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A NOTE ON NEWTON AND NEWTON–LIKE INEQUALITIES FOR
M–MATRICES AND FOR DRAZIN INVERSES OF M–MATRICES∗

MICHAEL NEUMANN† AND JIANHONG XU‡

Abstract. In a recent paper Holtz showed that M–matrices satisfy Newton’s inequalities and so
do the inverses of nonsingular M–matrices. Since nonsingular M–matrices and their inverses display
various types of monotonic behavior, monotonicity properties adapted for Newton’s inequalities are
examined for nonsingular M–matrices and their inverses.

In the second part of the paper the problem of whether Drazin inverses of singular M–matrices
satisfy Newton’s inequalities is considered. In general the answer is no, but it is shown that they do
satisfy a form of Newton–like inequalities.

In the final part of the paper the relationship between the satisfaction of Newton’s inequality by
a matrix and by its principal submatrices of order one less is examined, which leads to a condition
for the failure of Newton’s inequalities for the whole matrix.
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1. Introduction. In a recent paper, Holtz [5] showed that Newton’s inequalities
hold for the class of matrices consisting of the nonsingular M–matrices and their in-
verses.

Newton’s inequalities involve the (normalized elementary) symmetric functions
that are defined as follows.

Definition 1.1. For x1, . . . , xn ∈ C and for 1 ≤ j ≤ n, define the symmetric
functions

(1.1) Ej(x1, . . . , xn) :=

∑
1≤i1<...<ij≤n

xi1 · · ·xij(
n

j

)
and, by convention, E0(x1, . . . , xn) = 1.

The original Newton inequalities, which date back to 1707 [10], concern the case
when the n numbers x1, . . . , xn in Definition 1.1 are nonnegative scalars. In this case
the inequalities say that:

(1.2) E2
j (x1, . . . , xn) ≥ Ej−1(x1, . . . , xn)Ej+1(x1, . . . , xn), j = 1, . . . , n − 1,
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again using the convention that E0(x1, . . . , xn) = 1. The inequalities were also ob-
tained by Maclaurin [7]. Actually, as shown in [4], (1.2) continues to hold when
x1, . . . , xn are real but not necessarily all nonnegative. More recently, Rosset [12] and
Niculescu [11] studied generalized Newton’s inequalities with higher order terms of
Ej(x1, . . . , xn).

The problem in extending Newton’s inequalities to the set of eigenvalues of n×n
matrices is that even if the matrices are real, their eigenvalues may not be real. In
the case of real matrices we know, of course, that their nonreal eigenvalues come in
conjugate pairs.

Before we proceed, a word about notation. If A ∈ Rn,n has the eigenvalues
x1, . . . , xn, then we shall form functions Ej on these eigenvalues and put:

(1.3) Ej(A) = Ej(x1, . . . , xn), j = 0, 1, . . . , n,

and

E(A) = [E0(A), . . . , En(A)] .

Let B = [bi,j ] ∈ Rn,n be a nonnegative matrix whose Perron root is r = ρ(B).
The matrix A = sI −B is called an M–matrix if s ≥ ρ(B). It is well known from the
Perron–Frobenius, see, for example, Berman and Plemmons1 [2], that if s > ρ(B),
then A is nonsingular. As reported above, recently Holtz [5] proved that the class
of nonsingular M–matrices and their inverses both satisfy Newton’s inequalities with
respect to their eigenvalues. It was also pointed out by Holtz in [5] that, using a
continuity argument, Newton’s inequalities continue to hold on the closure of the set
of nonsingular M–matrices, i.e. the class consisting of both nonsingular and singular
M–matrices.

