns were introduced in [6]. Classes
of inertially arbitrary sign patterns were derived by Gao and Shao [7] as well as Miao
and Li [13]. In [1], Britz et. al. characterized the spectrally arbitrary sign patterns of
order 3. In [4] the inertially arbitrary sign patterns of order 3 were characterized and
were shown to be identical to the spectrally arbitrary sign patterns of order 3. There
are other recent papers which explore classes of spectrally and inertially arbitrary sign
patterns (see for example [3, 11, 12]). Each of these sign patterns induce an inertially
arbitrary nonzero pattern.

The spectrally arbitrary nonzero patterns of order at most 4 were recently char-
acterized by Corpuz and McDonald [2]. We use their description and arguments in
Section 2 to characterize the inertially arbitrary nonzero patterns of order at most 4.

A pattern A is reducible if there is a permutation matrix P such that

PTAP =
[

A1 A2

O A3

]

where A1 and A3 are square matrices (called components of A) of order at least one.
Kim et. al. [9] explored a class of reducible nonzero patterns which are inertially but
not spectrally arbitrary. In Proposition 2.4 we demonstrate that there are order 4
irreducible nonzero patterns which are inertially but not spectrally arbitrary.

In Section 3, we explore inertially arbitrary signings of the nonzero patterns which
are inertially but not spectrally arbitrary. It was demonstrated in [4] that there is an
order 4 sign pattern which is inertially but not spectrally arbitrary: we provide more
order 4 sign patterns with this property in Section 3. In [2] it was noted that it is yet
unknown whether every spectrally arbitrary nonzero pattern has a signing which is
spectrally arbitrary. Reducible inertially arbitrary nonzero patterns, which have no
signing that is inertially arbitrary, were presented in [9]. We demonstrate in Section 3
that there is an irreducible inertially arbitrary nonzero pattern which has no signing
that is inertially arbitrary.
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2. Inertially arbitrary nonzero patterns of order at most four. We say
a pattern A contains a 2-cycle if both Aij and Aji are nonzero for some i, j with
1 ≤ i < j ≤ n.

Lemma 2.1. If pattern A is an inertially arbitrary pattern of order n, then A
must contain two nonzero entries on the diagonal, a 2-cycle and at least two nonzero
transversals.

Proof. That an inertially arbitrary pattern A needs a 2-cycle and two nonzero
diagonal entries can be obtained by observing that the corresponding results in [4]
do not depend on the signing of the entries. A must contain at least two nonzero
transversals otherwise the determinant of A is either zero or signed, in which case A
can not realize either inertia (n, 0, 0) or (n− 1, 0, 1).

It follows from Lemma 2.1 that there is exactly one nonzero pattern of order 2
which is inertially arbitrary:

T2 =
[

∗ ∗
∗ ∗

]
.

Proposition 2.2. If A is an inertially arbitrary nonzero pattern of order 3 then
A is equivalent to a superpattern of

D1 =


 ∗ ∗ 0

∗ 0 ∗
∗ 0 ∗


 or D2 =


 ∗ ∗ 0

∗ 0 ∗
0 ∗ ∗


 .

Proof. A reducible order 3 pattern with two nonzero transversals would necessar-
ily have a nonzero component of order 1 and hence would not realize inertia (0, 0, 3).
Thus, by Lemma 2.1, an order 3 inertially arbitrary pattern must be irreducible. An
irreducible pattern of order three satisfying the conditions of Lemma 2.1 must have
at least six nonzero entries.

Up to equivalence, the patterns D1 and D2 are the only irreducible patterns with
six nonzero entries satisfying the conditions of Lemma 2.1. In particular, suppose D
has two nonzero diagonal entries, a 2-cycle, two nonzero transversals, and exactly six
nonzero entries. Up to permutation we may assume that D11 and D33 are nonzero.
Up to the permutation (13), we may also assume D12D21 �= 0 or D13D31 �= 0 since
D has a 2-cycle. If D13D31 �= 0, then any placement of the remaining two nonzeros
would give a pattern which is either reducible or has at most one nonzero tansversal.
Thus D12 �= 0 and D21 �= 0. If D �= D2, then up to transposition, D = D1, since D is
irreducible and has two nonzero transversals.

