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LINEAR COMBINATIONS OF GRAPH EIGENVALUES∗

VLADIMIR NIKIFOROV†

Abstract. Let µ1 (G) ≥ . . . ≥ µn (G) be the eigenvalues of the adjacency matrix of a graph G
of order n, and G be the complement of G. Suppose F (G) is a fixed linear combination of µi (G) ,
µn−i+1 (G) , µi

�
G
�

, and µn−i+1

�
G
�
, 1 ≤ i ≤ k. It is shown that the limit

lim
n→∞

1

n
max {F (G) : v (G) = n}

always exists. Moreover, the statement remains true if the maximum is taken over some restricted
families like “Kr-free” or “r-partite” graphs. It is also shown that

29 +
√

329

42
n − 25 ≤ max

v(G)=n
µ1 (G) + µ2 (G) ≤ 2√

3
n.

This inequality answers in the negative a question of Gernert.

Key words. Extremal graph eigenvalues, Linear combination of eigenvalues, Multiplicative
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1. Introduction. Our notation is standard (e.g., see [1], [3], and [8]); in partic-
ular, all graphs are defined on the vertex set [n] = {1, . . . , n} and G stands for the
complement of G. We order the eigenvalues of the adjacency matrix of a graph G of
order n as µ1 (G) ≥ . . . ≥ µn (G) .

Suppose k > 0 is a fixed integer and α1, . . . , αk, β1, . . . , βk, γ1, . . . , γk, δ1, . . . , δk

are fixed reals. For any graph G of order at least k, let

F (G) =
k∑

i=1

αiµi (G) + βiµn−i+1 (G) + γiµi

(
G

)
+ δiµn−i+1

(
G

)
.

For a given graph property F , i.e., a family of graphs closed under isomorphism,
it is natural to look for max {F (G) : G ∈ F , v (G) = n} . Questions of this type have
been studied; here is a partial list:

max {µ1 (G) + µn (G) : G is Kr-free, v (G) = n} Brandt [2];
max {µ1 (G) − µn (G) : v (G) = n} Gregory et al. [7];
max {µ1 (G) + µ2 (G) : v (G) = n} Gernert [5];
max

{
µ1 (G) + µ1

(
G

)
: v (G) = n

}
Nosal [11], Nikiforov [9];

max
{
µi (G) + µi

(
G

)
: v (G) = n

}
Nikiforov [10].

One of the few sensible questions in such a general setup is the following one:
does the limit

lim
n→∞

1
n

max {F (G) : G ∈ F , v (G) = n}
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exist? We show that, under some mild conditions on F , this is always the case.
For any graph G = (V,E) and integer t ≥ 1, write G(t) for the graph obtained by

replacing each vertex u ∈ V by a set Vu of t independent vertices and joining x ∈ Vu

to y ∈ Vv if and only if uv ∈ E.
Call a graph property F multiplicative if : (a) F is closed under adding isolated

vertices; (b) G ∈ F implies G(t) ∈ F for every t ≥ 1. Note that “Kr-free”, “r-partite”,
and “any graph” are multiplicative properties.

Theorem 1.1. For any multiplicative property F the limit

(1.1) c = lim
n→∞

1
n

max {F (G) : G ∈ F , v (G) = n}

exists. Moreover,

c = lim sup
{

1
|G|F (G) : G ∈ F

}
.

Note that, since the αi’s, βi’s, γi’s, and δi’s may have any sign, Theorem 1.1
implies that

lim
n→∞

1
n

min {F (G) : G ∈ F , v (G) = n}

exists as well.
Gernert [5] (see also Stevanović [12]) has proved that the inequality

µ1 (G) + µ2 (G) ≤ v (G)

holds if the graph G has fewer than 10 vertices or is one of the following types: regular,
triangle-free, toroidal, or planar; he consequently asked whether this inequality holds
for any graph G. We answer this question in the negative by showing that

(1.2) 1.122n− 25 <
29 +

√
329

42
n− 25 ≤ max

v(G)=n
µ1 (G) + µ2 (G) ≤ 2√

3
n < 1.155n.