Nonsingular M–matrices and their inverses possess various types of monotonic
behavior. For example, it is known that if A1 and A2 are n × n nonsingular M–
matrices and A1 ≤ A2 entrywise, then A−1

2 ≤ A−1
1 , again entrywise. A further type

of monotonic behavior is that det(A1) ≤ det(A2). Consider now a nonsingular M–
matrix dependent on a parameter, namely, A(s) = sI − B, as s varies in the interval
(ρ(B),∞). For a matrix F ∈ Rn,n, we shall denote by

(1.4) Nj(F ) = E2
j (F ) − Ej−1(F )Ej+1(F ), j = 1, . . . , n − 1,

and by

N(F ) = [N1(F ), . . . , Nn−1(F )] .

These Nj shall be called discriminants for the matrix F . Returning to the one pa-
rameter family of nonsingular M–matrices, A(s) = sI − B, we show that for all

1Actually, background material for all the results on nonnegative matrices and M–matrices which
we shall use in this paper can be found in this reference.
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j = 1, . . . , n−1, Nj(A(s)) is monotonically increasing in the interval (ρ(B),∞), while
for C(s) := (A(s))−1, we shall show that Nj(C(s)) is a monotonically decreasing
function in the interval.

It is well known that the nonsingular M–matrices and their inverse are (also)
P–matrices, namely, matrices whose principal submatrices all have a positive deter-
minant. It is further known, through continuity arguments, that the singular M–
matrices are P0–matrices, that is, matrices whose principal submatrices all have a
nonnegative determinant. In [8] it was shown that the Moore–Penrose and Drazin
inverses of singular M–matrices are P0–matrices. This result led us to ask a similar
question concerning whether generalized inverses of singular M–matrices (also) satisfy
Newton’s inequalities.

The answer to the above question turns out to be negative in general, as can be
seen from the following example. Let

(1.5) A =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

−1 0 0 0 1

 .

Then the Drazin inverse 2 AD of A is given by

(1.6) AD =


0.4 0.2 0 −0.2 −0.4

−0.4 0.4 0.2 0 −0.2
−0.2 −0.4 0.4 0.2 0

0 −0.2 −0.4 0.4 0.2
0.2 0 −0.2 −0.4 0.4

 .

A computation of the elementary symmetric functions of AD yields that

E(AD) =
[

1 0.4 0.2 0.1 0.04 0
]

For this example, we see that

E2
1(AD) − E0(AD)E2(AD) = 0.42 − 0.2 = −0.04 < 0.

This observation led us to consider the following question: Does there exist a
constant 0 < c ≤ 1 such that for all n ≥ 3 and for all singular M–matrices
A ∈ Rn,n, the inequalities

(1.7) E2
j (AD) ≥ cEj−1(AD)Ej+1(AD), 1 ≤ j ≤ n − 1,

hold?

2For more background material on Drazin inverses and other generalized inverses of matrices see
Ben–Israel and Greville [1] and Campbell and Meyer [3].
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We call inequalities in the form of (1.7) Newton–like inequalities. In Section 4 we
show that Newton–like inequalities hold on Drazin inverses of M–matrices, regardless
of the multiplicity of 0 as their eigenvalue.

Let A ∈ Rn,n. For i = 1, . . . , n, denote by Ai the (n−1)×(n−1) principal subma-
trix of A obtained by deleting its i–th row and column. In Section 5 we shall analyze
the relation between the symmetric functions of A and the symmetric functions of
A1, . . . , An. This will allow us to formulate a condition on Nj(A1), . . . , Nj(An), for
an arbitrary but fixed value of 1 ≤ j ≤ n − 2, which leads to the failure of the j–th
Newton inequality for A, namely, Nj(A) < 0.

2. More Background and Initial Results on Newton–Like Inequalities.
First of all, it should be pointed out that Monov [9] recently established Newton–like
inequalities in the form

(2.1) E2
j (x1, . . . , xn) ≥ cEj−1(x1, . . . , xn)Ej+1(x1, . . . , xn), j = 1, . . . , n − 1,

for the case when �(xi) ≥ 0, for all i, and when none of the xi’s are pure imaginary.
The main result in [9] states that the constant c can be chosen to be cos2 ϕ, where
0 ≤ ϕ < π/2 is an upper bound on | arg xi| for all i. We shall illustrate here that the
Newton–like inequalities arise naturally as we consider the spectra of a nonsingular
matrix A and its inverse or as we augment the spectrum of A with zeros. These ob-
servations will be used in Section 4 to prove that for Drazin inverses of M–matrices,
the constant c in Newton–like inequalities is in (1/2, 1] no matter how close ϕ is to π/2.