Any superpattern of D1 or D2 is spectrally arbitrary (see [2]) and hence inertially
arbitrary. Any irreducible pattern with more than six nonzero entries and satisfying
Lemma 2.1 is equivalent to a superpattern of D1 or D2.

Proposition 2.3. If A is a reducible inertially arbitrary nonzero pattern of order
4, then A is equivalent to a superpattern of T2 ⊕ T2.
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Proof. Suppose A is an order 4 reducible inertially arbitrary pattern. Then each
component of A must be of order 2 and must realize both the inertias (2, 0, 0) and
(0, 0, 2). In order to realize inertia (2, 0, 0), each component must have a nonzero
element on the diagonal. But then to realize inertia (0, 0, 2), each component must
have two nonzeros on the diagonal. Since each component is irreducible, it follows
that A is a superpattern of T2 ⊕ T2.

Let

N ∗
1 =




∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗


 , N ∗

2 =




∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗
∗ ∗ 0 0


 and N ∗

3 =




∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 ∗
∗ 0 0 0


 .

Pattern N ∗
2 was demonstrated to be inertially arbitrary and not spectrally arbitrary

by Corpuz and McDonald in [2, Corollary 3.8]. We next demonstrate that there are
two other irreducible nonzero patterns of order 4, namely N ∗

1 and N ∗
3 , which are

inertially but not spectrally arbitrary.

Proposition 2.4. The patterns N ∗
1 ,N ∗

2 , and N ∗
3 are inertially but not spec-

trally arbitrary. Any proper superpattern of N ∗
1 ,N ∗

2 or N ∗
3 is spectrally (and hence

inertially) arbitrary.

Proof. It was demonstrated in [4] that there is a sign pattern with nonzero pattern
N ∗

1 which is inertially arbitrary. Thus N ∗
1 is an inertially arbitrary nonzero pattern.

But N ∗
1 is not spectrally arbitrary since it is equivalent to a proper subpattern of

B =




∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0


 ,

and B is a minimal spectrally arbitrary pattern (see the first pattern in the fourth
row of [2, Appendix B]).

The pattern N ∗
2 is shown to be inertially arbitrary and not spectrally arbitrary

by Corpuz and McDonald in [2, Corollary 3.8].
The pattern N ∗

3 appears as the second matrix in the first row of [2, Appendix
C] and hence is not spectrally arbitrary. The following are matrix examples of A ∈
Q(N ∗

3 ) with inertia triples (0, 0, 4), (1, 0, 3), (1, 1, 2), (2, 0, 2), (2, 2, 0), (2, 1, 1), (3, 0, 1),
(3, 1, 0), (4, 0, 0) respectively.

2
64

1 2 1 0
−2 −1 −1 0

1 0 0 1
1 0 0 0

3
75

2
64

2 −1 −1 0
2 −1 −1 0
1 0 0 −1
1 0 0 0

3
75

2
64

1 −1 −2 0
1 −1 −1 0
2 0 0 −1
1 0 0 0

3
75

2
64

1 −1 −1 0
2 1 −1 0
1 0 0 2

−1 0 0 0

3
75

2
64

−1 −1 −1 0
−1 1 −1 0
−1 0 0 1
−1 0 0 0

3
75

2
64

−1 −1 −1 0
−1 −1 −1 0
−1 0 0 −1
−1 0 0 0

3
75
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2
64

1 −1 1 0
−1 1 −1 0
−1 0 0 −1
−1 0 0 0

3
75

2
64

−1 −1 −1 0
−1 1 −1 0
−1 0 0 −1
−1 0 0 0

3
75

2
64

1 −1 −1 0
1 1 −1 0
1 0 0 1

−1 0 0 0

3
75

Note that if A ∈ Q(N ∗
3 ) then −A ∈ Q(N ∗

3 ), and so if (n1, n2, n3) ∈ i(N ∗
3 ) then

(n2, n1, n3) ∈ i(N ∗
3 ). Therefore N ∗

3 is inertially arbitrary.
We next claim that any superpattern of N ∗

1 with nine nonzero entries is spectrally
arbitrary. Suppose A is a superpattern of N ∗