2. Proofs. Given a graph G and an integer t > 0, set G[t] = G
(t)

, i.e., G[t] is
obtained from G(t) by joining all vertices within Vu for every u ∈ V. The following
two facts are derived by straightforward methods.

(i) The eigenvalues of G(t) are tµ1 (G) , . . . , tµn (G) together with n (t− 1) addi-
tional 0’s.

(ii) The eigenvalues of G[t] are tµ1 (G) + t− 1, . . . , tµn (G) + t− 1 together with
n (t− 1) additional (−1)’s.

We shall show that the extremal k eigenvalues of G(t) and G[t] are roughly pro-
portional to the corresponding eigenvalues of G.
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Lemma 2.1. Let 1 ≤ k < n, t ≥ 2. Then for every s ∈ [k] ,

0 ≤ µs

(
G(t)

)
− tµs (G) <

tn√
n− k

,(2.1)

0 ≥ µn−s+1

(
G(t)

)
− tµn−s+1 (G) > − tn√

n− k
,(2.2)

0 ≤ µs

(
G[t]

)
− tµs (G) < t +

tn√
n− k

,(2.3)

0 ≥ µn−s+1

(
G[t]

)
− tµn−s+1 (G) > −t− tn√

n− k
.(2.4)

Proof. We shall prove (2.1) first. Fix some s ∈ [k] and note that (i) implies
that G(t) and G have the same number of positive eigenvalues. In particular, G(t)

has at most n − 1 negative eigenvalues, and so µs

(
G(t)

) ≥ 0. If µs

(
G(t)

)
> 0, then

µs (G) > 0 and µs

(
G(t)

)
= tµs (G) , so (2.1) holds. If µs

(
G(t)

)
= 0, then

0 ≥ µs (G) ≥ . . . ≥ µn (G) ,

and inequality (2.1) follows from

(n− k)µ2
s (G) ≤ (n− s + 1)µ2

s (G) ≤
n∑

i=s

µ2
i (G) < n2.

Next we shall prove (2.3). Note that (ii) implies that G[t] and G have the same
number of eigenvalues that are greater than −1. Since G[t] has at most n− 1 eigen-
values that are less than −1, it follows that µs

(
G[t]

) ≥ −1. If µs

(
G[t]

)
> −1, then

µs (G) > −1 and µs

(
G[t]

)
= tµs (G) + t− 1; thus, (2.3) holds. If µs

(
G[t]

)
= −1, then

−1 ≥ µs (G) ≥ . . . ≥ µn (G) ,

and inequality (2.3) follows from

(n− k)µ2
s (G) < (n− s + 1)µ2

s (G) ≤
n∑

i=s

µ2
i (G) < n2.

Inequalities (2.2) and (2.4) follow likewise with proper changes of signs.

We also need the following lemma.

Lemma 2.2. Let G be a graph of order n and H be an induced subgraph of G of
order n− 1. Then for every 1 ≤ s ≤ 3n/4,

0 ≤ µs (G) − µs (H) < 3
√
n,(2.5)

0 ≥ µn−s+1 (G) − µn−s (H) > −3
√
n.(2.6)
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Proof. We shall assume that V (G) = {1, . . . , n} and V (H) = {1, . . . , n− 1} . Let
A be the adjacency matrix of G and let A1 be the n× n symmetric matrix obtained
from A by zeroing its nth row and column. Since the adjacency matrix of H is the
principal submatrix of A in the first n − 1 columns and rows, the eigenvalues of A1

are µ1 (H) , . . . , µn−1 (H) together with an additional 0. This implies that, for every
s ∈ [n− 1] ,

(2.7) µs (A1) =
{

µs (H) , if µs (A1) > 0
µs−1 (H) if µs (A1) ≤ 0.

We first show that, for every s ∈ [n− 1] ,

(2.8) µs (A1) − µs (H) ≤ n√
n− s

.

In view of (2.7), this is obvious if µs (A1) > 0. If µs (A1) ≤ 0, then we have

µs (A1) − µs (H) = µs−1 (H) − µs (H) ≤ |µs (H)| .
Inequality (2.8) follows now from

(n− s)µ2
s (H) ≤ (n− s + 1)µ2

s (H) ≤
n∑

i=s

µ2
i (H) < n2.