Let A ∈ Rn,n and suppose that σ(A) = {x1, . . . , xn}. Denote the characteristic
polynomial of A by

(2.2) p(x) = det(xI − A) = (x − x1) · · · (x − xn).

It is a basic fact in matrix theory, see Horn and Johnson3 [6, p. 42], that the Ej(A)’s
are real and that

(2.3) p(x) =
n∑

j=0

(−1)j

(
n

j

)
Ej(A)xn−j .

It is well known that if A ∈ Rn,n is a P–matrix, particularly a nonsingular M–matrix,
then Ej(A) > 0, for all j = 0, . . . , n.

The following identity can be found in [12] and [11], but it is likely to be found
in earlier literature:

Lemma 2.1. (Rossett [12, Eq. (4)]) For the nonzero scalars x1, . . . , xn ∈ C, let
x′

i = 1/xi, i = 1, . . . , n. Then:

(2.4) En(x1, . . . , xn)En−j(x′
1, . . . , x

′
n) = Ej(x1, . . . , xn), 0 ≤ j ≤ n.

3Note that Ej(A) in [6] is equivalent to
�n

j

�
Ej(A) here.
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Recall now that if A ∈ Rn,n is nonsingular, then En(A) �= 0. We next develop
the following two lemmas:

Lemma 2.2. Let A ∈ Rn,n be a nonsingular matrix and let {k1, . . . , kn−1} be a
set of nonnegative constants. Then

(2.5) E2
j (A) ≥ kjEj−1(A)Ej+1(A), 1 ≤ j ≤ n − 1,

if and only if

(2.6) E2
j (A−1) ≥ kn−jEj−1(A−1)Ej+1(A−1), 1 ≤ j ≤ n − 1.

Proof. We know that if σ(A) = {x1, . . . , xn}, then σ(A−1) = {x′
1, . . . , x

′
n}. To

show the necessity, we apply (2.4) to each factor in (2.5) and obtain that

E2
n(A)E2

n−j(A−1)

≥ kjE
2
n(A)En−j+1(A−1)En−j−1(A−1),

and so

E2
n−j(A−1) ≥ kjEn−j+1(A−1)En−j−1(A−1).

This yields (2.6) upon replacing n − j with j.

The proof of the sufficiency part can be done by observing the symmetry between
(2.5) and (2.6).

A simple consequence of Lemma 2.2 is that when A is a nonsingular matrix and
satisfies Newton’s inequalities, which corresponds to the case when all the kj ’s
in Lemma 2.2 are equal to 1, then its inverse A−1 also satisfies Newton’s inequali-
ties. This provides a further confirmation to a part of Holtz’s [5] results that Newton’s
inequalities hold for nonsingular M–matrices if and only if they hold for inverses of
nonsingular M–matrices.

We next present a modification of Lemma 2.2 which will allow us subsequently
to examine the fulfillment of Newton’s inequalities by certain generalized inverses of
M–matrices.

Lemma 2.3. Let B ∈ R
r,r be a nonsingular matrix with spectrum σ(B) =

{x1, . . . , xr} and suppose that there exists a set of constants {k1, . . . , kr−1} such that

(2.7) E2
j (B) ≥ kjEj−1(B)Ej+1(B), 1 ≤ j ≤ r − 1.
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For any n > r, set xr+1 = . . . = xn = 0. Then
(2.8)

E2
j (x1, . . . , xn) ≥ kj

(
r

j

)2(
n

j − 1

)(
n

j + 1

)
(

n

j

)2(
r

j − 1

)(
r

j + 1

)Ej−1(x1, . . . , xn)Ej+1(x1, . . . , xn),

for 1 ≤ j ≤ r − 1. In particular, if Ej(B) > 0, for j = 1, . . . , r, then

(2.9) E2
j (x1, . . . , xn) > kjEj−1(x1, . . . , xn)Ej+1(x1, . . . , xn), 1 ≤ j ≤ r − 1.