1 with nine nonzero entries. If any one of
the entries A13,A21,A34 or A42 are nonzero, then A is equivalent to a superpattern of
the second matrix in row three of [2, Appendix A] (using the transformations T (324),
(34), (3241), and T (134) respectively on A to obtain each desired pattern). If either
entry A14 or A41 is nonzero, then A is equivalent to a superpattern of the first matrix
in the fifth row of [2, Appendix A] (via transformation (213) and T (13) respectively).
If either entry A22 or A33 is nonzero, then A is equivalent to the spectrally arbitrary
pattern B. In each case, these superpatterns of N ∗

1 are spectrally arbitrary and hence
inertially arbitrary.

Finally we note that any superpattern of N ∗
1 , N ∗

2 or N ∗
3 with ten nonzero entries

will not appear in [2, Appendix D], since each pattern in [2, Appendix D] has at
most one nonzero transversal. Therefore any superpattern of N ∗

1 , N ∗
2 or N ∗

3 with
ten nonzero entries will be spectrally arbitrary by [2, Theorem 3.6]. Also by [2,
Theorem 3.6], any superpattern of N ∗

1 , N ∗
2 or N ∗

3 with more than ten nonzero entries
is spectrally arbitrary.

Next we characterize the order 4 irreducible inertially arbitrary nonzero patterns.
It is interesting to note that Proposition 2.3 demonstrates that the conditions of
Lemma 2.1 are sufficient for an order 3 irreducible pattern to be inertially arbitrary.
On the other hand, these conditions are not sufficient for order 4 irreducible patterns;
a careful look at the proof Theorem 2.5 reveals that there are 14 (non-equivalent)
irreducible patterns of order 4 satisfying Lemma 2.1 which are not inertially arbitrary.

All of the nonzero patterns in Appendix 1 are irreducible and are shown to be
spectrally arbitrary by Corpuz and McDonald [2] and hence are inertially arbitrary.
Note that the matrices in Appendix 1 consist of the matrices from [2, Appendix A]
followed by the matrices from [2, Appendix B], except for B which is equivalent to a
superpattern of N ∗

1 .

Theorem 2.5. Let A be a 4×4 irreducible nonzero pattern. Then A is inertially
arbitrary if and only if up to equivalence, A is a superpattern of N ∗

1 ,N ∗
2 , N ∗

3 , or one
of the nonzero patterns in Appendix 1. Further, the patterns in the Appendices are
minimal inertially arbitrary patterns.

Proof. For the sake of brevity, we refer extensively to the arguments by Corpuz
and McDonald [2]. For reference purposes, we put the notation of [2] in the footnotes.

Suppose A is an irreducible inertially arbitrary pattern. Note by Lemma 2.1
we know that A has two nonzero diagonal entries. In fact, by the requirements of
Lemma 2.1 and irreducibility, it follows that A must have at least seven nonzero
entries.
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We next claim that A must have at least eight nonzero entries. In [2, Lemma 3.4],
Corpuz and McDonald observe that an order 4 spectrally arbitrary pattern needs at
least eight nonzero entries. Their proof can be reworked to apply to inertially arbitrary
patterns. In particular, using results similar to Lemma 2.1, Corpuz and McDonald
identify only one candidate 1 with seven nonzero entries satisfying Lemma 2.1:

P1 =




0 ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗


 .

We note that Kim et. al. [9, Theorem 3] have shown that P1 is not inertially arbitrary.
Therefore A must contain at least eight nonzero entries.

Case 1. Suppose A has exactly eight nonzero entries. We carefully follow the
proof of Theorem 3.5 from Corpuz and McDonald [2]. By considering the character-
istic polynomial for a matrix realization, Corpuz and McDonald [2] showed that for
some of their cases, if the coefficient of x3 is set to equal zero then the coefficient of x
will be nonzero. These nonzero patterns cannot obtain the inertia (0, 0, 4) and thus
are not inertially arbitrary. There are also patterns which were identified to fail the
conditions of Lemma 2.1. Below we consider the remaining patterns.