Likewise, with proper changes of signs, we can show that, for every s ∈ [n− 1] ,

µn−s+1 (A1) − µn−s (H) ≥ − n√
n− s

.

Having proved (2.8), we turn to the proof of (2.5) and (2.6). Note that the first
inequalities in both (2.5) and (2.6) follow by Cauchy interlacing theorem. On the
other hand, Weyl’s inequalities imply that

µn (A−A1) ≤ µs (A) − µs (A1) ≤ µ1 (A−A1) .

Obviously, µ1 (A−A1) is maximal when the off-diagonal entries of the nth row and
column of A are 1’s. Thus, µ1 (A−A1) ≤ √

n− 1 and µn (A−A1) = −µ1 (A−A1) ≥
−√

n− 1. Hence,

µs (G) − µs (H) = µs (A) − µs (A1) + µs (A1) − µs (H) ≤ √
n− 1 +

n√
n− s

< 3
√
n.

Likewise,

µn−s+1 (G) − µn−s (H) = µn−s+1 (A) − µn−s+1 (A1) + µn−s+1 (A1) − µn−s (H)

≥ −√
n− 1 − n√

n− s
> −3

√
n,

completing the proof of Lemma 2.2.
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Corollary 2.3. Let G1 be a graph of order n and G2 be an induced subgraph of
G1 of order n− l. Then, for every 1 ≤ s ≤ 3 (n− l) /4,

|µs (G1) − µs (G2)| < 3l
√
n,

|µn−s+1 (G1) − µn−l−s+1 (G2)| < 3l
√
n.

Proof. Let {v1, . . . , vl} = V (G1) \V (G2) . Set H0 = G1; for every i ∈ [l] , let
Hi be the subgraph of G1 induced by the set V (G1) \ {v1, . . . , vi} ; clearly, Hl = G2.
Since Hi+1 is an induced subgraph of Hi with |Hi+1| = |Hi| − 1, Lemma 2.2 implies
that for every 1 ≤ s ≤ 3 (n− l) /4,

|µs (G1) − µs (G2)| ≤
l−1∑
i=0

|µs (Hi) − µs (Hi+1)| ≤
l−1∑
i=0

3
√
n− i < 3l

√
n,

|µn−s+1 (G1) − µn−l−s+1 (G2)| ≤
l−1∑
i=0

|µn−i+s+1 (Hi) − µn−i−1−s+1 (Hi+1)|

≤
l−1∑
i=0

3
√
n− i < 3l

√
n,

completing the proof of the corollary.

Proof of Theorem 1.1 Set

ϕ (n) =
1
n

max {F (G) : G ∈ F , v (G) = n}

Let M =
∑k

i=1 |αi| + |βi| + |γi| + |δi| and set

c = lim
n→∞ supϕ (n) .

Since |F (G)| ≤ Mn, the value c is defined. We shall prove that, in fact, c satisfies
(1.1).

Note first if t ≥ 2, n > 4k/3, and G is a graph of order n, then for any i ∈ [k] ,
Lemma 2.1 implies that

(2.9) F
(
G(t)

)
− tF (G) ≥ −M

(
t +

tn√
n− k

)
≥ −M

(
t + 2t

√
n
) ≥ −3Mt

√
n.

Select ε > 0 and let G ∈ F be a graph of order n > (3M/ε)2 such that

c + ε ≥ ϕ (n) =
F (G)

n
≥ c− ε.

Suppose N ≥ n
⌈
nmax

{
2, (|c| /ε + 1) , (3M/ε)2

}⌉
; therefore the value t = �N/n

satisfies t ≥ nmax
{

2, (|c| /ε + 1) , (3M/ε)2
}
. We shall show that ϕ (N) ≥ c − 4ε,

which implies the assertion.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 329-336, December 2006



ELA

334 V. Nikiforov

Let G1 be the union of G(t) and N − tn isolated vertices. Clearly v (G1) = N
and, since F is multiplicative, G1 ∈ F . In view of N − tn < n, Corollary 2.3 implies
that

F (G1) ≥ F
(
G(t)

)
− 3Mn

√
N.