Proof. To show (2.8), we first observe that for any 1 ≤ j ≤ r,

(2.10)

Ej(x1, . . . , xn) =

∑
1≤i1<...<ij≤n

xi1 · · ·xij(
n

j

)

=

∑
1≤i1<...<ij≤r

xi1 · · ·xij(
r

j

)
(

r

j

)
(

n

j

)

=

(
r

j

)
(

n

j

)Ej(B).

Note that the above connection between Ej(x1, . . . , xn) and Ej(B) continues to hold
when j = 0.

Using (2.10) in (2.7) yields that(
n

j

)2

(
r

j

)2 E2
j (x1, . . . , xn) ≥ kj

(
n

j − 1

)
(

r

j − 1

)Ej−1(x1, . . . , xn) ·

(
n

j + 1

)
(

r

j + 1

)Ej+1(x1, . . . , xn),

from which we obtain that:

E2
j (x1, . . . , xn) ≥ kj

(
r

j

)2(
n

j − 1

)(
n

j + 1

)
(

n

j

)2(
r

j − 1

)(
r

j + 1

) · Ej−1(x1, . . . , xn)Ej+1(x1, . . . , xn).
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This completes the proof of (2.8).

It can be easily verified that(
r

j

)2(
n

j − 1

)(
n

j + 1

)
(

n

j

)2(
r

j − 1

)(
r

j + 1

) =
(n − j)(r − j + 1)
(r − j)(n − j + 1)

> 1.

This, together with the fact that Ej(x1, . . . , xn) > 0, for 1 ≤ j ≤ r, implies (2.9)
holds.

3. Monotonicity of Newton’s Inequalities for M–matrices and Their
Inverses. In this section we consider the following questions: Let A(s) = sI − B,
with B ≥ 0 and s ∈ (ρ(B),∞). Then how do Nj(A(s)) and Nj(((A(s))−1)
change when s changes?

Consider Ej(A(s)), for j = 0, . . . , n. Then it can be easily verified that

(3.1)
di

dsi
Ej(A(s)) = j(j − 1) · · · (j − i + 1)Ej−i(A(s)) ≥ 0, for all i ≤ j,

and for all 0 ≤ j ≤ n. We can now prove the first theorem of this section:

Theorem 3.1. Let B ∈ Rn,n be a nonnegative matrix and consider the one
parameter family of nonsingular M–matrices A(s) = sI −B, with s ∈ (ρ(B),∞). For
1 ≤ j ≤ n − 1, let Nj(A(s)) be given by the substitution of F = A(s) in (1.4). Then,
for all j = 1, . . . , n− 1, and for all s ∈ (ρ(B),∞), N ′

j(A(s)) ≥ 0, that is, Nj(A(s)) is
monotonically increasing in the interval.

Proof. With i = 1, on applying (3.1) to the difference given in (1.4), we obtain
that for each 1 ≤ j ≤ n − 1,

N ′
j(A(s)) = 2jEj(A(s))Ej−1(A(s)) − (j − 1)Ej−2(A(s))Ej+1(A(s))

− (j + 1)Ej−1(A(s))Ej(A(s))

= (j − 1) (Ej−1(A(s))Ej(A(s)) − Ej−2(A(s))Ej+1(A(s))) .

Since

Ej−2(A(s))Ej(A(s)) ≤ E2
j−1(A(s)) and Ej−1(A(s))Ej+1(A(s)) ≤ E2

j (A(s)),

with all the quantities in the display being nonnegative due to the A(s)’s being non-
singular M–matrices and so, in particular, P–matrices, we have that

(3.2) Ej−2(A(s))Ej+1(A(s)) ≤ Ej−1(A(s))Ej(A(s)).