Consider the pattern 2

P2 =




∗ ∗ 0 0
∗ ∗ ∗ 0
0 0 0 ∗
∗ 0 ∗ 0


 .

We claim that this nonzero pattern cannot obtain the inertia (1, 0, 3), since the char-
acteristic polynomial

p(x) = x4 − qx3 + px2 − pqx

with p ≥ 0, q > 0 cannot be realized. Otherwise, if A ∈ Q(P2) and pA(x) = p(x),
then

a11 + a22 = q
a11a22 − a12a21 − a34a43 = p and

(a11 + a22)a34a43 = −pq.

Thus a34a43 = −p. But then det(A) = −a41a12a23a34 contradicting the fact that the
constant term in pA(x) is zero. Thus P2 is not inertially arbitrary.

Later, Corpuz and McDonald consider the pattern 3

P3 =




∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗


 .

1In [2], A1∗ with a33 and a44 nonzero.
2In [2], A1∗ with a11, a22, and a43 nonzero.
3In [2], A1∗ with a11, a33, and a44 nonzero.
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They give an argument showing that if the coefficient of x3 and x are both zero, then
the coefficient of x2 is nonzero, in particular negative. This is enough to show that
the inertia (0, 0, 4) cannot be realized and hence P3 is not inertially arbitrary.

Finally, consider the pattern 4

P4 =




∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 0 ∗
∗ ∗ 0 0


 .

We claim P4 cannot realize the inertia (0, 0, 4). Let A ∈ Q(P4). By positive diagonal
similarity, we may assume a12 = a23 = a34 = 1. Now suppose i(A) = (0, 0, 4). Thus
pA(x) = x4 + (p + q)x2 + pq for some p, q ≥ 0. Since the coefficient of x3 is zero,
a22 = −a11. Since the coefficient of x is zero,

a11 =
a42 + a41a24

a24a42

and thus det(A) = a42
a24

�= 0. Since the constant term in pA(x) is nonnegative, a42 and
a24 have the same sign. Thus the coefficient of x2 is −((a11)2 + a42a24) < 0, but this
contradicts the fact that p + q ≥ 0. Therefore P4 is not inertially arbitrary.

The pattern 5




∗ ∗ 0 0,
0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0




is equivalent to N ∗
1 and is inertially arbitrary as noted in Proposition 2.4.

This completes the case where A has exactly eight nonzeros: A is either equivalent
to N ∗

1 or is spectrally arbitrary and appears in [2, Appendix A].
Case 2: Suppose A has nine nonzero entries. By Lemma 2.1, A is not a sub-

pattern of a pattern in [2, Appendix D] since such subpatterns would have less than
two nonzero transversals. The patterns N ∗

3 and N ∗
2 have been noted to be inertially

arbitrary in Proposition 2.4; these appear as the second and fourth matrices in the
first row of [2, Appendix C]. Also note that all the patterns in the third row, as well
as the first and third patterns in the second row of [2, Appendix C] are not inertially
arbitrary as they all have exactly one nonzero term in the determinant. It remains
to show that the first and third patterns in row one and the second pattern in row
two of [2, Appendix C] are not inertially arbitrary. But considering the characteristic
polynomial for any matrix having one of these patterns, Corpuz and McDonald [2]
showed that if the coefficient of x3 is set to equal zero then the coefficient of x will be
nonzero. Hence, these nonzero patterns cannot obtain the inertia (0, 0, 4); thus they
are not inertially arbitrary.

4In [2], A2∗ with b11 and b22 nonzero.
5In [2], A2∗ with b11 and b33 nonzero.
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Therefore, in this case, if A is not the pattern N ∗
3 or N ∗

2 , then A appears in [2,
Appendix B] or is a superpattern of a pattern in [2, Appendix A] and hence is spec-
trally arbitrary. (Recall that B is the first pattern in the fourth row of [2, Appendix B]
and is equivalent to a proper superpattern of N ∗

1 . Hence B is not a minimal inertially
arbitrary pattern.)