Therefore, in view of ϕ (N) ≥ F (G1) /N and (2.9),

ϕ (N) ≥ F
(
G(t)

) − 3Mn
√
N

N
≥ tF (G) − 3Mt

√
n− 3Mn

√
N

N
.

We find that

ϕ (N) ≥ F (G)
n

− F (G) (N − tn)
nN

− 3Mt
√
n + 3Mn

√
N

N

≥ ϕ (n) − |ϕ (n)|n
N

− 3Mt
√
n + 3Mn

√
N

N

≥ ϕ (n) − n2 (|c| + |ε|) + 3Mt
√
n + 3Mn

√
N

N

≥ ϕ (n) − n2 (|c| + |ε|) + 3Mt
√
n

nt
− 3Mn√

nt

= ϕ (n) − n (|c| + |ε|)
t

− 3M√
n

− 3M
√

n

t
≥ c− 4ε,

completing the proof of Theorem 1.1. �

We turn now to the proof of inequality (1.2); we present it in two propositions.

Proposition 2.4. If G is a graph of order n, then µ1 (G) + µ2 (G) ≤ (
2/

√
3
)
n.

Proof. Setting m = e (G) , we see that

(2.10) µ2
1 (G) + µ2

2 (G) ≤ µ2
1 (G) + . . . + µ2

n (G) = 2m.

If m ≤ n2/4, the result follows from

µ1 (G) + µ2 (G) ≤
√

2 (µ2
1 (G) + µ2

2 (G)) ≤ 2
√
m ≤ n,

so we shall assume that m > n2/4. From (2.10), we clearly have

µ1 (G) + µ2 (G) ≤
√

2m− µ2
2 (G) + µ2 (G) .

The value
√

2m− x2 + x is increasing in x for x ≤ √
m. On the other hand, Weyl’s

inequalities imply that

µ2 (G) + µn

(
G

) ≤ µ2 (Kn) = −1.
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Hence, if G �= Kn, we have µ2 (G) ≥ 0 and so, µ2
2 (G) < µ2

n

(
G

)
; if G = Kn, then

µ2
2 (G) = µ2

n

(
G

)
+ 1; thus we always have

µ2
2 (G) ≤ µ2

n

(
G

)
+ 1.

From

µ2
2 (G) ≤ µ2

n

(
G

)
+ 1 ≤ e

(
G

)
+ 1 ≤ n (n− 1)

2
+ 1 −m ≤ n2

2
−m < m,

we see that

µ1 (G) + µ2 (G) ≤
√

3m− n2/2 +
√

n2/2 −m.

The right-hand side of this inequality is maximal for m = 5n2/12 and the result
follows.

Proposition 2.5. For every n ≥ 21 there exists a graph of order n with

µ1 (G) + µ2 (G) >
29 +

√
329

42
n− 25.

Proof. Suppose n ≥ 21; set k = �n/21; let G1 be the union of two copies of K8k

and G2 be the join of K5k and G1; clearly v (G2) = 21k. Add n−21k isolated vertices
to G2 and write G for the resulting graph. By Cauchy’s interlacing theorem, we have

µ1 (G) ≥ µ1 (G2) ,
µ2 (G) ≥ µ2 (G2) ≥ µ2 (G1) = 8k − 1.

Since the graphs K5k and G1 are regular, a theorem of Finck and Grohmann [6] (see
also [3], Theorem 2.8) implies that µ1 (G2) is the positive root of the equation

(x− 5k + 1) (x− 8k + 1) − 80k2 = 0,

that is to say,

µ1 (G2) =
13k − 2 + k

√
329

2
.

Alternatively, applying Theorem 9.3.3. of [4], we see that

µ1 (G2) ≥ 13k − 2 + k
√

329
2

.

Hence,

µ1 (G) + µ2 (G) ≥ (29k − 4) + k
√

329
2

>
(29 (n− 20)− 84) + (n− 20)

√
329

42

>
29 +

√
329

42
n− 25,
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completing the proof.
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