Thus N ′
j(A(s)) ≥ 0, for all s ∈ (ρ(B),∞), concluding the proof.
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To illustrate the results of the theorem let

A =



2 −1 −1 −1 0

−1 3 −1 −1 0

0 0 3 −1 −1

0 −1 0 5 −1

0 −1 −1 −1 3


and let B = A + I. Then on computing the discriminants for A and B we find that:

N(B) − N(A) =
[

0 4.96 154.52 3497.6
]
.

However it should be pointed out that the conclusions of Theorem 3.1 fail if we merely
have two nonsingular M–matrices in which one majorizes the other. As an example
let

C =



1.9 −1.1 −1.1 −1.1 −.1

−1.1 2.9 −1.1 −1.1 −.1

−.1 −.1 2.9 −1.1 −1.1

−.1 −1.1 −.1 4.9 −1.1

−.1 −1.1 −1.1 −1.1 2.9


≤ A.

Then, again after computing, we find that

N(C) − N(A) =
[

0.14000 1.9029 25.521 342.1824
]
.

In contrast to the monotonically increasing property of the discriminants for the
nonsingular M–matrices A(s) = sI − B, the discriminants for (A(s))−1 display a
monotonic decreasing behavior as shown in the following theorem:

Theorem 3.2. Let B ∈ Rn,n be a nonnegative matrix and consider the one
parameter family of nonsingular M–matrices A(s) = sI − B, with s ∈ (ρ(B),∞).
Denote by A−1(s) the inverse of A(s). Then, for all j = 1, . . . , n − 1, and for all
s ∈ (ρ(B),∞), N ′

j(A−1(s)) ≤ 0, that is, Nj(A−1(s)) is monotonically decreasing in
the interval.

Proof. Due to the length of some of the expressions in the proof, for j = 0, . . . , n,
we shall set Ẽj := Ej(A−1(s)) while reserving Ej for Ej(A(s)).

By the identity given in (2.4), we can write that for s > ρ(B),

d

ds

[
Ẽ2

j − Ẽj−1Ẽj+1

]

=
d

ds

[
E2

n−j − En−j−1En−j+1

E2
n

]
.
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Now put k = n − j. Then, by (3.1), we know that d
dsEk = kEk−1 and so

d

ds

[
E2

k − Ek−1Ek+1

E2
n

]

=
(k − 1)En (Ek−1Ek − Ek−2Ek+1) − 2nEn−1

(
E2

k − Ek−1Ek+1

)
E3

n

=
(k − 1)

En

En−1
(Ek−1Ek − Ek−2Ek+1) − 2n

(
E2

k − Ek−1Ek+1

)
E3

n
En−1

.

Since Ek−1Ek−Ek−2Ek+1 ≥ 0 as shown in (3.2) and since directly from Newton’s
inequalities we can write that

0 < En/En−1 ≤ En−1/En−2 ≤ . . . ≤ Ek−1/Ek−2 ≤ Ek/Ek−1,

we have that

(k − 1) En
En−1

(Ek−1Ek − Ek−2Ek+1) − 2n
(
E2

k − Ek−1Ek+1

)
≤ (k − 1) Ek

Ek−1
(Ek−1Ek − Ek−2Ek+1) − 2n

(
E2

k − Ek−1Ek+1

)
= (k − 1 − 2n)E2

k − (k − 1)EkEk−2Ek+1

Ek−1
+ 2nEk−1Ek+1

≤ (k − 1 − 2n)E2
k − (k − 1)Ek−1Ek−2Ek+1

Ek−2
+ 2nEk−1Ek+1

≤ (k − 1 − 2n)
(
E2

k − Ek−1Ek+1

) ≤ 0.

Thus

d

ds

[
Ẽ2

j − Ẽj−1Ẽj+1

]
≤ 0

which shows that Nj(A−1(s)) decreases in the interval (ρ(B),∞).