Case 3: Suppose A has ten nonzero entries. Note that A does not appear in
[2, Appendix D], because each pattern in [2, Appendix D] has at most one nonzero
transversal and thus fails a condition of Lemma 2.1. Therefore A is spectrally arbi-
trary [2, Theorem 1.2 (iv)] and hence inertially arbitrary.

Case 4: Suppose A has at least eleven nonzero entries. In this case A is spectrally
arbitrary [2, Theorem 1.2(v)] and hence inertially arbitrary.

Finally, we note that by the nature in which this proof discovers the inertially
arbitrary patterns, starting with the ones with the fewest entries, (and the fact that
no pattern in [2, Appendix B] is a superpattern of a pattern in [2, Appendix A]) the
patterns in the appendices are all minimal inertially arbitrary patterns.

In [1] it was demonstrated that any irreducible spectrally arbitrary sign pattern
must have at least 2n − 1 nonzero entries and conjectured that no fewer than 2n
nonzero entries are possible in any irreducible spectrally arbitrary pattern. In [2],
this 2n conjecture was extended to include nonzero spectrally arbitrary patterns and
demonstrated to be true for patterns of order at most four. In [5], the conjecture is
confirmed for patterns up to order five. Reducible inertially arbitrary nonzero patterns
were found in [9] which have less than 2n nonzero entries. As for irreducible patterns,
Proposition 2.2 and Theorem 2.5 demonstrate that at least 2n nonzero entries are
needed in an irreducible inertially arbitrary pattern for each order n ≤ 4. We have
yet to find any order n > 4 irreducible inertially arbitrary nonzero pattern with less
than 2n nonzero entries.

In [2], the question was raised as to what is the maximum number of nonzero
entries possible in an irreducible nonzero pattern of order n which is not spectrally
arbitrary. The same question might be asked with respect to inertially arbitrary
patterns. The example given in [2, Theorem 1.4] provides an example of a pattern
with many nonzero entries which is not spectrally arbitrary; we note that the same
example is not inertially arbitrary. In particular there is an irreducible pattern of
order n with n2 − 2n + 2 nonzero entries which is not inertially arbitrary.

3. Some inertially arbitrary sign patterns that are not spectrally ar-
bitrary. With Proposition 2.4 and Theorem 2.5, we have characterized the nonzero
patterns of order 4 which are inertially but not spectrally arbitrary. ¿From these
patterns, we now determine the signed patterns which are inertially arbitrary and
have a nonzero pattern that is (inertially but) not spectrally arbitrary. It follows that
these sign patterns (labelled N1, N2,1 and N2,2 below) are inertially but not spectrally
arbitrary.

Each pattern in Appendix 1 has a signing which is spectrally arbitrary [2] and
hence inertially arbitrary. We will see in Corollary 3.6 that, up to equivalence, N ∗

3

is the only order 4 inertially arbitrary pattern that has no signing which is inertially
arbitrary. Some reducible nonzero patterns that are inertially arbitrary but have no
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signing which is inertially arbitrary may be found in [9].

Proposition 3.1. Up to equivalence,

N1 =




+ + 0 0
0 0 + +
− − 0 0
0 0 − −




is the only inertially arbitrary signing of N ∗
1 .

Proof. The sign pattern N1 was demonstrated to be inertially arbitrary in [4].
Let A be a signing of N ∗

1 which is inertially arbitrary. Since an inertially arbitrary
sign pattern must contain both a positive and negative on the main diagonal, we may
assume, up to equivalence that A11 = +, A44 = −. By signature similarity, we may
also assume A12 = +, A23 = + and A24 = +. Further, since an inertially arbitrary
pattern must have a negative 2-cycle [4, Lemma 5.1], A32 = −. If both A43 and A31

are positive, then the determinant is signed. Thus the corresponding sign pattern is
not inertially arbitrary. If both A43 and A31 are negative, then we get a sign pattern
equivalent to N1.

Finally, assume the product A31A43 is negative. If A ∈ Q(A), then by a positive
diagonal similarity, A is equivalent to




a 1 0 0
0 0 1 1
u −b 0 0
0 0 v −c


 ,

where a, b, c > 0, and uv < 0. The characteristic polynomial of A is

x4 + (c− a)x3 + (b− ac)x2 + (−u + bc + vb− ab)x− abc− vab− uc− uv.

In order to obtain the inertia (0, 0, 4) the coefficients of x3 and x must be zero. In this
case c = a, and hence u = vb. This contradicts the fact that uv is negative. Therefore
the corresponding sign pattern is not inertially arbitrary.

Let

N2,1 =




+ + + 0
− − − 0
0 0 0 +
− − 0 0


 and N2,2 =




+ + + 0
− − − 0
0 0 0 −
− − 0 0


 .

We will determine that N2,1, and N2,2 are inertially arbitrary sign patterns. The next
argument uses a technique from [10, Lemma 5].

Lemma 3.2. For any r1, r2, r4 ∈ R and r3 �= 0, there exists a matrix A ∈ Q(N2,1)
and B ∈ Q(N2,2) such that

pA(x) = pB(x) = x4 + r1x
3 + r2x

2 + r3x + r4.
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Proof. For c > 0, since A ∈ Q(A) if and only if cA ∈ Q(A), and since

pcA(x) = x4 + cr1x
3 + c2r2x

2 + c3r3x + c4r4,

it suffices to show that the result holds for (r1, r2, r3, r4) arbitrarily close to (0, 0, 0, 0)
with r3 �= 0. Consider the matrix

(3.1) A =




a11 a12 1 0
−1 −a22 −1 0
0 0 0 v

−a41 −a42 0 0




with aij > 0 and v �= 0. Then A has characteristic polynomial

x4 +(a22−a11)x3 +(a12−a11a22)x2 + v(a41−a42)x+ v[a41(a22 −a12)+a42(a11 −1)].

We will analyze the sign patterns N2,1 and N2,2 simultaneously by fixing either v = 1
or v = −1 accordingly. Fix r3 �= 0. Then fix positive numbers a41 and a42 such that
v(a41 − a42) = r3. We seek positive numbers a11, a22, a12 such that

a22 − a11 − r1 = 0
a12 − a11a22 − r2 = 0 and

v[a41(a22 − a12) + a42(a11 − 1)] − r4 = 0.

If r1 = r2 = r4 = 0, then a solution to the above system of equations is a11 = a22 =
a12 = 1. Let f1 = a22−a11, f2 = a12−a11a22, and f3 = v[a41(a22−a12)+a42(a11−1)].
Then, using the Implicit Function Theorem, it is sufficient to show that ∂(f1,f2,f3)

∂(a11,a12,a22)

is nonzero when (a11, a12, a22) = (1, 1, 1) in order to complete the proof.

∂(f1, f2, f3)
∂(a11, a12, a22)


(1,1,1)

= det


 −1 0 1

−1 1 −1
va42 −va41 va41


 = v(a41 − a42) = r3 �= 0.

Thus, for any r1, r2, r4 and any r3 �= 0 sufficiently close to 0, there exist positive
values a11, a22, a12, a41, a42 such that pA(x) = x4 + r1x

3 + r2x
2 + r3x+ r4 with r3 �= 0.

The following result mimics a result of Kim et. al. [10, Theorem 1] in which
a sufficient condition for a pattern to be inertially arbitrary is found with respect
to the set of polynomials that a pattern realizes. We use the fact that if A is a
matrix of order n with eigenvalues λ1, λ2, . . . , λn then the coefficient rk of xn−k in
the characteristic polynomial of A is described by an elementary symmetric function
(see for example [8, p.41]):

rk = (−1)k
∑

1≤i1<···<ik≤n

λi1λi2 · · ·λik
.
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Lemma 3.3. For n ≥ 4, let A be a sign pattern of order n that realizes each
polynomial p(x) = xn + r1x

n−1 + r2x
n−2 + · · · + rn−1x + rn with rn−1 �= 0. If n is

odd, then A is an inertially arbitrary sign pattern. If n is even, then A can realize all
inertias except possibly (0, 0, n).