4. Newton–Like Inequalities for Drazin Inverses of M–matrices. In this
section we provide certain extended, Newton–like inequalities for the Drazin inverse
of a singular M–matrix. We begin with the following result:

Theorem 4.1. Let A ∈ Rn,n be a singular M–matrix and let AD be its Drazin
inverse. Suppose that AD has spectrum σ(AD) = {x1, . . . , xr, xr+1, . . . , xn}, where
x1, . . . , xr �= 0 and where xr+1 = . . . = xn = 0. Then

(4.1) E2
j (AD) ≥ cjEj−1(AD)Ej+1(AD), 1 ≤ j ≤ n − 1,
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where the cj’s are constants given by

(4.2) cj =
(r − j + 1)(n − r + j + 1)j(n − j)

(r − j)(n − r + j)(j + 1)(n − j + 1)
, for 1 ≤ j ≤ r − 1,

and cj = 0, for r ≤ j ≤ n − 1.
Proof. It is known that A is similar to the block diagonal matrix[

C 0
0 N

]
,

where C is nonsingular4 and where N is nilpotent, while AD is similar to the block
diagonal matrix [

C−1 0
0 0

]
.

Clearly, the spectrum of A is given by σ(A) = {x′
1, . . . , x

′
r, x

′
r+1, . . . , x

′
n}, where x′

i =
1/xi, for i = 1, . . . , r, and x′

i = 0, for i = r + 1, . . . , n. Since Newton’s inequalities
hold for singular M–matrices, we know that

E2
j (A) ≥ Ej−1(A)Ej+1(A), 1 ≤ j ≤ n − 1.

Next, following similar steps to (2.10), we obtain that for 1 ≤ j ≤ r − 1,

(4.3) E2
j (x′

1, . . . , x
′
r) ≥ kjEj−1(x′

1, . . . , x
′
r)Ej+1(x′

1, . . . , x
′
r),

where kj =

(
n

j

)2(
r

j − 1

)(
r

j + 1

)
(

r

j

)2(
n

j − 1

)(
n

j + 1

) . By Lemma 2.2, the inequalities in (4.3) hold if

and only if the inequalities

(4.4) E2
j (x1, . . . , xr) ≥ kr−jEj−1(x1, . . . , xr)Ej+1(x1, . . . , xr), 1 ≤ j ≤ r − 1

hold. We can now use Lemma 2.3 to conclude that for 1 ≤ j ≤ r − 1,

E2
j (AD) ≥ kr−j

(
r

j

)2(
n

j − 1

)(
n

j + 1

)
(

n

j

)2(
r

j − 1

)(
r

j + 1

)Ej−1(AD)Ej+1(AD)

= cjEj−1(AD)Ej+1(AD).

Finally we observe that (4.1) also holds for r ≤ j ≤ n − 1, because for this case both
sides in (4.1) are zero.

4We remark that this matrix C is not necessarily a nonsingular M–matrix.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 314-328, November 2006



ELA

324 M. Neumann and J. Xu

Corollary 4.2. Under the assumption of Theorem 4.1, there exists a constant
c, 1/2 < c ≤ 1, and independent of n, such that

E2
j (AD) ≥ cEj−1(AD)Ej+1(AD), 1 ≤ j ≤ n − 1.

Proof. It suffices to consider the case when 1 ≤ j ≤ r − 1. Let

δ = (r − j + 1)(n − r + j + 1)j(n − j) − (r − j)(n − r + j)(j + 1)(n − j + 1).

It can be verified that

δ = (n + 1) [j(n − j) − (r − j)(n − r + j)]

= (n + 1)
[−(j − n/2)2 + (r − j − n/2)2

]
= (n + 1)(r − n)(r − 2j).

We see that when 1 ≤ j ≤ r/2, δ ≤ 0, showing that cj ≤ 1, while when r/2 ≤ j ≤ r−1,
δ ≥ 0, showing that cj ≥ 1. Moreover,

min
1≤j≤r−1

cj = c1 =
r(n − r + 2)(n − 1)
2(r − 1)(n − r + 1)n

.

To see that c1 > 1/2, note that

(4.5) c1 =
1
2
· rn − r

rn − n
· n − r + 2
n − r + 1

.

To illustrate the result of Corollary 4.2 let us return to the example of the M–
matrix A given in (1.5) whose Drazin inverse is given in (1.6). Here A has precisely
one zero eigenvalue so that n = 5 and r = 4. Substituting these values in (4.5) yields
that in this example c = 0.8.

We finally remark that if A = sI − B is a singular and irreducible M–matrix,
then A has a {1}–inverse which satisfies Newton’s inequalities. To see this partition
A into

A =
[

A1,1 A1,2

A2,1 A2,2

]
.

where A1,1 is (n − 1) by (n − 1). It is known that A has rank n − 1, that A1,1 is a
nonsingular M–matrix, and that

A− =
[

A−1
1,1 0
0 0

]
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is a {1}–inverse of A. Next, as Newton’s inequalities hold on A−1
1,1, by Lemma 2.3 we

conclude, with x1, . . . , xn−1, being the nonzero eigenvalues of A− and with xn being
its only zero eigenvalue, that

E2
j (A−) ≥

(
r

j

)2(
n

j − 1

)(
n

j + 1

)
(

n

j

)2(
r

j − 1

)(
r

j + 1

) · Ej−1(A−)Ej+1(A−)

≥ Ej−1(A−)Ej+1(A−),

for 1 ≤ j ≤ n − 2. These inequalities continue to hold in the case when j = n − 1 as
En(A−) = 0.

5. Conditions for the Failure of Newton’s Inequalities. In this section we
explore conditions under which for a matrix A ∈ Rn,n, Newton’s inequalities will fail.
For that purpose let σ(A) = {x1, . . . , xn} and, for i = 1, . . . , n, denote by Ai the
principal submatrix of A obtained from A by deleting its i–th row and column.

We begin by obtaining a relation between Ej(A) and Ej(Ai), which can be re-
garded as the special case of a formula in [5, p. 712]. As earlier in the paper, let
p(x) = det(xI − A) be the characteristic polynomial of A. It is well known, see for
example Horn and Johnson [6, Exercise 4, p. 93], that

d

dx
p(x) =

n∑
i=1

det(xI − Ai).

Thus, from the representation of the characteristic polynomial as given in (2.3) when
it is applied to matrices of order n − 1 we obtain that

(5.1) 1
n · d

dx
p(x) =

n−1∑
j=0

(−1)j

(
n − 1

j

)[
1
n

n∑
i=1

Ej(Ai)

]
xn−j−1.

Next, let y1, . . . , yn−1 be the roots of d
dxp(x). Then

(5.2)
1
n
· d

dx
p(x) =

n−1∑
j=0

(−1)j

(
n − 1

j

)
Ej(y1, . . . , yn−1)xn−j−1.

Upon equating the coefficients of likewise powers of x in (5.1) and (5.2), we obtain
that for 0 ≤ j ≤ n − 1,

Ej(y1, . . . , yn−1) =
1
n

n∑
i=1

Ej(Ai).
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Now, according to Niculescu [11, Section 2], Ej(A) = Ej(y1, . . . , yn−1) for 0 ≤
j ≤ n − 1. Hence,

Ej(A) =
1
n

n∑
i=1

Ej(Ai), 0 ≤ j ≤ n − 1.

We are now ready to prove the following result. For simplicity of notation, we
write Ek,i := Ek(Ai) for i = 1, . . . , n and k = 0, . . . , n − 1.

Proposition 5.1. Let A ∈ Rn,n. Suppose that for some k = 1, . . . , n − 2, and
for all i = 1, . . . , n,

(5.3) Nk(Ai) ≤ 0, Ek−1,i ≥ 0 and Ek+1,i ≥ 0.