Proof. Suppose n1 +n2 +n3 = n. Let A be a matrix having eigenvalues 1,−n, 0, i
and −i with algebraic multiplicities

n1, n2,
⌈n3

2

⌉
−

⌊n3

2

⌋
,

⌊n3

2

⌋
and

⌊n3

2

⌋

respectively. Then i(A) = (n1, n2, n3). Let pA(x) = xn + r1x
n−1 + r2x

n−2 + · · · +
rn−1x+ rn. Noting that rn−1 can be described by an elementary symmetric function,
rn−1 = ±(n)n2−1(n2 − n · n1) if n3 is even, and rn−1 = ±(n)n2 if n3 is odd. Thus,
unless n1 = n2 = 0, rn−1 �= 0 when n is even. Further rn−1 �= 0 whenever n is odd.

Let A be an n-by-n sign pattern that realizes each polynomial p(x) = xn +
r1x

n−1 + r2x
n−2 + · · ·+ rn−1x+ rn with rn−1 �= 0. Then there is a matrix A ∈ Q(A)

which realizes each spectrum above giving rn−1 �= 0. Hence, A is inertially arbitrary
whenever n is odd. If n is even then A can attain all inertias except possibly (0, 0, n).

Proposition 3.4. The sign patterns N2,1 and N2,2 are inertially arbitrary, and
up to equivalence, are the only inertially arbitrary signings of N ∗

2 .

Proof. By Lemmas 3.2 and 3.3, N2,1 and N2,2 can realize all possible inertias
except possibly (0, 0, 4). If A ∈ Q(N2,1) or A ∈ Q(N2,2) and if each nonzero entry of
A has magnitude 1, then A (see equation (3.1)) has characteristic polynomial x4 and
hence inertia (0,0,4). Therefore N2,1 and N2,2 are inertially arbitrary.

Let A be a signing of N ∗
2 which is inertially arbitrary. Since an inertially arbitrary

sign pattern must contain both a positive and negative on the main diagonal, we may
assume, up to equivalence that A11 = +, A22 = −. By signature similarity, we may
also assume A12 = +, A13 = + and A41 = −. Further, since an inertially arbitrary
pattern must have a negative 2-cycle [4, Lemma 5.1], A21 = −. If A42, A23 are
both positive then the determinant is signed, hence the corresponding sign pattern is
not inertially arbitrary. If A42, A23 are both negative, then this corresponds to the
patterns N2,1 and N2,2, and thus are inertially arbitrary. The coefficient of x is signed
if the product A42A23 is negative, and hence the inertia (0, 0, 4) cannot be obtained
in this case.

We next demonstrate that there exists an irreducible nonzero pattern which is
inertially arbitrary but has no signing that is inertially arbitrary.

Proposition 3.5. There are no inertially arbitrary signings of N ∗
3 .

Proof. Let A be a signing of N ∗
3 which is inertially arbitrary. Since an inertially

arbitrary sign pattern must contain both a positive and negative on the main diagonal,
we may assume, up to equivalence that A11 = +, A22 = −. By signature similarity,
we may also assume A12 = +, A13 = + and A34 = +. If A ∈ Q(A), then by positive
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diagonal similarity, A is equivalent to



a 1 1 0
u −b v 0
w 0 0 1
y 0 0 0




with a, b > 0 and u, v, w, y nonzero. A has characteristic polynomial

x4 + (b− a)x3 + (−u− w − ab)x2 + (−wv − wb− y)x− y(b + v).

Now consider the inertias (0, 1, 3) and (1, 0, 3) (which require a real zero eigenvalue).
In order to obtain these inertias we need v = −b for the determinant to be zero. But
then the coefficient of x is −y which will either be positive or negative depending on
the sign of y. Fixing the sign of y results in not being able to attain one of the two
inertias (0, 1, 3) or (1, 0, 3). Therefore there is no signing of N ∗

3 which is an inertially
arbitrary sign pattern.

Corollary 3.6. The nonzero pattern N ∗
3 is the only inertially arbitrary nonzero

pattern of order 4 which has no signing that is inertially arbitrary.