Then

(5.4) Nk(A) ≤ 0,

that is, the k–th Newton inequality fails to hold.
Proof. Again, for j = 0, . . . , n, set Ej := Ej(A). Now from the definition of

Nk(A) in (1.4) we can write that:

n2Nk(A) = n2
(
E2

k − Ek−1Ek+1

)
=

(
n∑

i=1

Ek,i

)2

−
(

n∑
i=1

Ek−1,i

)(
n∑

i=1

Ek+1,i

)

=
n∑

i=1

(
E2

k,i − Ek−1,iEk+1,i

)
+

∑
1≤i<m≤n

(2Ek,iEk,m − Ek−1,iEk+1,m − Ek+1,iEk−1,m)

≤
n∑

i=1

(
E2

k,i − Ek−1,iEk+1,i

)
+

∑
1≤i<m≤n

(
2
√

Ek−1,iEk+1,iEk−1,mEk+1,m − Ek−1,iEk+1,m − Ek+1,iEk−1,m

)

=
n∑

i=1

(
E2

k,i − Ek−1,iEk+1,i

)− ∑
1≤i<m≤n

(√
Ek−1,iEk+1,m −√Ek+1,iEk−1,m

)2

≤ 0.
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This shows that if the k–th Newton’s inequalities fail for all the (n − 1) × (n − 1)
principal submatrices of A, then the k–th Newton’s inequality fails on the entire
matrix and our proof is done.

In view of the above proposition it is tempting to conjecture that if one modifies
the conditions of the proposition to that of that for some k = 1, . . . , n− 2, and for all
i = 1, . . . , n, Nk(Ai) ≥ 0, Ek−1,i ≥ 0, and Ek+1,i ≥ 0, then Nk(A) ≥ 0. That this is
not the case can be seen by taking

A =


0.5779 0.1202 −0.6326 −0.4212

0.2568 0.2905 0.6116 0.01260

0.5483 −0.1244 0.8705 0.1633

0.1306 −0.05360 0.4026 0.8043

 .

A computation now shows that

E(A) =
[

1.0 0.6358 0.4507 0.3210 0.2251
]

and that

N(A) =
[ −0.04650 −0.0009556 0.001627

]
.

A further computation yields that for k = 0, . . . , 3, and for i = 1, . . . , 4,

[Ek(Ai)] =


1 1 1 1

0.6551 0.7509 0.5576 0.5796

0.3992 0.6680 0.2971 0.4386

0.2401 0.5870 0.1326 0.3245


and that k = 1, 2, and k = 1, . . . , 4,

[Nk(Ai)] =

[
0.02993 −0.1042 0.01383 −0.1027

0.002101 0.005496 0.01433 0.004297

]
.

We observe that in this example, for k = 2, N2(A) ≤ 0, while E1,1, . . . , E4,1 ≥ 0 and
E1,3, . . . , E4,3 ≥ 0, and, in contrast to the leftmost condition in (5.3), N2(Ai) ≥ 0, for
i = 1, . . . , 4.

When applied in an inductive manner, Proposition 5.1 allows us to easily check
whether certain Newton’s inequalities must fail. Consider, for example, the case when
Newton’s inequalities fail on all 2×2 leading principal submatrices of an n×n matrix
A = [ai,j ]. We observe that for any such leading principal submatrix

B =
[

ai,i ai,j

aj,i aj,j

]
, i < j,
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E0(B) = 1, E1(B) = trace(B)/2 = (ai,i + aj,j)/2, and E2(B) = det(B) = ai,iaj,j −
ai,jaj,i. Thus Netwon’s inequalities fail on B if and only if

(5.5) (ai,i − aj,j)2 < −4ai,jaj,i.

This observation, together with Proposition 5.1, imply that an n × n matrix A fails
to satisfy the first Newton’s inequality E2

1(A) ≤ E0(A)E2(A) when (5.5) holds for all
i �= j. In particular, when A has a constant diagonal, the first Newton’s inequality
fails to hold on A if ai,jaj,i < 0, for all i �= j, i.e., if the off–diagonal entries of A are
all nonzero and exhibit a skew–symmetric sign pattern.
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