Proof. If A is a reducible inertially arbitrary pattern of order 4 then by Proposi-
tion 2.3 A is a superpattern of T2 ⊕ T2. Since the sign pattern

T =
[

+ +
− −

]

is spectrally arbitrary [6], an inertially arbitrary signing of A can be obtained by
constructing a signed superpattern of T ⊕ T .

We note that Corpuz and McDonald [2] showed that every superpattern of a
minimal spectrally arbitrary nonzero pattern of order n ≤ 4 has a signing which is
spectrally arbitrary. Hence each such sign pattern is inertially arbitrary. In the proof
of Proposition 2.4, we noted that any proper superpattern of N ∗

1 ,N ∗
2 , or N ∗

3 is a
superpattern of a minimal spectrally arbitrary pattern described in [2]. Hence each
such pattern is inertially arbitrary. For irreducible patterns, the result then follows
from Theorem 2.5, Proposition 3.1, Proposition 3.4, Proposition 3.5 and the fact that
every superpattern of a pattern in Appendix 1 is spectrally arbitrary.

Acknowledgement: We thank the referees for comments which improved the pre-
sentation of this paper.
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Appendix 1. Irreducible Minimal Inertially Arbitrary Patterns That Are Spec-
trally Arbitrary.

(The first 13 patterns have eight nonzero entries, the next 17 have nine nonzeros each.)

2
64

∗ ∗ 0 0
∗ 0 ∗ ∗
0 0 ∗ ∗
∗ 0 0 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ ∗ 0 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 ∗ 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗
∗ 0 0 ∗

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 0 ∗
∗ ∗ 0 ∗

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 0 ∗
∗ 0 ∗ ∗

3
75

2
64

∗ ∗ 0 ∗
∗ 0 ∗ 0
0 0 ∗ ∗
0 ∗ 0 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ ∗
0 0 ∗ ∗
0 ∗ 0 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
0 ∗ ∗ 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
0 ∗ 0 ∗

3
75

2
64

0 ∗ 0 ∗
∗ 0 ∗ 0
0 0 ∗ ∗
0 ∗ 0 ∗

3
75

2
64

∗ 0 0 ∗
∗ 0 ∗ ∗
0 0 ∗ ∗
0 ∗ 0 0

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ ∗

3
75

2
64

∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 0 ∗ ∗
∗ 0 0 0

3
75

2
64

∗ ∗ 0 0
∗ ∗ ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗

3
75

2
64

∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 0 ∗
∗ 0 0 0

3
75

2
64

∗ ∗ ∗ 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ 0
0 ∗ ∗ ∗
∗ 0 0 ∗

3
75

2
64

∗ ∗ 0 0
∗ 0 ∗ ∗
0 ∗ 0 ∗
∗ 0 0 ∗

3
75

2
64

0 ∗ ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ ∗
∗ 0 0 ∗

3
75

2
64

0 ∗ ∗ 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ ∗ 0 ∗

3
75

2
64

0 ∗ 0 0
∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 0 ∗

3
75

2
64

∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 0 ∗
∗ ∗ 0 ∗

3
75

2
64

∗ ∗ 0 0
0 ∗ ∗ ∗
∗ 0 0 ∗
∗ ∗ 0 0

3
75

2
64

0 ∗ 0 0
0 ∗ ∗ ∗
∗ 0 0 ∗
∗ ∗ 0 ∗

3
75

2
64

∗ ∗ 0 0
∗ ∗ ∗ ∗
0 0 0 ∗
0 ∗ ∗ 0

3
75

2
64

0 ∗ 0 0
∗ ∗ ∗ 0
0 0 ∗ ∗
0 ∗ ∗ ∗

3
75

2
64

0 ∗ 0 0
∗ 0 ∗ ∗
0 0 ∗ ∗
0 ∗ ∗ ∗

3
75

2
64

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ 0

3
75

2
64

0 ∗ ∗ ∗
∗ ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗

3
75

Appendix 2. Irreducible Minimal Inertially Arbitrary Patterns That Are Not
Spectrally Arbitrary

N ∗
1 =




∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗


 N ∗

2 =




∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗
∗ ∗ 0 0


 N ∗

3 =




∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 ∗
∗ 0 0 0
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